
Mashups'
A'Journey'from'Concepts'and'Models'

to'the'Quality'of'Applica8ons'

Cinzia&Cappiello&–&Politecnico&di&Milano&

Florian&Daniel&–&Università&di&Trento&

Maristella&Matera&–&Politecnico&di&Milano&

&

Learning&Objec>ves&

1.   Mashup'defini8on'and'characteriza8on'
–  Classifying&dimensions,&contexts&of&use,&target&users,&

benefits&

2.   Mashup'models'
–  Conceptual&underpinning&of&mashups&for&different&

mashup&types&

3.   Mashup'tools'and'composi8on'paradigms'
–  How&mashup&models&can&materialize&into&plaJorms&for&

assisted&mashup&development&

4.   Mashup'quality'
–  Quality&issues&for&components&and&mashups,&going&

beyond&tradi>onal&quality&models&and&prac>ces&

CORE'ASPECTS'AND'DEFINITIONS'

Technological&and&societal&context&

Web&mashups&as&innova>ve&soNware&to'reinterpret'exis8ng'
building'blocks&by&composing&them&in&an&valueOadding&manner&

Web 2.0!

•  From&oneOway&communica>on&

medium&(Web&1.0)&to&a&distributed&&

and&democra>c&communica>on&

plaJorm&(Web&2.0)&

&

•  SOA,&SaaS,&HTML5,&sophis>cated&

devices'

&

•  UserOdriven&innova>on&

•  The&term&mashup&is&widely&used&today&

•  Typical&discussion&points:&
•  UI&or¬?&

•  Web&accessible&resources&or¬?&

•  ClientOside&technologies&or&also&serverOside&

languages?&

'

The'housingmaps.com'mashup'

Provides&for&the&synchronized&explora>on&of&housing&offers&

from&craigslist.com&and&maps&by&Google.Maps.

Own'applica8on'
logic/UI'

GoogleMaps' Craiglist'

Integra8on'is'the'added'value'provided'by'the'mashup'

Mashup&defini>on&

A&mashup'is&an&applica>on&that&integrates&two&or&more&

mashup'components'at&any&of&the&applica8on'layers'
(data,&applica>on&logic,&presenta>on&layer)&possibly&

puTng'them'into'communica8on'among&each&other&

!Mashup'component:&any&piece&of&data,&applica>on&logic&and/
or&user&interface&that&can&be&reused&and&that&is&accessible&either&

locally&or&remotely&

!'Mashup'logic:&is&the&internal&logic&of&opera>on&of&a&mashup;&it&

specifies&the&invoca>on&of&components,&the&control&flow,&the&data&

flow,&the&data&transforma>ons,&and&the&UI&of&the&mashup&

The&added&value…&

No'added'value'
Addi8onal'informa8on,'
func8ons,'visualiza8ons!'

Other&defini>ons&

“WebXbased&resources&consis>ng&of&dynamic&

networks&of&interac>ng&components”&(Abiteboul&et&

Al.,&2008)&

'
“API'enablers”&(Ogrinz,&2009),&to&create&an&own&API&
where&there&is&none&&

'
“Combina8on'of'content'from&more&than&one&

source&into&an&integrated&experience”&(Yee,&2008)&

However…&

– There&are&many&applica>ons&that&would¬&qualify&

as&mashups&

– The&classifica>on&does¬&help&characterize&the&
mashup&ecosystems&from&an&engineering&perspec>ve&

Mashup&Ecosystem&

Snapshot'from'programmableweb.com'
(October'2013)'

Three'different'perspec8ves'on'the'mashup'ecosystem'
'

6 1 Introduction

Composition

Domain

Environment

Generic Process Mobile Telco

UI

Logic

Data Web

Enterprise

The mashups

Fig. 1.3 The mashup cube with tree di↵erent perspectives on the mashup ecosystem.

ested in understanding how the internals of mashups look like and work and
how to support their development.

Mashup classes like Web mashups, mobile mashups, telco mashups, data
mashups and similar bear some more semantics from this perspective. Yet,
there still seems to be an arbitrary proliferation of prefix -mashup combina-
tions, without any evident connection among them and, more interestingly,
these types of mashups are not mutually exclusive (for example, there may
be mobile telco mashups or Web data mashups). We therefore analyzed the
most important mashup types we found in literature and found that the
prefixes used by these classifications can almost all be fit into one of three
perspectives. We graphically illustrate the resulting ecosystem of mashups
and mashup definitions as a cube in Figure 1.3. The perspectives are:

• Composition : This perspective emphasizes the internals of a mashup,
i.e., its components and how these are composed into a new application.
This perspective is the one driving our own definition of mashup in Defi-
nition 1.1. It stems from the traditional separation of concerns in software
development, which separates an application into three layers, a data layer,
an application logic layer and a presentation layer. This separation of con-
cerns did not influence only how applications are structured internally, but
it also fostered the growth of suitable API and component types at the
three layers, so as to ease interoperability and integration of the layers.
Looking at which layer of the application stack a mashup is composed,
the composition perspective therefore groups mashups into data mashups,
logic mashups, UI mashups, and hybrid mashups (any combination of the
former three types).

• Domain : This perspective emphasizes the purpose of a mashup, i.e., the
functionality it aims to provide. Partly, the tags used by developers to
describe their mashups fall into this perspective, as they too describe de-
limited domains. The domains in this context may be essentially of two
types: technological domains, such as for telco mashups or mobile mashups,
and application domains, such as for social mashups or mapping mashups.

Mashup&cube&

Mashup'posi8oning'in'rela8on'to'other'integra8on'prac8ces'

Mashups&introduce&integra>on&at&the&presenta>on&layer&and&typically&focus&

on&nonOmissionOcri>cal&applica>ons&

6.1 Introduction 145

to spend herself/himself to retrieve the same information through separate
services.

The characterization of mashups as applications that introduce added value
through component integration is not obvious. A study that we conducted on
the large on-line repository of mashups published by programmableweb.
com, showed, first of all, that there is no general consensus on what a mashup
is and what it is not [55]. The systematic analysis of a sample of about
150 di↵erent mashups randomly selected out of the whole repository using a
Simple Random Sample (SRS) technique revealed that 29% of the considered
mashups make use of only one single API (in most cases a map), without
featuring an integration of multiple components into a new application.

This means that many of the “mashups” published on the Web can actually
not be called “component-based applications” or “composite applications.”
However, as our definition shows, we strongly believe that it is the presence of
multiple components (at least two) and their sensible coupling that provides
most of the added value that mashups can bring to their users. For instance,
integrating a Google Map to graphically visualize an address, as many com-
panies, restaurants, institutions, and similar do today (e.g., in their How to
get there page) is just not enough to call a web application a mashup – at
least not from our point of view.

In Figure 6.1 we roughly position the types of applications that we consider
mashups, compared to the more traditional integration practices of applica-
tion integration and data integration introduced in Chapter 2. The charac-
terizing dimensions are the application complexity and the layer of the ap-
plication stack at which integration is performed. One can immediately note
the contribution of mashup development as practice enabling integration at

Presentation

Logic

Data

Non-mission-critial

applications

Transactional

applications

Mission-critical

applications

 Data integration

 Application integration

Application layer

Application
complexity

Mashups

Fig. 6.1 Positioning of mashups compared to other integration practices, such as
application integration and data integration. Mashups introduce integration at the
presentation layer and typically focus on non-mission-critical applications.

Tradi8onal!integra8on'

UI'integra8on'

The'long'tail'of'the'so]ware'market'and'its'opportuni8es'for'mashups'

8 1 Introduction

Number
of users

Applications

One

Few

Many

Thousands

Millions 20% of the applicatons

80% of the applications

Market opportunity for mashups

Developed
applications

Neglected applications

Fig. 1.4 The long tail of the software market and its opportunities for mashups.

empowers another, pre-existing community that is large, i.e., the community
of Craigslist users.

The observation that mashups are typically still limited in their scope
and simple is not ours only. In fact, mashup development – inside the larger
context of software development – has been associated relatively early with
the long tail of the software market [207]. The long tail market model [15, 16]
observes that traditional markets commonly target only 20% of the possible
products/solutions in a given domain, which however guarantee huge sales
numbers and large customer bases; the other 80% of the products are not
considered bestsellers and, therefore, not even sold. Novel companies, most
notably the online book store Amazon, instead make most of their money by
addressing exactly these latter products and, therefore, selling products in
the long tail of their market (e.g., books that are only very hard to find in
regular, physical book stores).

Figure 1.4 applies the long tail model to the software market and illus-
trates the 80/20 rule (the so-called Pareto principle) in terms of applications
and development e↵ort. The mainstream software market focuses on the 20%
of applications that guarantee high revenues, while the other 80% of appli-
cations, which would however bring added value to some users, are not even
developed. In terms of invested development e↵ort, the rule is typically in-
verted: 80% of the e↵ort by the market is invested into the 20% of bestselling
applications, and only 20% of the e↵ort goes into the other 80% of applica-
tions.

As the figure also highlights, it is this 80% of applications that are not
in the scope of the mainstream software market that represent the “market
opportunity” for mashups. We intentionally use quotes, as we do not want to
imply that mashups are mandatorily sold like any other product, although
they might. As we will see, mashups may also serve very personal, situational
needs that apply to an individual user only. However, if the development of
mashups is adequately supported, e.g., via suitable mashup tools and easily
accessible mashup paradigms, – this is the final goal of this book – also these
very limited needs can be satisfied.

The&long&tail&model&

ComputerOassisted&composi>on&

Benefits&

User'involvement'
in&the&crea>on&of&

applica>ons&

End User
Development!

Knowledge'
transfer'from&endO

users&to&developers&

Reduced'costs'for&
product&evalua>on&

Higher'sa8sfac8on'
for&endOusers&

Other&benefits&

•  Easy&development&of&situa>onal&applica>ons&

for&power'users'

•  Fast&prototyping&for&developers'
•  Increased&ROI&for&SOA'investments'

•  Increased&visibility&by&content/component'
providers'

The&research&perspec>ve&
•  Mashup&development&is&nonOtrivial&&

–  A&very&large&set&of&(heterogeneous)'technologies&and&integra>on&
techniques&

–  New&technologies&and&interac>on&modali>es&emerge&at&fast'pace'

•  Luckily,&mashups&typically&work'on'the'“surface”'
–  Reuse'of&exis>ng&components&O&neglec>ng&the&complexity&hidden&

behind&the&service's&external&interface&

–  Composi8on'of'the'outputs'of&(much&more&complex)&soNware&

systems&

•  The&work&of&developers&can&be&facilitated&by&suitable'
abstrac8ons,'component'technologies,'development'
paradigms'and&enabling'tools'

•  Mashup'development'prac8ces'are&increasingly&becoming&

the&very&object&of&scien>fic&inves>ga>ons&

MASHUP'MODELS'
Part&I&

Learning&Objec>ves&

1.   Introducing'models'for'different'mashup'types'

2.   Introducing'typical'architectural'pacerns'

3.   Iden8fying'the'peculiarity'of'UI'integra8on'

Basic'mashup'model'

A&mashup&integrates&a&set&of&components,&possibly&puts&them&into&communica>on,&

and&op>onally&renders&results&or&components&

148 6 Mashups

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.2 The basic mashup model: a mashup integrates a set of components, possibly
puts them into communication, and optionally renders results or components.

• An optional presentation logic, which specifies how the mashup and
the content and functionalities the mashup integrates are presented to its
users, so as to enable user interactions. Independently of what component
types a mashup integrates, each mashup may feature an own user interface.
If a mashup is based on UI components, this user interface will include the
UIs of the components. How the final UI is achieved is defined by the
mashup’s presentation logic.

Depending on the type of mashup (we define these types in the following),
there exist di↵erent solutions for each of these three aspects. Which options
are available for each aspect is what we discuss next.

Before doing so, it is important to note that the model in Figure 6.2
and this chapter focus on the internals of a mashup intended as a compo-
sition of components. From an external perspective, however, mashups may
themselves be seen as components and reused in the development of another
mashup. In fact, the basic notion of composition is recursive.

Which mashup can be seen as component mostly depends on its type: it
is straightforward to reuse a mashup that comes as an RSS feed or as a Web
service, while it is harder to reuse a mashup that comes with an own UI. The
di�culty of reusing mashups with UI is due to the lack of recursive UI com-
ponentization models and suitable runtime environments. For instance, W3C
widgets [272] currently do not support recursive composition. In the follow-
ing, we do not further elaborate on the recursive composition of mashups.

6.2.2 Mashup characteristics

The basic mashup model above highlights the core ingredients that may be
needed to develop a mashup. In order to better understand and be able to
categorize and compare mashups, it is however necessary to further specialize
these ingredients and to look into the di↵erent options for approaching them
in practice. In the following, we therefore introduce seven characteristics,

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

•  Data'mashups'&&

–  Fetch&data&from&different&resources,&process&them,&and&return&an&

integrated&result&set&

•  Logic'mashups&&

–  Integrate&func>onality&published&by&logic&or&data&components&

•  User'Interface'(UI)'mashups''

–  Combine&the&component's&na>ve&UIs&into&an&integrated&UI;&the&

components’&UIs&are&possibly&synchronized&among&each&other&

•  Hybrid'mashups''

–  Span&mul>ple&layers&of&the&applica>on&stack,&bringing&together&

different&types&of&components&inside&one&and&a&same&applica>on;&

integra>on&happens&at&more&than&one&layer&

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

Posi>oning&the&mashup&at&one&or&more&of&

the&three&layers&of&the&applica>on&stack&

depending&on&the&output&of&the&mashup&

•  Data'components''
–  RSS&and&Atom&feeds,&XML&JSON,&CSV&and&similar&data&

resources,&web&data&extrac>ons,µOformats,&SOAP&or&

RESTful&services&that&are&used'as'data'services'only'

•  Logic'components''
–  SOAP&and&RESTful&web&services,&JavaScript&APIs&and&libraries,&
device&APIs,&and&API&extrac>ons&

•  UI'components&&
–  Code&snippets&and&JavaScript&UI&libraries,&Java&portlets,&widgets&
and&gadgets,&web&clips&and&extracted&UI&components&

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

Determining&what&kind&of&invoca>on,&

integra>on&and&presenta>on&logic&can&be&

adopted&for&building&the&mashup&

•  ClientXside'mashups'
– e.g.,&UI&mashups&

•  ServerXside'mashups'
– e.g.,&data&and&logic&mashups&

•  ClientXserver'mashups'
– e.g.,&hybrid&mashups&with&user&interfaces&

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

Possible&architectural&configura>ons,&

compa>ble&with&the&requirements&of&the&

chosen&components&

•  UIXbased'integra8on''

–  The&UI&of&the&mashup&acts&as&a&container&&

–  Components&run&in&a&completely&isolated&fashion&&

•  Orchestrated'integra8on'

–  Centralized&composi>on&logic,&orchestra>ng&component&execu>on&

•  Choreographed'integra8on'

–  Each&component&par>cipa>ng&in&a&choreography&is&individually&able&to&

send&and&receive&messages&

–  The&mashup&puts&into&place&only&the&communica>on&infrastructure

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

How&components&communicate&with&each&

other&

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

How&components&exchange&data&

Centralized'
data'passing''

Component1' Component2'
–  Blackboard'vs.'Shared'

memory'

–  Mediated'data'passing

Component1' Component2' –  Direct'data'passing'

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

How&components&and&their&outputs&are&

visualized&in&the&mashup's&UI&

AdXhoc'UIs

Reuse'of'components’'UIs'

•  Stateless'
– No&internal&state&for&their&execu>on,&ex.:&data&mashups&

•  ShortXliving'
–  Last&the&>me&of&a&user&session,&ex.:&UI&mashups'

•  LongXliving'
–  Survive&across&different&user&sessions,&ex.:&process&
mashups&&

&

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

How&long&an&instan>ated&mashup&is&running&

1.   Data'Mashups'

2.   UI'Mashups'

Data&Mashups&

•  Integrate'components'at'the'data'layer'of&the&
applica>on&stack&by&fetching&data&from&different&

data&services&or&Web&resources,&processing&them,&

and&returning&an&integrated&result&set&

&&

•  No'presenta8on'layer'

•  Output:&typically&published'as'a'data'source'

•  Core&integra>on&prac>ce:&data'integra8on&

A'conceptual'model'for'data'mashups'

Data&mashups&fetch&data&from&different&sources&and&integrate&them,&mix&them,&filter&

them,&process&them,&etc.,&so&as&to&produce&a&unified&data&set&as&output&

156 6 Mashups

Data
mashup

Component

1..N

invokes

Data access

Data interpretation

Data mediation

Data manipulation

1..N

Data

produces

interprets reformats

modifies

0..1

0..1

0..1

0..N

0..N

0..N

Integration
logic

Invocation
logic

Entity resolutionlinks

0..1

0..N

Fig. 6.3 A conceptual model for data mashups.

and component models of the available data sources (e.g., Atom feeds vs.
SOAP services for data provisioning). Data access requires only a very
limited “coordination” of data components (the data sources), as the ac-
tual integration is done on the component’s data sets after invocation and
there is no communication among data sources.

• Data interpretation : Once data is loaded from a remote data source, the
data must be interpreted, i.e., it is necessary to parse the data format used
by the data source to encode the data and to bring them into a format that
can be used for the manipulation of the data. We have already seen earlier
that on the Web there are a variety of di↵erent data formats, ranging from
the RSS or Atom formats over CSV or text formats to proprietary formats
used by SOAP or RESTful web services and JSON. Except RSS and Atom,
all other formats are typically proprietary, that is, they do not have a
standardized schema their data complies with. Parsing data therefore may
require first understanding these proprietary formats, commonly expressed
via XSD schemas or just described verbally on common web pages.

• Data mediation : As soon as data is available to the mashup, it may
be necessary to perform data mediation operations, whose duty it is to
transform loaded data into a homogeneous data structure with agreed on
semantics. Data mediation may therefore require operations ranging from
the resolution of mismatches between component data models (such as the
same terms having di↵erent meanings) to the construction and mainte-
nance of virtual schemas and mappings between global and local schemas,
splitting or merging individual data attributes, etc. and loading the trans-
formed data into an integrated data layer, which can be materialized or
remain virtual – depending on the internal implementation of the data

Compared&with&data&integra>on…&

•  Data&mashups&are&a&WebObased&form&of&data&

integra>on,&intended&to&solve&different&problems&

•  Covering&the&“long&tail”&of&data&integra>on&
requirements&

– Very&specific&reports&or&adOhoc&data&analyses&&
– Simple,&adOhoc&data&integra>ons&providing&“situa>onal&

data”&that&meet&short&term&needs&

– NonOmissionOcri>cal&integra>on&requests&

PointXtoXpoint'data'mashups'

Basic&architecture&with&direct&data&passing&among&components&and&data&processing&func>ons.&&

The&mashup&control&logic&establishes&the&necessary&direct&pointOtoOpoint&communica>ons&

158 6 Mashups

Web server

Data mashup
Public data access API

Protocol adapter

Data format parser

JSON
parser

Microf.
parser

XML
parser

CSV
parser

RDF
parser

Data
extractor

Data processing
functions

Filter

Merge

Split

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Mashup
control logic

Annotated
web page

Count

Edit Sort

Trunc

Fig. 6.4 Basic data mashup architecture with direct data passing among data pro-
cessing functions.

From an implementation point of view, there are many ways to implement
data mashups. The rest of this section describes in particular three archi-
tectural patterns that we consider the most representative ones; di↵erent
variations and nuances thereof may of course exist.

It is important to note that the model we propose in Figure 6.3 illus-
trates the characteristics of the most used types of data mashups so far, i.e.,
stateless data mashups that are processed in one shot and that terminate
after producing an output. We however acknowledge that we may also have
steaming data mashups (e.g., [43]), which are of long-living nature in that
they stay alive and process data items (e.g., sensor readings from a wireless
sensor network or new items added to an RSS feed) until the mashup is not
explicitly terminated. We defer the discussion of how the necessary interac-
tion state with the streaming data source can be managed to the explanation
of logic mashups; the rest of the internal logic of streaming data mashups is
as explained in this section.

6.3.1 Point-to-point data mashups

The first architectural pattern we call point-to-point data mashups, as data
integration is achieved as the result of a direct interplay of data sources with
data processing functions or of one data processing function with another,
with the mashup establishing the necessary direct point-to-point communi-
cations.

Different'types'of'data'
components'

ServerXside'run8me'loca8on''

Orchestrated'
integra8on'Direct'data'passing'or'
blackboard'approach'

Stateless'instan8a8on'

No'UI'

CentrallyXmediated'data'mashups'

Data&are&transformed&and&stored&in&an&integrated&data&store,&and&all&data&

processing&func>ons&operate&on&this&integrated&data&store&only&

160 6 Mashups

Web server

Data mashup
Public data access API

Integrated
data store

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Data processing
functions

Filter

Merge

Split

Count

Edit Sort

Trunc

Data format parser

JSON
parser

Microf.
parser

XML
parser

CSV
parser

RDF
parser

Data
extractor

Mashup control logic

Data
mediator

Fig. 6.5 Data mashup architecture with data mediation and integrated data store.

integrated data store. In point-to-point data mashups, where there is no data
mediation, each data processing function has to understand two potentially
di↵erent data models, i.e., the data model of the input data and that of the
data produced as output.

Given the similarity of the architectures of the two types of data mashups,
also their mashup characteristics are essentially the same. Yet, in centrally
mediated data mashups, we can no longer have direct data passing among
source components and data processing functions or among functions them-
selves. Data passing from source components to the integrated data store is
mediated, data passing among data processing functions is typically based on
a shared memory (the integrated data store).

6.3.3 Data mashups with external data processing logic

Finally, the last type of data mashups we consider are data mashups with
external data processing logic (see Figure 6.6), which, besides internal data
processing functions, make use of web services or similar to reuse third-party
data processing capabilities and power. Not always it is possible to get access
to all the necessary data sources to obtain a desired output (e.g., by joining
the data), but suitable web services may help out. For instance, if we want to
add human-understandable location information to an RSS feed containing
GPS coordinates (expressed via longitude and latitude geo-coordinates), it is

Data'media8ons'between'the'
source'data'models'and'the'
integrated'data'store'

The'schema'of'the'integrated'
data'store'acts'as'a'global'
schema'
'
All'data'processing'func8ons'
operate'on'this'integrated'
data'store''

Data'mashups'with'external'data'processing'logic'

Besides&internal&data&processing&func>ons,&web&services&or&similar&are&exploited&to&

reuse&thirdOparty&data&processing&capabili>es&and&power&

6.4 Logic Mashups 161

Web server

Data mashup
Public data access API

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Exteral data
processing

functionsSOAP service RESTful service

Integrated
data store

Unified data
processing
functions

Data format
parser

Mashup control logic

Data
mediator

Data format
parser

Data format
parser

Unified data
processing
functions

Data
processing
functions

Fig. 6.6 Architecture of a data mashup with external data processing logic.

practically impossible to find a data sources for all cities and street names
that could be joined with geo-coordinates. However, there exist, for example,
free services accessible over the Web1 that provide for the translation of geo-
coordinates into city and street names, which can be used for this purpose.

The integration of these kinds of services serves the purpose of trans-
forming data and should not be interpreted as web service composition, as
described in the next section. The characteristics of data mashups with ex-
ternal data processing logic are therefore the same as the ones of any of the
two previous data mashup configurations, depending on whether the mashup
is based on centrally mediated data or not. Of course, unlike internal data
processing functions, external data processing services cannot access the in-
tegrated data store directly and therefore require data passing by value.

6.4 Logic Mashups

Logic mashups extend the scope of integration from data to logic components.
A logic mashup integrates mashup components at the application logic
layer of the application stack, by enabling the composition of functionality

1 See, for instance, the GeoNames services: http://www.geonames.org/export/
ws-overview.html.

User&Interface&Mashups&

•  Component&integra>on&at&the&presenta>on&layer&(UI'
integra8on)&
–  Reusing&and&possibly&synchronizing'the'UIs&of&the&involved&
components&and&media>ng&possible&data&mismatches&

•  Output:&a'Web'applica8on'the&users&can&interact&with&

•  Par>cularly&appropriate&when&components&have&na>vely&

a&UI&and&developing&a&new&UI&from&scratch&is&simply&too&

costly&

•  Mostly&clientXside,&generally&shortXliving'

•  Different&level&of&complexity:&from&sharing&of&a&same&

page&layout&to&complex&synchroniza>on/communica>on&

paoerns&

UI'mashups'without'interXcomponent'communica8on'

A&specializa>on&of&the&basic&mashup&model&with&new&elements:&

user'interface,'templates,'viewports'

6.5 User Interface Mashups 167

UI mashup

Component Presentation
logic

1..N

Viewport Template

0..1
hosts

0..1

User interface
has

0..N0..1

Fig. 6.9 User interface mashup model without inter-component communication.

mediating possible data mismatches. The output is typically published as a
web application the users can interact with.

UI mashups are particularly appropriate when integration at the other lay-
ers is just not feasible, such as when components don’t expose proper APIs,
or when developing a new UI from scratch is simply too costly, such as when a
component changes frequently its APIs or developing a new UI would be too
complex. Also, there are components, such as W3C widgets, which natively
are UI-only components and thus can be exclusively integrated at the pre-
sentation layer. The resulting UI mashups are mostly client-side applications,
since the logic to render and invoke UI components and to integrate them is
typically located on the client side (except for portlets and portals); as such,
they are generally short-living applications. UI mashups can be relatively sim-
ple applications, as it happens if integration occurs merely in terms of laying
out components in a common page template; but they may also grow com-
plex, for example when they require di↵erent communication/synchronization
logics among integrated components.

Figure 6.9 illustrates a specialization of the basic mashup model of Figure
6.2 for UI mashups without inter-component communication . The
model comes with two extensions, one regarding the rendering of components
and one regarding the layout of the components inside the mashup’s UI. The
extensions refer to the following elements:

• User interface : UI components have a native UI that can be reused as is
for the development of the mashup’s composite UI. Reusing a component’s
UI generally enables users to interact with the component in the most
appropriate fashion and relieves the mashup developer from one of the
most sensible aspects of software development, i.e., interaction design.

• Templates: the layout and style of the overall presentation of the mashup.
UI mashups have a user interface that partly derives from the composition
of component UIs, partly from the sca↵olding template that hosts the
components and adds additional style and content elements to them (e.g.,
suitable titles or background images). As the rendering of the mashup
occurs in the web browser, templates typically come in form of HTML
pages, each page able to host one or more UI components.

The'UI'is'the'only'integra8on'
dimension'

No'component'invoca8on,'just''
embedding'

6.5 User Interface Mashups 171

YouTube videos

Expo 2015 banner

Amazon pageFlickr page

Fig. 6.11 The simplest UI mashup: embedding external resources inside own HTML
code.

of content synchronization that does not require any direct communication
among the components. The result is a web page embedding di↵erent UI
components without any mutual interaction.

Copying and pasting markup may at first glance look like the worst op-
tion to integrate third-party content. Interestingly, however, this is not only
the oldest reuse practice in software developmentin general; it is nowadays
also becoming some kind of standard technique supported by major so-
cial networking or content sharing sites. For example, Twitter (https:
//dev.twitter.com/) allows one to easily generate custom markup to
include timelines, tweets, or buttons in own pages; YouTube (http://www.
youtube.com/) provides a similar feature via the Share option just be-
low a video; and also Google Maps (https://developers.google.com/
maps/) provides similar customizable markup snippets for the embedding of
its map.

Figure 6.12 illustrates the architecture of an HTML UI mashup like the
one illustrated above, which reflects the client-side nature of this kind of

The&simplest&UI&mashup:&embedding&external&resources&inside&own&HTML&code&

172 6 Mashups

Web browser

Web page

Web page
Image

iframe

Video
JS UI library

Fig. 6.12 Architecture for a simple HTML mashup. It embeds, within a Web page,
HTML snippets for displaying contents retrieved in a remote site and JavaScript code
to interact with a remote JS library or API.

applications. The mashup consists of an HTML page, which may include
URI-based references to entire Web pages, multimedia content or JavaScript
UI libraries. When rendering the page, it is the web browser who requests
linked sources and makes them available inside the mashup. Resources em-
bedded via iframes are isolated and executed as if rendered in an own web
browser. This architecture of UI mashups clearly highlights the UI-based in-
tegration logic with no data passing among components. The presentation
logic is based on reused UIs (the iframes, multimedia objects, or images),
and the instantiation model is by definition short-living.

6.5.2 Wrapped UI mashups

We now try to understand how to obtain UI mashups that, with some addi-
tional logic to instantiate and invoke components, also support the synchro-
nization of UI components during the mashup execution (see Figure 6.10 for
the respective mashup model). Given UI components like HTML snippets,
third-party web sites or similar, which were not developed for interoperabil-
ity, achieving synchronization typically requires two new ingredients: wrap-
pers, i.e., extensions of the basic component models (e.g., client-side scripts),
which are able to provide the components with a suitable UI and/or to equip
them with the necessary support for inter-component communication; and
an integration logic that puts the components into communication.

Let’s consider the development of a mashup that helps its users to find
music events in the Milan area using a list of concerts, a map, and a calendar.
The involved components are a concert listing providing a list of music events
as an RSS feed, a map able to render points of interest, and a calendar view
of the concert list. The combined e↵ect that we want to achieve is that when

HTML&UI&Mashup&

6.5 User Interface Mashups 171

YouTube videos

Expo 2015 banner

Amazon pageFlickr page

Fig. 6.11 The simplest UI mashup: embedding external resources inside own HTML
code.

of content synchronization that does not require any direct communication
among the components. The result is a web page embedding di↵erent UI
components without any mutual interaction.

Copying and pasting markup may at first glance look like the worst op-
tion to integrate third-party content. Interestingly, however, this is not only
the oldest reuse practice in software developmentin general; it is nowadays
also becoming some kind of standard technique supported by major so-
cial networking or content sharing sites. For example, Twitter (https:
//dev.twitter.com/) allows one to easily generate custom markup to
include timelines, tweets, or buttons in own pages; YouTube (http://www.
youtube.com/) provides a similar feature via the Share option just be-
low a video; and also Google Maps (https://developers.google.com/
maps/) provides similar customizable markup snippets for the embedding of
its map.

Figure 6.12 illustrates the architecture of an HTML UI mashup like the
one illustrated above, which reflects the client-side nature of this kind of

The&simplest&UI&mashup:&embedding&external&resources&inside&own&HTML&code&

172 6 Mashups

Web browser

Web page

Web page
Image

iframe

Video
JS UI library

Fig. 6.12 Architecture for a simple HTML mashup. It embeds, within a Web page,
HTML snippets for displaying contents retrieved in a remote site and JavaScript code
to interact with a remote JS library or API.

applications. The mashup consists of an HTML page, which may include
URI-based references to entire Web pages, multimedia content or JavaScript
UI libraries. When rendering the page, it is the web browser who requests
linked sources and makes them available inside the mashup. Resources em-
bedded via iframes are isolated and executed as if rendered in an own web
browser. This architecture of UI mashups clearly highlights the UI-based in-
tegration logic with no data passing among components. The presentation
logic is based on reused UIs (the iframes, multimedia objects, or images),
and the instantiation model is by definition short-living.

6.5.2 Wrapped UI mashups

We now try to understand how to obtain UI mashups that, with some addi-
tional logic to instantiate and invoke components, also support the synchro-
nization of UI components during the mashup execution (see Figure 6.10 for
the respective mashup model). Given UI components like HTML snippets,
third-party web sites or similar, which were not developed for interoperabil-
ity, achieving synchronization typically requires two new ingredients: wrap-
pers, i.e., extensions of the basic component models (e.g., client-side scripts),
which are able to provide the components with a suitable UI and/or to equip
them with the necessary support for inter-component communication; and
an integration logic that puts the components into communication.

Let’s consider the development of a mashup that helps its users to find
music events in the Milan area using a list of concerts, a map, and a calendar.
The involved components are a concert listing providing a list of music events
as an RSS feed, a map able to render points of interest, and a calendar view
of the concert list. The combined e↵ect that we want to achieve is that when

HTML&UI&Mashup&

<div&id="amazon">&&&& &&

&&&&<iframe&&

&&&&&src="hcp://amazon.com/s/?url=searchXkeywords=expo'2015&&&&&&&&&
&&</iframe>&&&&&

</div>&

Wrapped'UI'Mashup'

Wrappers''invokes'the'original'service,'interprets'and'manipulates'the'retrieved'results''

•  Visualizes'data'according'to'a'suitable'HTML'UI'

•  Captures'UI'events'

•  Handles'external'requests'for'opera8ons'

&

Wrapped'UI'Mashup'

Wrappers''invokes'the'original'service,'interprets'and'manipulates'the'retrieved'results''

•  Visualizes'data'according'to'a'suitable'HTML'UI'

•  Captures'UI'events'

•  Handles'external'requests'for'opera8ons'

&

Event'Handler'

MyEvents'

Google'Maps&

ConcertSelec>on&

ShowPOI&

Listner'

Publisher:&MyEvents&

Event:&ConcertSelelc>on&
Subscriber:&GoogleMaps&

Opera8on:&ShowPOI&

ConcertSelec4on.

UI'mashups'with'interXcomponent'communica8on'

Three&new&elements&for&the&synchroniza>on&of&components:&&

opera8ons,'UI'events,'shared'memory'

6.5 User Interface Mashups 169

UI mashup

Component Presentation
logic

1..N

Viewport Template

hosts

0..1

User interface

has
0..N0..1

Operation UI event

Invocation
logic

Data

Data mediation

Data manipulation

0..1

0..1

Integration
logic

Shared memory

0..1

0..N 0..N 0..N

consumes/produces

reformats

modifies

stores

0..N 0..N

0..N
0..N

Entity resolution

0..1

0..N
links

Fig. 6.10 User interface mashup model with inter-component communication.

meaningful state changes, which may be of interest to other components
of a some mashup, not mere JavaScript or DOM events (like mouse moves
or clicks). UI events, like any other operation, may carry parameters with
them, for example to communicate which new city has been selected in
a map component; the data entity in the model also represents event pa-
rameters.

• Shared memory : Inter-component communication can make use of a
shared memory for the exchange of data among components, e.g., in the
absence of UI events or when data are to big to be passed via events.
Components may also use a shared memory to store data and use events
to notify other components about the availability of new data. In principle,
a shared memory also enables data mediation (to transform data), but UI
synchronization typically requires exchanging only simple data structures
or even scalars (e.g., parameter-value pairs), which do not require complex
transformation capabilities.

In the rest of this section, we illustrate di↵erent ways to achieve integration
of UI components in practice. As we have seen, UI integration is intrinsically
event-based, a property that distinguishes it from integration at the data or
logic layers. However, given the relative immature technologies involved in UI
integration and their heterogeneity, it is common to find a mix of di↵erent
communication and integration techniques at the presentation layer.

Also in the case of UI mashups we may have mashups that integrate
streaming components, e.g., a multi-media component that allows users to

Container:'run>me&environment&supor>ng&the&deployment&and&execu>on&of&portlets&

Portal:'aggregates&the&markup&of&portlets&and&manages&communica>ons&with&the&

portlet&container&in&a¢rally&mediated&fashion&

&

'

176 6 Mashups

Web server

Web browser

Portal

Web page

Local portlet containter

Portlet 1
Portlet 2

Portlet 3

Portlet 4

Users

WSRP adapter

Portal page
templates

Remote portlet 1

Remote portlet 2

Protocol adapter

SOAP service RESTful service

Shared
context

Event bus

access to fully rendered page

Fig. 6.13 Simplified architecture of a portal serving local and remote portlets.

Assembling a portal page is performed in two phases: (i) generation of
markup fragments by portlets and (ii) aggregation of fragments into the por-
tal page. The portlet markup fragments adhere to rules that facilitate content
aggregation into portals. Portals interpret the portlet markup code, allocate
suitable space for the rendering of each portlet, and generate the compos-
ite UI. Portals typically allow users to customize the composite UI (e.g., to
rearrange or show/hide individual portlets), and provide facilities like single
sign-on and role-based personalization for portlets.

Analogous to Java servlets, portlets implement a standard Java interface
(JSR-168 [1]), to enable developers to create portlets that can be plugged into
any standard-conform portal. JSR-168 also defines a runtime environment for
portlets, the portlet container, and the Java API between the container and
the portlets. Figure 6.13 illustrates a typical portal architecture. The portlet
container hosts portlets and o↵ers support for their deployment and execu-
tion, i.e., it provides the required runtime environment, e.g., with support for
persistent storage to store portlet preferences. The portlet container receives
requests for the execution of portlets from the portal, where the actual user
interaction with the portlet takes place. As such, the portal aggregates the
markup of its portlets and manages communications with the portlet con-
tainer in a centrally mediated fashion. That is, the portlet container is not
responsible for aggregating and displaying the fragments produced by the
portlets; this is under the responsibility of the portal.

JSR-168 focused on portals that use only portlets installed locally in the
portlet container. The Web Services for Remote Portlets specification [264]
then standardized the interaction with remote portlets accessed via SOAP

ContainerObased&UI&mashups&

Simplified&architecture&of&a&portal&serving&
local&and&remote&portlets.&

'

178 6 Mashups

Fig. 6.14 An example of widget-based mashup created using the Netvibes platform.
Di↵erent areas of the page correspond to di↵erent viewports, each one displaying the
content of a di↵erent widget.

of portals is distributed over client and server, and portlets feature reusable
UIs that are rendered inside viewports of the portal page.

6.5.3.2 Widget-based mashups

As discussed in Chapter 5, a relatively young family of UI components, com-
pared to portlets, are so-called widgets. These are full-fledged, packaged web
applications which can be rendered inside viewports like portlets, and are
mainly executed at the client side. W3C widgets, Yahoo! widgets, OpenSo-
cial gadgets, are all examples of such client-side UI components. Since the
most promising standardization activities currently focus on W3C widgets,
in the following we too focus on the composition of W3C widgets, also be-
cause the trend of the other technologies is towards the harmonization with
this standard. In fact, the issues related to the composition of such packaged
components and their execution within dedicated environments are common
across the di↵erent technologies.

Different&areas&of&the&page&correspond&to&different&viewports,&each&one&displaying&

the&content&of&a&widget'

WidgetObased&UI&mashups&

180 6 Mashups

Web server

Web browser

Widget engine

Users

Protocol adapter

Persistent
data

Web page

Widget 2
rendering

Widget 3
rendering

Widget client runtime

Widget
container

Communication bridge

Communication
proxy

Shared
context

SOAP service RESTful service

Event bus

Widget repository

Widget 1
Widget 2

Widget 3

Widget 4

Widget
lifecycle
manager

access to widgets management of users/data remote invocations

Fig. 6.15 Conceptual architecture of a widget portal with client-side inter-widget
communication.

However, the technology is still young and evolving. There are indeed al-
ready research works (e.g., [252, 277]) that have started proposing extensions
to the widget model to make widgets inter-operable (at least within a same
page). Similar discussions are also ongoing in the widget standardization
group. The most accredited approach proposes extending the W3C widget
model with client-side event generation and handling capabilities. For exam-
ple, the approache presented in [277] propose the addition of a dedicated In-
tercom Interface that extends the W3C Widget Interface to support: (i) rais-
ing events, i.e., producing messages to communicate internal state changes,
(ii) invoking operations on widgets, and (iii) exposing metadata about the
events and operations supported by a widget. Event transmission is medi-
ated by a dedicated client-side event bus (see Figure 6.15 or publish-subscribe
frameworks (e.g., pmrpc, http://code.google.com/p/pmrpc/) as ex-
tensions of the widget runtime environment. Chudnovskyy et al. [76], instead,
describe a technique to wrap widgets and to equip them with event handling
support, if they don’t support events natively.

These extensions enable both the orchestration and choreography of wid-
gets within a same page: In an orchestrated widget integration, it is the central
mashup logic that subscribes operations to events, as for example shown in
[277]. In a choreographed widget integration, each widget publishes its events

WidgetObased&UI&mashups&

Logic&Mashups&

•  Integrate&components&at&the&applica>on&logic&layer,&by&

enabling&the&composi8on'of''func8onality'published&by&
logic&or&data&components,&and&media>ng&data&

compa>bility&issues&if&necessary&

&

•  Output:&a'process'that&orchestrates&components,&in&turn&

published&as&logic&component,&e.g.,&a&SOAP&web&service&

or&JavaScript&object&

•  Covered&by&tradi>onal&prac>ces&for&Service&Composi>on&

–&no&further&discussed&here&

MASHUP'TOOLS'AND'
COMPOSITION'PARADIGMS'

Part&III&

1.  Mashup&design&concerns&

2.  Component&abstrac>ons&

3.  Graphical&mashup&languages&

4.  XML&mashup&languages&

5.  Other&languages&

6.  Developing&languages&

7.  Reference&architecture&for&mashup&tools&

Learning&objec>ve&=&learn&how&to&obtain&the&key&ingredient&

for&a&mashup&tool,&i.e.,&the&mashup'language''

MASHUP'CONCERNS'

UI widget

RESTful
Web service

SOAP
Web service

Components&

and&component&

models&

UI widget

RESTful
Web service

SOAP
Web service

5.3 Logic Components 113

Message

Request-response
operation

Solicit-response
operation

Schema

complies with

1..N

0..1 0..1 0..1 0..1

has fault

Web service

Name

Endpoint

Protocol binding

Operation

Name

has output
has input

has
input

has output

1..N

The service's

business protocol

specifies the order

in which operations

can be invoked.

For synchronous

communications

For asynchronous

communications

One-way
operation

Notification
operation

has input0..1 0..1 has output

Fig. 5.2 Conceptual model of a web service consisting of a set of four di↵erent types
of message-based operations.

The former two operations provide support for synchronous transmission
styles, the latter two for asynchronous styles. The semantics of each operation
is decided by the web service (by its developer) and can usually be derived
from an operation’s name and input/output messages. Each of the messages
sent by either the web service or its client complies with a schema that is
given by the web service and describes how data are to be formatted to be
compatible with the web service. We use the term schema, as the payload of
the messages is typically an XML dialect (such as SOAP itself). That is, the
media type of the service is discrete; streaming is not supported (if not in
the form of sequences of discrete events, i.e., multiple notifications).

Regarding the instantiation model of web services, both stateless and state-
ful models are supported and only depend on the web service’s internal im-
plementation. Stateless web services, though, are not able to take action
autonomously, that is, they do not support solicit-response and notification
operations. Stateful web services support all four types of operations and
may require the addition of correlation information to the input messages of
request-response and one-way operations, in order to tell which instance of
the web service the specific invocation is referring to (in the presence of state-
ful components, we always must assume there are multiple instances running
in parallel on the same server).

5.3 Logic Components 115

Get operation

Delete operation

Post operation

Put operation

RESTful
web service

Name

Entry point

Representation

Media type

1..N1..N

complies
with1..N

Link
Schema

Resource

Name
URL

HTTP operation

HTTP status code

renders

contains

references

0..N

1..4

supports

produces
consumes

0..1

produces

0..1

0..N

reads

creates

updates

deletes

Message

complies
with

0..N

0..N

The business protocol is

discovered incrementally by

navigating links to resources.

0..1

0..1

Fig. 5.3 Model of a RESTful web service delivering representations of and manipu-
lating resources in response to standard HTTP requests.

The best example of RESTful web services is, interestingly, a common web
application. It typically manages a set of resources in its internal database
and business logic. What is visible from the outside are the HTML pages sent
from the server to the client; these are the representations of the resources.
The pages contain hyperlinks, which allow the user to navigate from one page
to another, carrying over state information either in the query of the link
itself (which corresponds to an HTTP Get operation) or in the body of the
request sent to the client (which corresponds to an HTTP Post operation). A
RESTful web service is very similar to a web application, with the di↵erence
that it is not oriented toward human users but machines and, therefore, its
responses are rather formatted in XML or JSON, instead of HTML.

Figure 5.3 illustrates our conceptual view on RESTful web services, which
we identify by a name and an entry point (typically, a URL). As explained in
the example, a RESTful service is composed of two key ingredients: resources
and representations. The resources are the actual assets managed and made
available by the service. A flight booking service manages, for example, flights,
bookings, payments, and customers. Which exact resources a RESTful web
service uses internally we do not really know. What we know from the outside
are the representations of the resources that are made accessible via the

132 5 Mashup Components

Source file

Name
Format

Java portlet

Name

Package

contains

Configuration
document

1..N

deployed as

2

Operation

init

destroy

processAction

processEvent

produces

1..N

1..N

Portlet mode

Content

User interface

encodes
1..N

represents

has

1..N

implements

1..N

1..N

render

Session parameter

Name
Value

Render parameter

Name
Value

Event

Name
Object

shares

0..N 0..N 0..N

Fig. 5.12 Extended model of a Java portlet according to JSR 286 [143] with a the
possibility to share session and render parameters, to launch events, and to process
events via the processEvent operation.

mangement of their life cycle and their execution inside another web page.
The portlet container also manages the deployment of the portlet (local to
the container), which comes as package containing the source files implement-
ing the portlet. Two configuration documents (web.xml for web resources
and portlet.xml for portlet-related resources) configure the portlet. Being
instantiated inside the portlet container, portlets are typically stateful. The
order of invocation of the operations depends on the user interface exposed
to the users, which enact them by interacting with the UI.

The original JSR 168 specification su↵ered of two main shortcomings. First
portlets lacked any mechanism for the inter-portlet communication, i.e., for
communication between two portlets inside a portal. Developers had therefore
to implement own extensions (e.g., using the so-called portal context) if there
was a need to have portlets interact with each other. Second, only portlets
that were installed locally in the portlet container could be used in the portal
running on top of the container.

The JSR 286 specification [143] (portlet specification version 2.0) eventu-
ally provided an answer to the first shortcoming by introducing three di↵er-
ent techniques:shared session and render parameters for the sharing of simple
parameter-value pairs with user session and navigation information and port-
let events for the sharing of generic Java objects (see Figure 5.12). The Web
Services for Remote Portlets specification [264] provided an answer to the

Components&

and&component&

models&

Component'model'1'

Component'
model'2'

Component'model'3'

Component&access&

UI widget

RESTful
Web service

SOAP
Web serviceInput'JS'event'

Output'JS'event'

HTTP'Put/Delete'

HTTP'Get/Post'

SOAP'
OneXway'

SOAP'RequestX
response'

SOAP'
SolicitX
response'

SOAP'
No8fica8on'

Control&flow&and&data&flow&

UI widget

RESTful
Web service

SOAP
Web service

1'

2'

3'

4'

Decisions'

Configura8on'
and'start'

Control'
flow'

Data'flow'

Data&transforma>ons&

UI widget

RESTful
Web service

SOAP
Web service

Transforma8on'
logic'

User&interface&layout&

UI widget

RESTful
Web service

SOAP
Web service

8.5 Mashup Languages 229

ICT OMELETTE

Report D7.3 Final Demonstrators

Page 9 of 32

WP7: Use Cases and Evaluation

T7.3: Demonstration and Evaluation

Status: Final – Distribution: Public

Figure 1 Emergency Cockpit Workspace

2.2. First Line Support System

The First Line Support (FLS) system is built to facilitate the FLS team of TIE with a new portal

based solution based on the features of OMELETTE. The context is given by the First Line

Support scenario of D7.1 document.

The First Line Support team of TIE provides the clients with maintenance service and support

for TIE products. The FLS team helps clients with license renewal and also with

troubleshooting of TIE products. This requires regular communication and frequent

information exchange. So this portal solution with facilities like integrated telco services and

real time communication helps support people to effectively communicate and exchange

Fig. 8.11 A screenshot of the Apache Rave mashup environment extended by the
EU FP7 project OMELETTE to import/export OMDL-compliant workspaces [262].

contains a <position> element, which tells where inside the workspace the
widget should be rendered. The <capabilities> element is an optional
element containing quality of service criteria, which may be required to run
the mashup, e.g., in the code above the mashup requires the availability of a
GPS positioning system. Finally, the mashup declares that it is based on a
grid <layout> and it specifies the specific <stylesheet> to be used for
the rendering of the mashup inside the workspace.

Similar to EMML, it is again clear that writing this kind of XML code
is not very e�cient and that a graphical development tool on top could
improve productivity significantly. This is what the OMELETTE Consortium
recognized with its implementation of an OMDL-compliant installation of
Apache Rave, which is able to store, import and export OMDL mashups.
As illustrated in Figure 8.11, given the focus on UI widgets, Rave provides
for a “live” modeling environment, in which the user places widgets into the
workspace and Rave immediately renders them. That is, instead of having
graphical modeling constructs representing UI widgets, Rave directly shows
the real widget. This practice is especially e↵ective for users without specific
modeling knowledge. What is not visible in the figure is that the extended
version of Rave also supports inter-widget communication [277] via a suitable
event bus (to be included among the <capabilities> if needed).

OMDL is still in an early stage of its development. However, as a proof of
concept the OMELETTE Consortium implemented an import/export filter
also for Moodle (https://moodle.org/), the open-source course manage-

Graphical'placement'of'components'

COMPONENT'ABSTRACTIONS'

Modeling&constructs&may&represent….&

Intui8veness'of'technicali8es'

DomainXspecificity'

Simplicity'

Intui8veness'of'domain'

Component'instances''
=&each&component&has&

an&own&construct&

Component'types''
=&similar&components&

have&the&same&

construct&

Unified'component'
model''
=&one&construct&for&

all&components&

8.3 Abstracting Components 215

UI wrapper

UI widget

REST wrapper

RESTful
Web service

SOAP wrapper

SOAP
Web service

JavaScript events

SOAP messages

HTTP calls
Locally installed
and running

Running remotely

Common
component

model, access
mechanism/

protocol, data
format

Data formatted as
structured parameters

XML payload

JSON formatted data

Fig. 8.1 Wrapping components into a unified view on native component models.

and similar. Which concrete instance of a component is represented is typi-
cally set via suitable configuration parameters of the construct. The benefit
of this modeling abstraction is that it favors simpler, cleaner models com-
pared to the previous level of abstraction, while maintaining technology-
specific characteristics (which may be important). The downside is that
the additional level of abstraction introduced by component types, makes
the resulting model more abstract, i.e., logical rather than concrete, which
may hinder the comprehension by less skilled developers.

• Unified components: The highest level of abstraction we propose – ac-
tually there could be an arbitrary number of levels – is based on one single
modeling construct for all types and instances of components. Condensing
everything into one construct requires a component model, we can call it
a unified component model, which is able to accommodate all component
types of interest. In some cases, it may be possible to take one component
type as reference and to map other components into that type’s compo-
nent model (e.g., it is reasonable to map an RSS feed into a RESTful
Web service, which it actually is). In some other cases, however, it may
be necessary to invent a new component model from scratch (e.g., it is
hard to conciliate an RSS feed with W3C widgets). The benefit of this
level of abstraction is a high level of simplification and model readability
(all components abide by the same model). The drawback is the lack of
distinguishing features of components, which, if the modeler knows that
the underlying resources are di↵erent, can also have a disorienting side-
e↵ect. Of course, a component model that is not a standard component
model also requires the modeler to get familiar with the model, which is
a cognitive overhead.

Abstrac>ng&=&wrapping&

Common'
component'
model,'data'
format,'access'

protocol'

8.4 Mashup Metamodels 223

8.4.3 mashArt

As last example of mashup metamodel, we briefly study the internals of the
mashArt platform [90], which proposes an integration approach called by the
authors “universal integration.” Universal integration in this context refers
to the integration of data, application logic and UIs inside one and the same
modeling environment. Specifically, mashArt supports SOAP and RESTful
Web services, RSS/Atom feeds, as well as a proprietary format of JavaScript-
based UI components (similar to W3C widgets) [282].

Figure 8.8 shows an example mashup modeled in mashArt, i.e., a mashup
for business compliance monitoring that leverages on a set of company-
internal components. When discussing the mashArt component model (Sec-
tion 8.3), we have seen that it is based on events and operations. Composing
a mashup therefore means connecting events and operations via data flows.
The mashup is composed of three UI components (Policy browser, Process
browser and Analysis browser and the four Web services (Repository, Engine,

Component browser

UI componentService component

Composition canvas

Data flow connector

Events and operations

Fig. 8.8 A mashup modeled in mashArt [90]. The model represents a simple appli-
cation for the monitoring of compliance.
Components&in&mashArt:&apparently&two&component&models&

[Daniel2009]&&

216 8 Tool-Aided Mashup Development

X: 10 Ɣ F. Daniel, S. Soi, F. Casati, and B. Benatallah

ACM Trans. Web, Vol. X, No. Y, Article Z, Pub. date: XYZ.

Here we need to discuss the nature all of the components we are able to integrate and
then we show how our unified model accommodates all of them.

Figure 1 The unified component model

Supported components are mapped to the unified model as follows:
� UI components
� JavaScript components
� SOAP web services
� RESTful web services
� RSS/Atom feeds

Say that what we integrate in the end are always components that comply with the model
in Figure 2. SOAP/RESTful services or RSS/Atom feeds are hidden behind their respec-
tive adapters, which are able to mediate between the unified component logic and their
native implementation logic as the level of single invocations.

[ER paper] The first step toward the universal composition model is the definition of a
component model. MashArt components wrap UI, application, and data services and ex-
pose their features/functionalities according to the mashArt component model. The model
described here extends our initial UI-only component model presented in [3] to cater for
universal components.
The model is based on four abstractions: state, events, operations, and properties. The
state is represented as a set of name-value pairs. What the state exactly contains and its
level of abstraction is decided by the component developer, but in general it should be
such that its change represents something relevant and significant for the other compo-
nents to know. For example, for our Process browser component, we can change the col-
or in which the process is displayed or rearrange the process graph. This is irrelevant for
the other components that need not be notified of these changes. Instead, clicking on a
specific process or drilling down on a specific step may lead other components to show
related information or application services to perform actions (e.g., compute compliance
indicators). This is a state change we want to capture. In our case study, the state for the
Process browser component is the process or process step that is being displayed. Model-
ing state for application components is something debatable as services are normally used
in a stateless fashion. This is also why WSDL does not have a notion of state. However,
while implementations can be stateless, from a modeling perspective it can be useful to
model the state, and we believe that its omission from WSDL and WS-* standards was a
mistake (with many partial attempts to correct it by introducing state machines that can

User interface

Event Operation

mashArt
component

0..N0..N

Name
0..N

has output

Name
Binding
URLType 0..N

1..1

has input

0..1

0..N
Constructor

Parameter
Name
Value
isOptional

Simple Parameter
0..NName

Value

Name
Reference

0..1

1..1 1..1

0..1

0..N
is of type

Fig. 8.2 Unified component model of mashArt components for SOAP/RESTful web
services, UI components and RSS/Atom feeds [90].

Figure 8.1 illustrates what it means to provide this highest level of ab-
straction with the necessary infrastructure support: in essence, it is neces-
sary to develop suitable wrappers that wrap di↵erent component types (or
instances) into a common component model that exposes common access
mechanisms, communication protocols, and data formats. This in turn re-
quires each of the wrapper to master the technicalities of the component
type it wants to abstract and to mediate communications between the fea-
tures of the specific component type and those exposed by the wrapper via
the common component model. In practice, it may therefore be necessary
to mimic active behaviors for RESTful Web services, e.g., by periodically
polling the service and launching events in response to changes in the ser-
vice’s output. Or, the other way around, it may be necessary to inhibit active
behaviors, such as events, by bu↵ering them and making them available only
upon explicit request from the outside via operations of the common compo-
nent model.

As an example of how such a unified component model could look like, in
Figure 8.2 we propose the internal component model of the mashArt platform
[90]. mashArt is a platform for hybrid mashups, so it is based on an event-
based UI component model, which allows it to conveniently express di↵erent
types of component technologies:

• UI components (e.g., a Google Maps component): these can be mapped
straightforwardly to the unified model. A UI component in mashArt has
a mandatory user interface, an optional set of simple parameters, an op-
tional constructor, a possibly empty set of type definitions, and events and
operations. UI component are identified by means of the binding “compo-
nent/UI” of the mashArt component entity.

• JavaScript components (e.g., a client-side shopping cart object): these are
mapped to the unified model similarly to UI components. They do not have
a user interface but may have a constructor and a set of simple parameters.
JavaScript function calls are mapped to operations, and function param-
eters to operation parameters. If a function returns a result, the receipt

But&internally&mashArt&uses&a&unified&component&model&

The&model&accommodates:&

SOAP/RESTful&web&services&

RSS/Atom&feeds&

UI&components&
{

GRAPHICAL'MASHUP'LANGUAGES'

ModelOdriven&mashup&

development&

84 4 Model-Driven Software Development

4.3 Metamodeling

The centerpiece of MDSD are the models that are used to design applica-
tions in a graphical manner. Metamodeling is the activity that is concerned
with the design of the modeling languages that actually enable the abstract
development approach that characterizes MDSD. Good modeling languages
contain fundamental conceptual, domain, and technological knowledge re-
garding the development of their target applications and represent the core
value of MDSD. Without sensibly and purposefully designed modeling lan-
guages, MDSD would not be useful. It is therefore of utmost importance that
developers put the necessary e↵ort – and competence – into the design of
their modeling languages, especially if we consider that modeling languages
typically do not change fast over time and are designed to support the devel-
opment of multiple applications on top of a same platform infrastructure.

4.3.1 The metalevels

A model, e.g., a UML object diagram, describes the structure and nature of
instances, e.g., runtime objects for a given instant of time during the exe-
cution of an application. Similarly, a metamodel describes the structure and
nature of model elements, i.e., model constructs. The prefix “meta” indicates
that we are dealing with models about models. That is, the term is relative,
i.e., referring to the model the metamodel is talking about, not absolute.

In Figure 4.4, we show the four metalevels introduced by the OMG, de-
noted M0, M1, M2, and M3. The metalevel M0 corresponds to concrete run-
time instances of an application; the metalevel M1 to the model of the appli-
cation; the metalevel M2 to the model of the model (the metamodel), i.e., to

Meta-metamodel

Metamodel

Model

InstancesM0

M1

M2

M3

<<instance of>>
describes metamodel

constructs

describes model

constructs

describes

instances

<<instance of>>

<<instance of>>

Fig. 4.4 The four metalevels proposed in OMG’s Meta Object Facility [215].

OMG’s&Meta&Object&Facility&(MOF)&

Model'of'modeling'
constructs'

Model'of'mashup'

Mashup'

Let’s&proceed&by&example…&

Let’s&design&a&simple&data'mashup'language…&

1.  Integrate&RSS'feeds'

2.  A&Union&operator&merges&feeds&

3.  A&Filter&operator&filters&items&by&condi>ons&

4.  A&Sink&component&ends&processing&

5.   Data'flow'connectors&propagate&data&

R
eq

ui
re
m
en

ts
'

218 8 Tool-Aided Mashup Development

source

RSS feed

Data flow
connector

target

Union

0..1

1..N

M2

Sink

target

0..1

0..1

0..1A mashup must

contain exactly

one sink.

URL
has

source

Filter Filter condition

Name
has

has

target 0..1

source

0..1

A data flow

connector has

exactly one source

and one target.

Fig. 8.3 Metamodel (M2) of a very simple data flow mashup language: it supports
fetching di↵erent RSS feeds from the Web, computing their union and/or filtering
them, and publishing the result again as an RSS feed on the Web (the sink). A data
flow connector must always have exactly one source and one target.

8.4.1 A simple example

Both to recall the basic meta-modeling concepts and to show an example
that is easy to understand, in this section we develop a simple modeling
language for the development of data mashups. The language is not used
in any concrete mashup platform, and serves rather the didactic purpose of
illustrating how to develop a mashup modeling language.

Let’s assume we want to support the development of data mashups with
the following simple set of requirements:

• A mashup integrates RSS feeds only, where each feed is identified by a
unique name and the URL of the feed.

• A mashup has two types of operations: the union operation allows one to
merge multiple RSS feeds into one, e.g., by concatenating them; the filter
operator allows one to filter out items of an RSS feed that satisfy a given
condition, e.g., expressed in JavaScript or any other language.

• The end of a mashup’s integration logic is uniquely identified by a sink
component, which provides for the publication of the mashup output again
as RSS feed.

• Components and operators of the mashup are connected via suitable data
flow connectors.

In Figure 8.3 we draw a possible metamodel for the target mashup lan-
guage. Each construct of the modeling language that a developer needs to
operate (e.g., draw or provide an input for) is represented by an own concept
of the model. The most interesting concept in the model is the data flow con-
nector, which – according to our interpretation of the above requirements,
expressed as a comment in the metamodel – has exactly one source and one

Metamodel'

8.4 Mashup Metamodels 219

R1:
RSS feed

DF1 : Data flow
connector

M1
source target

R2:
RSS feed

DF2 : Data flow
connector

source target

U1 : Union
DF3 : Data flow

connector

source

target

F1 : Filter S1 : Sink
DF4 : Data flow

connector

source target

title contains 'IT' :
Filter condition

http://rss.
nytimes.com/... :

URL

NY Times :
Name

BBC News :
Name

http://feeds.bbci.
co.uk/news/rss.xml :

URL

Fig. 8.4 A simple data flow model (M1) complying with the metamodel of Figure
8.3 expressed in an abstract syntax, i.e., a UML object diagram.

target. RSS feeds can only be sources; filters and unions can be both sources
and targets; sinks can only be targets. Also, unions may have multiple inputs,
i.e., a union may be the target of multiple di↵erent data flow connectors. This
allows one to model mashups in which one union operator merges multiple
RSS feeds. Via another comment, the metamodel further specifies that, in
order for a mashup to be correct, it must have exactly one sink component.
That’s it. There are no other integration activities supported by this simple
mashup language.

In line with the MDSD approach described in Chapter 4, we can now
represent a model instance via an abstract syntax , such as a UML Object
Diagram. Figure 8.4 proposes a possible mashup model in abstract syntax:
We have two RSS feeds (NY Times and BBC News), which we merge into
one single feed using a union operator, followed by a filter operator, which lets
pass only items that contain the substring “IT” (for simplicity, we express
conditions in natural language). Finally, a sink component indicates the end
of the processing logic and makes the result of the mashup available as RSS
feed accessible via the Web.

Figure 8.4 is a full-fledged model of a mashup that complies with our
initial requirement, implemented in the metamodel of Figure 8.3. However,
the reader will easily agree that the abstract syntax of the model does not
help the readability and understandability of the model. The convention of
using a UML Object Diagram may be good as first check of the correctness
of a metamodel and its corresponding modeling language, or to understand
how to implement code generators or model interpreters, but it certainly is
not meant to be used to really model mashups. For this purpose, in Figure
8.5 we invented a graphical, concrete syntax , whose aim is to make the
semantics of modeling constructs intuitively understandable: Data flows from

Model&(abstract&syntax)&=&instance&of&metamodel&

220 8 Tool-Aided Mashup Development

RSS feed:
New York Times

RSS feed:
BBC News

URL: "http://rss.nytimes.com/..."

URL: "http://feeds.bbci.co.uk/news/rss.xml"

Union SinkFilter

Condition:

"title contains 'IT'"

URL attribute

Data flow connector

Connector

target

Filter condition

Connector

source

Name of

the feed

Fig. 8.5 The simple data flow model (M1) of Figure 8.4 expressed in a concrete
syntax that highlights the semantics of the constructs and eases readability.

left to right. RSS source components have an outward pointing arrow at
the right side, while sinks have only an inward pointing arrow a the left
side. Union and filter operators have both inward and outward arrows. The
arrows indicate whether the component expects inputs or produces outputs.
The name of an RSS feed can be written inside the construct, while its URL
is specified below the construct, just like the condition for a filter. Data flow
connectors are simple lines, whose endpoints, the inward vs. outward arrows,
respectively, identify the target and source of the connector. The resulting
model is equivalent to the model in Figure 8.4, but much more “fit” for a
model-driven mashup approach, e.g., as one would expect to find inside a
visual mashup tool.

If we have a closer look at the proposed modeling language, we see that
the metamodel is very simple: it only supports four types of components,
which all work on RSS-formatted data. The metamodel does not propose
any abstraction for components, and each component is modeled with all its
characteristics at the component instance level: RSS feeds, for instance, have
only outputs; a union may have multiple inputs, a filter only one, and a sink
does not have outputs at all. Of course, from a metamodel point of view, this
level of abstraction is not easy to scale up to, e.g., several dozens or hundreds
of di↵erent components. Yet, as discussed earlier, it has the benefit of being
immediately accessible to the modeler.

8.4.2 Yahoo! Pipes

In order to find an example of data mashup modeling language that abstracts
away from component peculiarities and proposes a unified component model,
we can, for instance, study Yahoo! Pipes (http://pipes.yahoo.com/).

Model&(concrete&syntax)&>>&Human&readable&

Same&model&as&before!&

8.4 Mashup Metamodels 221

Figure 1 Implementation of the example scenario in Yahoo! Pipes

The pipe that implements the required feature is illustrated in Figure 1. It is com-
posed of five components: The URL Builder is needed to set up the remote Geo
Names service, which takes a news RSS feed as an input, analyzes its content, and
inserts geo-coordinates, i.e., longitude and latitude, into each news item (where possi-
ble). Doing so requires setting some parameters: Base=http://ws.geonames.org, Path
elements=rssToGeoRSS, and Query parameters=FeedUrl:news.google.com/news?
topic=t&output=rss&ned=us. The so created URL is fed into the Fetch Feed compo-
nent, which loads the geo-enriched news feed. In order to filter out the news items we
are really interested in, we need to use the Filter component, which requires the set-
ting of proper filter conditions via the Rules input field. Feeding the filtered feed into
the Location Extractor component causes Pipes to plot the news items on a Yahoo!
Map. Finally, the Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that develop-
ing even such a simple composition is out of the reach of people without program-
ming knowledge. Understanding which components are needed and how they are
used is neither trivial nor intuitive. The URL Builder, for example, requires the setting
of some complex parameters. Then, components need to be suitably connected, in
order to support the data flow from one component to another, and output parameters
must be mapped to input parameters. But more importantly, plotting news onto a map
requires knowing that this can be done by first enriching a feed with geo-coordinates,
then fetching the actual feed, and only then the map is ready to plot the items.

Enabling non-expert developers to compose a pipe like the above requires telling
(or teaching) them the necessary knowledge. In WIRE, we aim to do so by providing
non-expert developers with interactive development advices for composition, inside

Fig. 8.6 A simple pipe that enriches an RSS feed with geographical location infor-
mation and plots it on a map (the Location Extractor component).

Yahoo! Pipes is an online data mashup platform that allows one to visually
compose and manipulate RSS feeds and similarly formatted data sources.

Figure 8.6 shows a screen shot of Pipes in action. As customary for most
online mashup platforms, at the left hand side there is a toolbox with the
available components. These can be dragged and dropped into the modeling
canvas at its right, causing the tool to draw a construct for each component.
Modeling constructs can be connected via data flow connectors, which – as
in the simple example before – determines the flow of data and intrinsically
also the order of activation of components. Each component in the canvas
can be seen as a wrapper of either external data sources (e.g., RSS feeds or
RESTful Web services, internal operators (e.g., Count or Filter), or external
operators (e.g., RESTful Web services).

If we analyze the modeling language proposed in Figure 8.6, we can reverse-
engineer a simplified version of a metamodel as it could have been used as
basis for the development of Yahoo! Pipes (see Figure 8.7). For instance: A
component has a name, which is graphically rendered in the header of the
component construct (e.g., “URL Builder”) and uniquely identifies the type
of component, and a set of parameters (e.g., “Path elements” or “URL”). Pa-
rameters may have a value (e.g., “Path elements” is set to “rssToGeoRSS”)
and can be of two types. Configuration parameters (e.g., value of the “feed-

Let’s&reverseXengineer'Yahoo!&Pipes&

222 8 Tool-Aided Mashup Development

source
Component

Data flow
connector

0..1

0..N

M2

Pipe Output

A pipe must
contain exactly
one pipe output
component,
which cannot be
the source of a
data flow
connector.

has

target

XOR

ParameterValue

0..N

Input par.Config. par.
target

0..1

0..1

0..N

URL Builder Fetch Feed
Location
ExtractorFilter

Name

0..1

Fig. 8.7 A simplified metamodel of Yahoo! Pipes for the pipe in Figure 8.6.

Url” parameter) accept only manual input of constant values; input param-
eters (e.g., the “URL” parameter of the Fetch Feed component) can also be
the target of input data flows and accept attributes of incoming data items as
values (treating all similar attributes of the input data items as a set). Data
flow connectors connect component outputs with either another component
(e.g., the connector from the Fetch Feed to the Filter component) or with an
input parameter (e.g., the connector from the URL Builder to the Fetch Feed
component). We represent the di↵erent component types by sub-typing the
component entity. One of the sub-types, i.e., Pipes Output, has a particular
role: it indicates the end of a pipe model. Each correct pipe model must have
exactly one Pipe Output component, which only accepts one input data flow.
Ready pipes can be stored on the Yahoo! Pipes platform and accessed via
a unique URL, which allows one to enact the execution of the data mashup
and to fetch its result as an RSS feed.

This metamodel is by definition only a simplification of the real metamodel
underlying Yahoo! Pipe’s modeling language; we derived it only from the
model visible in Figure 8.6. Looking at all its constructs and systematically
analyzing the behavior of each construct would allow one to fully re-engineer
at least the externally visible part of the platform’s metamodel. With “ex-
ternally visible” we refer to all those properties that can be inferred from
the UI of the platform. Possible attributes of the modeling constructs that
are not rendered in the canvas (contrary to, for instance, the “URL Builder”
meta-attribute) can of course not be identified. Not visible attributes could,
for example, be used by Pipe’s internal representation of the graphical models
to provide the parser with suitable runtime configurations or similar.

We omit the obvious representation of the pipes model in Figure 8.6 in
abstract syntax, similar to the model illustrated in Figure 8.4.

And&here&a&possible&metamodel&

XML'MASHUP'LANGUAGES'

EMML,&the&Enterprise&Mashup&Markup&Language&&

226 8 Tool-Aided Mashup Development

8.5.1 EMML

EMML, the Enterprise Mashup Markup Language [218], is an XML-based,
declarative language for the development of data mashups with data visu-
alization capabilities. EMML is an initiative by the Open Mashup Alliance
(OMA, http://www.openmashup.org/), a consortium of individuals and
organizations for the promotion of portable and interoperable mashups, with
a special focus on enterprise mashups. The OMA also provides a reference
runtime implementation able to run mashups written in EMML.

EMML provides a uniform syntax to invoke heterogeneous mashup com-
ponents, such as RESTful services, SOAP Web services, RSS/Atom feeds, or
direct access to relational databases. It supports a variety of di↵erent data
formats, such as XML, JSON, Java objects, and similar, as well as a set of
built-in data transformation operators, such as filter, sort, join, group, anno-
tate, merge, split, etc. Complex processing logic can be embedded as scripts
in suitable scripting languages. Conditional statements and expressions in
general are coded in XPath [35].

For example, the following EMML lines (adapted from an example in [218])
fetch technology news from the New York Times RSS feed and filter out those
news items that have the term “mashup” in their description. We call the
mashup “Mashup News:”

<?xml version="1.0"?>
<mashup name="Mashup News"

xmlns="www.openemml.org/2009-04-15/EMMLSchema"
xsi:schemaLocation="www.openemml.org/2009-04-15/EMMLSchema

../schema/EMMLSpec.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

<variables>
<variable name="news" type="document"/>

</variable>
<output name="result" type="document"/>
<directinvoke endpoint="http://rss.nytimes.com/services/xml/

rss/nyt/Technology.xml" method="GET"
outputvariable="news"/>

<filter inputvariable="news"
filterexpr="matches($news/rss/channel/item/description,

’Mashup’)"
outputvariable="result"/>

</mashup>

The root element of the mashup is called <mashup>, and it holds the
necessary name space definitions as well as the name of the mashup. Next,
the code declares a <variable> called “news”, which will hold the news
items fetched from the RSS feed. The element <output>, instead, will hold
the output of the mashup after processing the defined data transformations.
The directive <directinvoke> instructs the mashup engine to invoke the
RSS feed via an HTTP Get operation and to place the result into the variable

[hop://mdc.jackbe.com/prestodocs/v3.7/emml/mashupOlibraryOintro.html]&

Variables'

Mashup'
output'
declara8on'

Feed'invoca8on'

Filter'over'items'

Connec8on'with'output'channel'

Data'mashups'

8.5 Mashup Languages 227

Fig. 8.10 A screenshot of Presto Wires for data mashups serialized in EMML.

“news.” <directinvoke> provides access to the di↵erent data sources sup-
ported by EMML in a homogeneous fashion, and it supports the basic HTTP
Get, Post, Put and Delete operations on remote resources. The mashup defini-
tion terminates withe a <filter> operation, which operates on the “news”
variable and forwards the result to the “result” output variable.

While this kind of EMML code can certainly be developed manually,
it is also intuitive that directly writing XML is not the best way to de-
velop and that, given the abstractions already intrinsically present inside the
EMML markup, a visual development notation may be developed on top
of EMML. This approach is what JackBe followed with its Presto mashup
platform (http://jackbe.com/products), which comes with a graphi-
cal, EMML-compliance mashup tool called Wires. Figure 8.10 shows a screen
shot of Wires in action. In line with most Web-based mashup tools, Wires
comes with a tool bar on the left-hand side, which allows the developer to
choose from di↵erent modeling constructs and to drag and drop them onto
the canvas at the center. Data mashups are represented as data flow graphs.
Properties of components and operators can be set in the panel at the right-
hand side. Similar to Yahoo! Pipes, also Wires supports a preview panel of the
computed data in the lower part of the screen. Ready mashups can be stored
on the Presto server (in EMML) and are ready for execution by the EMML
engine. The visualization of mashup outputs can be configured outside of
Wires in a dedicated visualization dashboard.

At first sight, EMML seems similar to BPEL [163]. Yet, a closer analysis re-
veals that EMML is at a slightly higher level of abstraction: for example, it ab-
stracts multiple di↵erent component technologies into one <directinvoke>
construct, and it supports data mashup specific data transformations such as
join or sort. BPEL focuses on SOAP Web services only and does not come
with sophisticated built-in data transformation constructs.

So]ware'AG'Presto&implements&EMML&

JackBe&has&recently&been&acquired&by&SoNware&AG,&and&many&of&the&former&online&

resources&are&no&longer&accessible&

:&the&Open&Mashup&Descrip>on&Language&

228 8 Tool-Aided Mashup Development

8.5.2 OMDL

OMDL, the Open Mashup Description Language (http://omdl.org/), is
another initiative that aims at standardizing a mashup language to foster
portability and interoperability among di↵erent mashup platforms. The ini-
tiative was started by the EU FP7 research project OMELETTE (http:
//www.ict-omelette.eu) and is now a specification that is maintained
online by a community of individual and organizational supporters. The tar-
get mashups of OMDL are widget-based UI mashups, such as the ones sup-
ported by portals or widget engines, specifically W3C or OpenSocial widgets.

An OMDL mashup describes therefore a widget workspace (a page or tab
inside the runtime environment) and the arrangement of widgets inside the
workspace. The following code lines are a simplified example of an OMDL def-
inition (adapted from http://omdl.org/documentation.html, where
the reader can also find the full specification of the language):

<?xml version="1.0"?>
<workspace xmlns="http://omdl.org/">

<goal>Illustrate a simple OMDL example</goal>
<identifier>http://repo.omdl.org/mashups/...</identifier>
<title>An OMDL example</title>
<description>...</description>
<creator>Florian Daniel</creator>
<date>2013-10-08T14:23+37:00</date>

<app id="http://repo.omdl.org/mashups/alice/CallFromMap/1">
<type>MAP</type>
<link rel="source" href="http://repo.omdl.org/apps/map/

MyFancyMap" type="application/widget"/>
<position>TOPLEFT</position>

</app>
<app id="http://repo.omdl.org/mashups/alice/CallFromMap/2">

...
</app>

<capabilities>
<gps mandatory="true" accuracy="100"/>

</capabilities>

<layout>GRID</layout>
<stylesheet>

http://repo.omdl.org/mashups/alice/3/_data/special.css
</stylesheet>

The mashup definition starts with a header containing some metadata
about the mashup, such as <identifier>, <title>, <description>,
<creator> and <date>. Then, it specifies the widgets that are part of
the mashup using the <app> element, which states the abstract <type> of
the widget and the <link> where the widget can be downloaded; it also

[hop://omdl.org]&

Usual'
metadata'

App/widget'
declara8ons'

Type'

URL'

Posi8on'

Capabili8es'
required'by'mashup'

Layout'template'

UI'mashups'

8.5 Mashup Languages 229

ICT OMELETTE

Report D7.3 Final Demonstrators

Page 9 of 32

WP7: Use Cases and Evaluation

T7.3: Demonstration and Evaluation

Status: Final – Distribution: Public

Figure 1 Emergency Cockpit Workspace

2.2. First Line Support System

The First Line Support (FLS) system is built to facilitate the FLS team of TIE with a new portal

based solution based on the features of OMELETTE. The context is given by the First Line

Support scenario of D7.1 document.

The First Line Support team of TIE provides the clients with maintenance service and support

for TIE products. The FLS team helps clients with license renewal and also with

troubleshooting of TIE products. This requires regular communication and frequent

information exchange. So this portal solution with facilities like integrated telco services and

real time communication helps support people to effectively communicate and exchange

Fig. 8.11 A screenshot of the Apache Rave mashup environment extended by the
EU FP7 project OMELETTE to import/export OMDL-compliant workspaces [262].

contains a <position> element, which tells where inside the workspace the
widget should be rendered. The <capabilities> element is an optional
element containing quality of service criteria, which may be required to run
the mashup, e.g., in the code above the mashup requires the availability of a
GPS positioning system. Finally, the mashup declares that it is based on a
grid <layout> and it specifies the specific <stylesheet> to be used for
the rendering of the mashup inside the workspace.

Similar to EMML, it is again clear that writing this kind of XML code
is not very e�cient and that a graphical development tool on top could
improve productivity significantly. This is what the OMELETTE Consortium
recognized with its implementation of an OMDL-compliant installation of
Apache Rave, which is able to store, import and export OMDL mashups.
As illustrated in Figure 8.11, given the focus on UI widgets, Rave provides
for a “live” modeling environment, in which the user places widgets into the
workspace and Rave immediately renders them. That is, instead of having
graphical modeling constructs representing UI widgets, Rave directly shows
the real widget. This practice is especially e↵ective for users without specific
modeling knowledge. What is not visible in the figure is that the extended
version of Rave also supports inter-widget communication [277] via a suitable
event bus (to be included among the <capabilities> if needed).

OMDL is still in an early stage of its development. However, as a proof of
concept the OMELETTE Consortium implemented an import/export filter
also for Moodle (https://moodle.org/), the open-source course manage-

The&OMELETTE&Apache'Rave'environment&has&&

OMDLOcompliance&workspaces&

DEVELOPING'MASHUP'LANGUAGES'

Conceptual'development''
of&mashup&languages/plaJorms& [Soi2014]&&

Observa8on:'All&mashup&languages&share&similar&features'

Idea:& 1.   Extract/isolate'features&
2.  Express&features&as&reusable&mashup&language&pacerns&(XSD)&

3.  Implement&a&library&of&features&(XSD)&

4.  Iden>fy&conflicts&and&inclusions&(simple&rules)&

5.  Develop&a&run8me'environment'that&supports&all&features&

6.  Develop&new&languages&by&assembling&features&

•  Mashup&language&

•  Component&descrip>on&language&

7.   Customize&the&run>me&environment&with&new&language&

8.6 Developing Mashup Languages 231Conceptual Design of Sound, Custom Composition Languages 11

Custom composition
language

Custom component
description language

Composition
feature

Feature reference
specification

Generic composition
language meta-model

Generic component
descriptor meta-model

Feature
constraint

supports

Component feature
1..N

has

0..N

1..N

integrates

1..N

supports

implemented as

1..N 1..N

derives from derives from

0..1 0..1

constrains

based on

Control flow feature

Data passing feature

Presentation feature

0..1

Collaboration feature

Fig. 3 Conceptual approach to the development of custom composition languages

detailed in Section 6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal - and machine-readable - language schema
definition, which is then needed for the definition of other artifacts of the system.
In addition, using this constrained modeling language also opens to future exten-
sions of the meta-model by third parties, making them aware of the implications
of each model extension or modification on the resulting language definition (since
deterministic translation rules are defined). Concretely, as defined by the meta-meta-
model depicted in Figure 4, the meta-model may consist of:

• Entities. Represent main constructs of the composition language. They are iden-
tified by a name.

• Attributes. Each entity can have a set of related attributes characterizing it. At-
tributes have a name and a type. The type can be stated through its name or can
be explicitly defined in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute named id, representing a
unique identifier for the instances of the entity used to reference them.

• Associations. Relations among the entities are expressed through associations.
Only two possible types of associations are needed: composition and uni-directional
association. The composition is used to state that an entity is contained in another
one, while the uni-directional association states that an entity simply refers to an-
other entity, but it is not contained in it.

• Cardinalities. Represent associations’ multiplicities. The target cardinality rep-
resents the multiplicity of the association when reading it following the speci-
fied association direction, while the source cardinality represents the multiplicity
when reading the association in the opposite direction.

Fig. 8.12 Conceptual approach to developing custom mashup languages [254].

tation, collaboration. Features come with a set of feature constraints, which
express feature compatibilities, conflicts, and subsumptions. Each feature has
a reference specification, i.e., a pattern of language constructs, which imple-
ments the feature and represents reusable language composition knowledge.
Patterns are based on a generic mashup language model (not a metamodel).
The model does not yet represent an executable language. It syntactically
puts composition constructs and features into relation with each other, but it
also contains constructs and features that may not be compatible with each
other (e.g., control flow and data flow paradigms). The model determines
which features are supported and how they are syntactically integrated; the
sensible design of feature constraints provides for soundness. Hence, given
a set of non-conflicting composition features, the custom composition lan-
guage is represented by the union of the respective reference specifications.
Similarly, a custom component description language can be derived, which
can be used as guide for the implementation of components or component
wrappers and to describe their external interfaces. Both the custom mashup
language and the custom component description language are then mapped
1:1 to XSD, so as to enable the definition of mashups in XML and the auto-
matic checking of the conformance of mashups with the reference language
model.

The approach is therefore to compose mashup languages out of composi-
tion features represented as language patterns. Just like in any other composi-
tion approach, the core problem is therefore the identification and formaliza-
tion of the “components” to work with. Here, these components are language
patterns (e.g., XSD fragments). However, these patterns have a distinctive
feature that makes the problem very di↵erent form generic component-based

Concept&

Conceptual Development of Custom, Domain-Specific Mashup Platforms A:21

(a) An instantiation of
the mashup editor
based on the data
flow paradigm

(b)

(b) An instantiation of
the editor using a

control flow paradigm
with global variables

for data passing

Fig. 7. The customizable mashup development environment. The two screen shots illustrate how the envi-
ronment changes in function of the chosen mashup language.

having multiple operations and configuration parameters. Figure 7(b), instead, sup-
ports control-flow-based mashups (wires are defined among operations) with global
variables, joins, splits, and components with only single operations and without con-
figuration parameters. In both cases, components display a domain-specific icon.

Implementation. The implementation of the parameterized editor builds on the
WireIt library (http://neyric.github.com/wireit/docs/), a JavaScript library for the
development of web-based, graphical editors. We extended the core of the library, i.e.,
the reusable editor with support for drag-and-drop modeling, with (i) support for all the
language constructs of the UMM (e.g., with global variables and different types of wires
to distinguish control flow and data passing connectors) and (ii) a self-configuration
module, which loads the DMT configuration package at startup and initializes the
editor’s modeling language accordingly. The module also connects to the component
registry to fetch the component descriptors of the components referenced in the config-
uration package and to be made available as modeling constructs in the toolbar.

6. METHODOLOGY
We have seen that developing a DMT is not an easy task and requires taking many
design decisions related the mashup language and its underlying mashup model, the
development and runtime environments, the mashup components, etc. In addition, it
is crucial to understand how and where to add domain specifics to the tool, so as to
effectively address the needs of the target domain and its domain experts. Next, we
therefore distill the lessons learned in the last six years and during the development
of ResEval Mash [Daniel et al. 2012] into a methodology for the development of DMTs.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

232 8 Tool-Aided Mashup Development

Control flow

 Component Presentation

Collaboration

Data passing

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name

Configuration
Parameter

1..N

Name
Mashup

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

User Role

Id
DfConnector

Expression
Language

Condition

Id
Name
Type
DefaultValue

Global Variable

Id
Name
Type
Binding
Endpoint
Class
SupportRefere
ncePassing
Syntax

Component

Id
Join

Id
Split

Id
CfConnector

source

0..1 feeds

 1..N

belongsTo

displays

0..1

1

0..1
1

Id
Name
Value

Constant

0..Ntarget

0..N

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N

0..N

0..1

0..N

0..N

0..N

0..N0..N 0..N

has

0..N

1

0..N

0..N

 0..N

0..N

source

source

target

target

1

1

1

1..N

1..N

1

0..N

target

source0..1 0..N

0..1

0..1
0..N

0..N

0..N
0..1

0..1

0..1

0..N

target

source

0..N

0..N

0..N

0..N

0..N

0..N

has 0..N

1

has

1

0..N

0..N

0..N

1

has

Fig. 8.13 The generic mashup language model bringing together the most common
mashup features [253].

development: unlike, for example, Web services, language patterns are not
independent of each other. That is, the reference specifications of di↵erent
composition features may overlap (e.g., interacting with a SOAP service is
very similar to interacting with a RESTful service), include other features
(e.g., the data flow paradigm generally subsumes the presence of data source
components), or exclude others (e.g., the data flow paradigm does not make
use of variables). This asks for a thorough design of the language patterns
and their mutual interaction points, a task that the authors solve by map-
ping each composition feature into the generic mashup language model (see
Figure 8.13), which (i) integrates all basic language constructs syntactically,
(ii) allows the definition of composition features as language fragments on
top, and (iii) guarantees that fragments are compatible by design.

It is important to note that the model in Figure 8.13 and the language
generation platform are extensible, that is, the proposed approach allows
for the addition of new constructs and features, if these extend the model
without altering the logic of the existing constructs, if each new construct is
accompanied with a reference implementation for the runtime environment,
and if the features are equipped with suitable reference patterns. The model
aims to cover as many features as possible, but it is of course not feasible

Generic&mashup&language&model&(not&executable!)&

Component'

Control'flow'

Data'passing' Presenta8on'

Collabora8on'

A:18 S. Soi et al.

Implementation. The DMT development tool is implemented as common web appli-
cation. The constraint verification algorithm is implemented in JavaScript script and
runs directly inside the client browser. The actual language generation algorithm is
implemented as Java servlet executed at the server side. Both algorithms accept as in-
put the set of identifiers of the selected features and fetch the necessary feature details
from an extensible, server-side feature knowledge base containing the XML definition
of each feature (http://goo.gl/uxhKQ). Figure 5 shows an example of XML feature def-
inition. Language generation is based on an XSD serialization of the UMM described
in Figure 3 [Soi et al. 2014].

5.2. The parameterized runtime environment
The runtime environment is in charge of executing the domain-specific mashups.
Mashup specifications can be expressed in any language the DMT development tool
can produce. In order to be able to run different types of mashups, the runtime envi-
ronment comes as a single implementation that implements all features introduced in
Section 4.2 and that is able to adapt its behavior to a given DMT configuration. How
exactly the individual features are executed, i.e., how a mashup is executed starting
from its specification, gives the specification its operational semantics.

The functional architecture of the runtime environment, which determines the op-
erational semantics, is illustrated in Figure 6. The environment is split into two parts,
a client-side and a server-side part, and has at its core a mashup engine, which is
in charge of parsing a mashup specification and instantiating the mashup accord-
ingly. The engine too is split into server-side engine and client-side engine, where
the server-side engine manages back-end features (e.g., web services orchestrations),
and the client-side engine manages front-end features (e.g., UI component synchro-
nization). It is the engine that understands the constructs in the mashup specification
and knows how to execute the respective actions, implementing the various mashup
features (invoking components, managing control flow, passing data, etc.). A set of
adapters enables the engine to communicate with the different mashup component
types supported, both at the client side (widgets, JS and mashArt components) and
the server side (RSS/Atom feeds, RESTful and SOAP web services). The adapters me-
diate between the engine-internal data format and the individual components’ data
formats and communication protocols.

Mashups stored in the internal mashup repository can be instantiated via two dif-
ferent channels, depending on the type of mashup: UI mashups are initiated by the
domain expert or mashup user via a common web browser using a simple manage-
ment UI; data or service mashups (without interactive UI) can be instantiated via a
dedicated web service interface for external applications or web services or via the man-

Conceptual Design of Sound, Custom Composition Languages 17

We define a composition feature as f = hname, label,desc,spec,Constri, where
name is a text label that uniquely identifies the feature (e.g., data flow); label
briefly describes the feature and expresses its semantics; desc is a natural language
verbose description of the feature for human consumption; spec is the reference
specification of the feature; and Constr = constri is a set of feature constraints.
<feature name="data_flow" label="Data flow">

<description> The composition paradigm is data flow, that is, it is possible
to explicitly define the flow of the data among components opearations.
In this case the data passing and the control flow overlap since
operations triggering depends on the data flow.

</description>

<specification>

<include fragments="dfConnectorDef, dfConnectorType,
dfSourceOutputParameter, dfTargetInputParameter" />

</specification>

<constraints>NOT(control_flow)</constraints>
</feature>

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference specification of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in our feature knowledge base of the form F = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, the reference specification
of the feature expresses which specific language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema definition representing semantically meaningful parts of it.
An ID uniquely identifies each of these fragments in the XSD. Second, the fea-
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

Fig. 5. The data flow composition feature definition as stored in the feature knowledge base.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Example&of&feature'specifica8on&

Conceptual Development of Custom, Domain-Specific Mashup Platforms A:19

Googlehttp://mashupTool.com

Server-side
runtime
environment Server-side engine

integrates

reads

Domain expert

Mashup user

Mashups

The Web

Components

uses

DMT configuration
package

Client-side
runtime
environment

W3C widget JS library mashArt UI
component

W3C widget
adapter JS adapter

Client-side engine

REST adapter

RSS adapter

Atom adapter

SOAP adapter

uses

reads

initiates UI mashups C/S communications

UI events

Web
service

interface

uses

Application or
web service

Fig. 6. Functional architecture of the runtime environment for domain-specific mashups (see Figure 2).

agement UI, which allows the user to manually provide the inputs, otherwise expected
to arrive through the web service interface, and to view computed results.

The execution logic of a mashup upon an instantiation request is as follows:

(1) The server-side engine fetches the requested mashup specification from the repos-
itory and loads the respective DMT configuration package telling the engine which
runtime features are required.

(2) Only for mashups with UI:
(a) The server-side engine returns to the browser an HTML template including the

JavaScript implementation of the client-side runtime environment along with
the DMT configuration of the client side.

(b) The client-side engine instantiates all UI components, causing their rendering
inside the HTML template, initializes them according to their startup configu-
ration, and sets up all necessary event handlers. Client-side UI events are kept
inside the client, unless an event specifically triggers a server-side action.

(3) From this point on, requests arriving to the server-side engine from the browser
or arriving via the web service interface are treated similarly (only responses are
delivered via different channels):
(a) The engine identifies the components to be invoked on the server-side. In the

case of control-flow-based mashups, the first non-executed operation of each
flow is chosen. In the case of data-flow-based mashups, all the operations that
have their necessary inputs filled are chosen.

(b) The engine invokes the chosen components by suitably instructing the respec-
tive adapters, feeding them with the expected data as input, and buffering
possible outputs for use in subsequent invocations.

(c) Step 3 is repeated until all operations of the invoked control/data flows are
processed and no asynchronous callback notifications are pending.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Run8me'environment'(opera>onal&seman>cs&of&language)&

8.6 Developing Mashup Languages 233

1

5

6 6

7

8

9

3

2

4

service_component
REST_for_service2

manual_input

data_flow

min_1_operation_per_component
max_1_operation_per_component
request_response

min_1_intput_param_per_operation
max_N_intput_param_per_operation

min_1_output_param_per_operation
max_1_output_param_per_operation

configuration_param

data_component
RSS_for_data
atom_for_data

branch

1

4

3

5

6

7
8
9

Selected language features

Fig. 8.14 Yahoo! Pipes example composition and set of respective language features

to predict all possible domain-specific requirements that may emerge over
time. For instance, if we wanted to compose a mashup language that is able
to equip each component with authentication credentials so that the run-
time environment can automatically authenticate with the components on
behalf of the user (e.g., to implement a single sign-on feature), this would
not be possible without suitable extensions. So far, the approach has been
tailored to and tested with open APIs and services that don’t need this kind
of authentication.

8.6.2 Usage example

As an example of how the conceptual development of mashup languages may
happen in practice, in the following we derive part of the mashup language
underlying Yahoo! Pipes from an example modeled in its graphical editor.
We recall that Pipes is a data mashup tool for the retrieval and processing
of web data feeds. Figure 8.14 shows an example Pipes model, which we use
to analyze Pipes’ language features.

Pipes is based on the data flow paradigm. It supports data component
and service component types to retrieve and process data, respectively.
Specifically, data sources may be RSS for data or atom for data, while
the only supported service component type is REST for service. Each
component in Pipes provides exactly one function, that is, each compo-
nent represents one single operation: max 1 operation per component.
All operations are of type request-response (request response for data
and request response for service). Each operation may have one or
more inputs (max N input param per operation) but one and only one
output (max 1 output param per operation). Manual inputs are used
to fill the values of input fields (manual input), i.e., of configuration pa-

Conceptual&development&example:&Yahoo!'Pipes'

A:28 S. Soi et al.

1

5

6 6

7

8

3

2

4

service_component
REST_for_service
request_response_for_service

2

manual_input

data_flow

max_1_operation_per_component

max_N_intput_param_per_operation

max_1_output_param_per_operation

configuration_param

data_component
RSS_for_data
atom_for_data
request_response_for_data

1

4

3

5

6

7

8

Selected feature names FnameSel

branch9

9

Fig. 13. Yahoo! Pipes example composition and set of respective language features

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name

Configuration
Parameter

Name
Mashup

Id
DfConnectorId

Name
Type
Binding
Endpoint

Component

0..1 feeds

 1..N

0..1

1

1

Id
Name
Value

Constant

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N 0..N

has

0..N

1

1

0..N

 0..N

0..1 0..1

target

source0..1 0..N

0..1

0..N

has
1

0..N

0..N

1

has
Type = data_component |
 service_component;

Binding = rest | rss | atom;

Type = request_response;

Fig. 14. Graphical model of the generated mashup language mimicking Yahoo! Pipes

output of a component can be the source for an arbitrary number of data flow con-
nectors, allowing one to branch the data flow into parallel flows. Input parameters,
instead, have at most one input pipe; so, there is no need for any merge feature.

Figure 14 illustrates the resulting mashup model as selection of constructs of the
UMM, while Figure 7(a) shows a sreenshot of the suitably configured mashup editor.

8. STRENGTHS AND WEAKNESSES
With this article, we aim to ease the development of custom, domain-specific mashup
tools and to make it cost-effective, fast and robust. The two case studies show how
thinking in terms of the mashup language to develop, starting from a set of conceptual
mashup language features, significantly lowers the complexity of developing mashup
tools. In Soi et al. [Soi et al. 2014], we provide another example of how to implement the
a platform like our former mashArt platform [Daniel et al. 2009], which also features
UI and service components.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Resul>ng&mashup&language'model'

Aoen>on:&this&model&is&by'design'different&from&the&metamodel&presented&earlier!&

OTHER'MASHUP'LANGUAGES'

SpreadsheetXbased'mashups&[Kongden}a2009]&

Stock entity, which has three leaves representing attributes Symbol,
Volume and Price. The related entity GoogleNews is represented
as an expandable child node which, when expanded, presents the
attributes and related entities of GoogleNews. By navigating to the
node representing GoogleNews, users can construct a data view that
contains only news related to stock data. Specifically, this user in-
teraction is translated to join operation over the ER-based schema.

Figure 3: Spreadsheet-based mashup for the reference scenario

We also provide a series of graphical primitives to allow users
to create more sophisticated queries in a form called Preview, as
shown later in Figure 8. By dragging a URL node from the service
browser onto a cell in the spreadsheet, this Preview form will be
shown to the user. From the Preview, users can perform the follow-
ing operations: (i) Projection: users can select attributes of interest
by ticking corresponding check boxes, (ii) Filter: users can limit
instances of an entity to be retrieved to the subset that matches a
given filter predicate. The maximum number of instances displayed
in a data view can also be specified, and (iii) Sort: users can order
instances in a data view according to their attributes in ascending
or descending order. The result of all these operation is immedi-
ately showed to the users (hence the name preview) who can refine
a query until they are satisfied.

Once data views have been constructed, we allow users to store
them in the Query folders. With the query folder, users can create
new virtual folders, populate these folders with data views (con-
taining sets of objects obtained from external Web services). This
enables users to flexibly manage constructed views using their fa-
miliar concepts of file systems. Consider the salesperson in our ref-
erence scenario. She can create a folder named SalesOppr-Nov08

(as shown in Figure 3) to store all data views constructed for the
reference scenario as files in a single folder. When select a file in
the folder, the user can browse the data view contents represented
in a tree structure in the Object Browser, as shown on the bottom
right of Figure 3. The user can also simply drag a file in a folder
to a cell in the spreadsheet. This action enables the user to bring
complex data contained in a data view into spreadsheet cell. In the
following subsection, we describe how our tool support complex
data in spreadsheets.

3.2 Supporting complex data in spreadsheets
In the previous subsection, we described how users can graph-

ically construct data views over a given ER-based schema. Once
data views have been constructed, they need to be displayed on the

tabular grid of spreadsheets. However, a major challenge here is
the difference in the representations between data contained in the
data views (i.e., complex data as described in Section 3.1) and that
supported by the spreadsheet (i.e., simple data of types string, inte-
ger, etc.). To bridge this mismatch, we extend the spreadsheet data
model so that cells can contain complex data. The details of our
model and formula language are presented in [25]. In this paper,
we only summarize the key points using examples.

Like in any spreadsheets, we refer to a cell by its column and row
coordinates. For example, cell B2 refers to a cell located at column
B and row 2. Each cell has a formula which is evaluated into an
atomic typed value such as integer, float, string, datetime, and dis-
played to the user. A cell may contain a reference as a hyperlink to
another cell in the same or different worksheet. We extend standard
spreadsheet formula language such that a formula can be expressed
by one of the following:

• B2 = http://www.nasdaq.com/...: defines contents of cell B2
as a URL of the data service from which complex data is
retrieved from. We refer to cells containing this kind of for-
mula as container cells. A container cell holds complex data,
as a set of objects which are instances of a particular entity
in the ER-based model.

• B4 = <<1.B2>>.[0]/_symbol: defines contents of cell B4
based on contents of cell B2. The formula in cell B4 con-
tains a value selection expression, which particularly returns
the value of attribute symbol in the first object in the set. Sim-
ilarly the name of an attribute can be obtained by a formula
like <<1.B2>>.[0]/#symbol. We refer to cells containing
value selection expressions as presentation cells since they
are used to present contents of complex data stored in a con-
tainer cell.

We would like to note that formulas, specified in our formula
language, are maintained in a separate context, called the external
mapping definition, which leaves untouched the standard spread-
sheet formula language and overall behavior of the hosted spread-
sheet application. Specifically, the set of objects, held by a con-
tainer cell, is handled by our system; for spreadsheet (MS Excel
in particular) a cell simply contains a user-defined label as shown
in Figure 3. The advantages of this formula language are three-
fold: (i) complex data now become first class values of cells, and
their contents can be laid down on the tabular grid of spreadsheets,
(ii) as our system maintain complex data in a separate context, we
maintain the simplicity of spreadsheet paradigm, and (iii) the syn-
chronization between spreadsheet data and complex data is possible
since formulas maintain correspondences between them.

4. SUPERIMPOSITION OF SPREADSHEET
VIEWS OVER DATA VIEWS

We propose a new component model that is designed to manage
the synchronization between complex data contained in data views
(described in Section 3.1) and spreadsheet data (described in Sec-
tion 3.2). The design of this component model comes from our ob-
servation that there are always some elementary features required
for implementing any data mashups: data have to be retrieved from
data services, a representation suitable for spreadsheet display has
to be built and interactions of the user with the spreadsheet environ-
ment may need to be translated to operations on the underlying data
and vice versa. Our proposed component model therefore consists
of three elements: data view, presentation, and interaction modules
(also called tool components or simply components hereafter). It is

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

854

SpreadsheetXbased'mashups&[Kongden}a2009]&

Stock entity, which has three leaves representing attributes Symbol,
Volume and Price. The related entity GoogleNews is represented
as an expandable child node which, when expanded, presents the
attributes and related entities of GoogleNews. By navigating to the
node representing GoogleNews, users can construct a data view that
contains only news related to stock data. Specifically, this user in-
teraction is translated to join operation over the ER-based schema.

Figure 3: Spreadsheet-based mashup for the reference scenario

We also provide a series of graphical primitives to allow users
to create more sophisticated queries in a form called Preview, as
shown later in Figure 8. By dragging a URL node from the service
browser onto a cell in the spreadsheet, this Preview form will be
shown to the user. From the Preview, users can perform the follow-
ing operations: (i) Projection: users can select attributes of interest
by ticking corresponding check boxes, (ii) Filter: users can limit
instances of an entity to be retrieved to the subset that matches a
given filter predicate. The maximum number of instances displayed
in a data view can also be specified, and (iii) Sort: users can order
instances in a data view according to their attributes in ascending
or descending order. The result of all these operation is immedi-
ately showed to the users (hence the name preview) who can refine
a query until they are satisfied.

Once data views have been constructed, we allow users to store
them in the Query folders. With the query folder, users can create
new virtual folders, populate these folders with data views (con-
taining sets of objects obtained from external Web services). This
enables users to flexibly manage constructed views using their fa-
miliar concepts of file systems. Consider the salesperson in our ref-
erence scenario. She can create a folder named SalesOppr-Nov08

(as shown in Figure 3) to store all data views constructed for the
reference scenario as files in a single folder. When select a file in
the folder, the user can browse the data view contents represented
in a tree structure in the Object Browser, as shown on the bottom
right of Figure 3. The user can also simply drag a file in a folder
to a cell in the spreadsheet. This action enables the user to bring
complex data contained in a data view into spreadsheet cell. In the
following subsection, we describe how our tool support complex
data in spreadsheets.

3.2 Supporting complex data in spreadsheets
In the previous subsection, we described how users can graph-

ically construct data views over a given ER-based schema. Once
data views have been constructed, they need to be displayed on the

tabular grid of spreadsheets. However, a major challenge here is
the difference in the representations between data contained in the
data views (i.e., complex data as described in Section 3.1) and that
supported by the spreadsheet (i.e., simple data of types string, inte-
ger, etc.). To bridge this mismatch, we extend the spreadsheet data
model so that cells can contain complex data. The details of our
model and formula language are presented in [25]. In this paper,
we only summarize the key points using examples.

Like in any spreadsheets, we refer to a cell by its column and row
coordinates. For example, cell B2 refers to a cell located at column
B and row 2. Each cell has a formula which is evaluated into an
atomic typed value such as integer, float, string, datetime, and dis-
played to the user. A cell may contain a reference as a hyperlink to
another cell in the same or different worksheet. We extend standard
spreadsheet formula language such that a formula can be expressed
by one of the following:

• B2 = http://www.nasdaq.com/...: defines contents of cell B2
as a URL of the data service from which complex data is
retrieved from. We refer to cells containing this kind of for-
mula as container cells. A container cell holds complex data,
as a set of objects which are instances of a particular entity
in the ER-based model.

• B4 = <<1.B2>>.[0]/_symbol: defines contents of cell B4
based on contents of cell B2. The formula in cell B4 con-
tains a value selection expression, which particularly returns
the value of attribute symbol in the first object in the set. Sim-
ilarly the name of an attribute can be obtained by a formula
like <<1.B2>>.[0]/#symbol. We refer to cells containing
value selection expressions as presentation cells since they
are used to present contents of complex data stored in a con-
tainer cell.

We would like to note that formulas, specified in our formula
language, are maintained in a separate context, called the external
mapping definition, which leaves untouched the standard spread-
sheet formula language and overall behavior of the hosted spread-
sheet application. Specifically, the set of objects, held by a con-
tainer cell, is handled by our system; for spreadsheet (MS Excel
in particular) a cell simply contains a user-defined label as shown
in Figure 3. The advantages of this formula language are three-
fold: (i) complex data now become first class values of cells, and
their contents can be laid down on the tabular grid of spreadsheets,
(ii) as our system maintain complex data in a separate context, we
maintain the simplicity of spreadsheet paradigm, and (iii) the syn-
chronization between spreadsheet data and complex data is possible
since formulas maintain correspondences between them.

4. SUPERIMPOSITION OF SPREADSHEET
VIEWS OVER DATA VIEWS

We propose a new component model that is designed to manage
the synchronization between complex data contained in data views
(described in Section 3.1) and spreadsheet data (described in Sec-
tion 3.2). The design of this component model comes from our ob-
servation that there are always some elementary features required
for implementing any data mashups: data have to be retrieved from
data services, a representation suitable for spreadsheet display has
to be built and interactions of the user with the spreadsheet environ-
ment may need to be translated to operations on the underlying data
and vice versa. Our proposed component model therefore consists
of three elements: data view, presentation, and interaction modules
(also called tool components or simply components hereafter). It is

WWW 2009 MADRID! Track: Web Engineering / Session: End User Web Engineering

854

7 Validation

In this section we validate our proposal by implementing one data visualization
that is similar to the ones o↵ered by commercial applications (like the ones
mentioned at the beginning of the previous section).

In this example, we show the process for building a bar chart visualization
for comparing two popular soda brands using two metrics, the likes count and
the people talking about this count. Figure 5 shows all the data necessary to build
the visualization and the resulting chart. Each step of the explanation will use

Fig. 5. Bar chart for comparing two soda brands using the likes count and the people

talking about this count metrics.

as reference the data shown in Fig. 5:

1. We copy the links of the Facebook pages of the desired brands in the first
row.

2. We get the data for each page by positioning the active cell on the cell
where the page link is and then we select the menu item Get Page under
the Facebook functions menu. The page data will be copied under the cells
where the page link is (as shown by Fig. 5).

3. We put the data in a format that is accepted by the bar chart. We need to
put all the brand names as row headers and the metric names as column
headers (columns A, B, C and rows 11- 13 of Fig. 5).

4. We select the range of the table created in step 3 and select the option to
add a bar chart. The result should be similar to the observed in Fig. 5.

Social&Spreadsheet&[Jara2013]&&

NaturalMash&[Aghaee2013]&=&controlled'natural'language'''

Ingredients Toolbar

displays a searchable list of
available Web APIs.

Text Field

allows to edit the mashup
description.

API Dock

shows the list of APIs used in the
mashup.

Widgets

are resizable and can be moved around.

Web APIs

are draggable and represented
by an icon.

Visual Field

renders the mashup output while it is
being edited.

Fig. 1. NaturalMash environment: users type the description of the mashup in the text field and immediately see the output in the visual field. The output
contains interactive widgets that can be resized and relocated. The ingredients toolbar helps with API discovery, while the dock gives a summary of the APIs
used in the current mashup. Web APIs are abstracted away from the technologies they use and are represented as icon.

The four components of the environment are meant to
be used together as follows. The ingredients toolbar gives a
searchable overview of the available APIs that are available
to be mashed up. Users can drag-and-drop APIs from the
ingredients toolbar into the visual field to build their desired
mashups. Alternatively, they can use the text field to describe
the mashup using natural language. The text field is equipped
with advanced features like autocomplete suggesting matching
API descriptions as the user types text fragments. The visual
field also enables the use of PbD: once users start interacting
with the widgets, some suggestions on how to describe their
interaction are proposed in the text field. The interactive API
dock allows users to highlight or remove APIs.

NaturalMash is a WYSIWYG environment based on the
live programming paradigm [18], [19], in which the ed-
it/compile/run development lifecycle is fully automated by
the system. As a result, users can more easily bridge the
gulf of evaluation (the degree of difficulty of assessing and
understanding the state of the system [20]). This in turn leads
towards an improved learning experience [21].

NaturalMash combines three techniques of end-user pro-
gramming as follows. Natural language programing is enabled
through a Controlled Natural Language (CNL) — a subset
of a natural language (e.g., English) restricted in terms of
vocabulary and grammar. The visual field provides the visible
and live output of the mashup being created and facilitates
natural language programming through visual demonstration
and interactions with widgets (e.g., clicking a map widget adds
the corresponding natural language description to the text field,
being, for instance, “when the map is clicked”). From the ex-
pressive power point of view, the NaturalMash CNL empowers
users to describe relatively complex process orchestration and
data integration logic as well as the composition of widgets

(all at a very abstract level), whereas the visual field provides a
direct way to manipulate the user interface (WYSIWYG), and
partially the application logic (through PbD), of the mashup
being created. As a result, the user interface becomes much
more intuitive because it supports both direct manipulation
(visual field) and descriptive representation (text field) of the
mashup being created.

Overall, we expect our design to empower non-professional
users (e.g., non-programmers) to create useful mashups with
minimal prior knowledge.

III. NATURALMASH CONTROLLED NATURAL LANGUAGE

Natural language programming in NaturalMash is enabled
by a CNL that is an abstract, executable language for
modeling the presentation integration, process integration,
and data integration layers of mashups. For example,
Listing 1 conforms to the NaturalMash CNL and describes
an enhanced music video search mashup that employs
Last.fm (http://www.last.fm/api) to first search for a song
and then uses the results to accurately search for the
corresponding music videos of the song in YouTube
(https://developers.google.com/youtube/).

Find songs titled mashup. When an item is selected,

search YouTube videos about title.

Listing 1. An enhanced music video search mashup. “mashup” originally
refers to a type of song created by mixing two or more songs

The underlying implementation of the CNL accommodates
an abstract component model [22] that: (i) gives a unified
technology-neutral description of Web APIs, and (ii) models
them in an abstract textual form (natural language descrip-
tion). The abstract component model distinguishes two types

112

PEUDOM&[Matera2013]&=&live,'visual''programming'

256 9 Mashups and End-User Development

Menu showing the list of
available components. Users
can add components in the
mashups by dragging and
dropping them into the
itneractive workspace

Once a component is added into
the workspace, its UI is
immediatly displayed and its
behaviour synchronizied with
the other components,
according to “default bindings”
based on component
compatibility

The user can enrich the default
synchronization behaviour, and
define further component
couplings by selecting possible
behaviours that the two
components have to show
within the final application

Fig. 9.3 The WYSIWYG composition editor of the PEUDOM platform [58, 183].

selecting a component is the immediate visualization of the component’s UI
populated with an initial data set (corresponding to a default query), which
can be modified by interacting with the component or by defining sensible
connections with other components to synchronize the di↵erent data sets
and visualizations. Service UIs are therefore adopted to represent services
as providers of data, of data visualizations and of functionality to query the
service data set. Of course, these kinds of WYSIWIG paradigms are suitable
for the creation of UI mashups, which however seems to be the types of
mashups that non-programmers are able to master best [199].

PEUDOM also enables the synchronization of components at the UI level.
Internally, the integration logic is based on an event-driven publish-subscribe
paradigm, and the synchronization of the component UIs is achieved by sub-
scribing component operations to other components’ parameters that are
produced by events raised during the user interaction with the components.
Each component therefore is modeled as a provider of events and operations,
two elements that are related to the component-external behavior and are
therefore observable trough the component UI. Proper wrappers add to the
original services the needed event-driven logic to expose sensible events.

Although such a component model already provides a conceptual layer
that abstracts from the constructs really needed for service invocation and
integration, the platform further assists the users in the definition of compo-

REFERENCE'ARCHITECTURE'

8.7 Mashup Platforms 235

Back-end

Front-end

Data store

Mashup repository

Mashup mgmt.
dashbaord

SLAs mgmt.

User mgmt.

Access rights mgmt.

Mashup editor

Mashup runtime environment

Interpreter

Web server

Component registry User/AR registryExecution log

Internet

Developer
community

Authentication and
security module

Mashup metamodel

Design canvas

Code generator

Mashup language

Invocation module

SLA repository

Mashup execution
dashboard

Component runtime
environment

Web server

Comp. containerDebugger Test environment

Instantiation UI/API

Runtime monitor

Mashup lifecycle

mgmt.Help resources

Fig. 8.15 Conceptual reference architecture of a mashup platform articulated into
front-end, back-end and persistent data store.

8.7.1.1 Design

The previous sections reviewed the core concepts driving the development
of mashup editors. We specifically focused on mashup metamodels and
mashup languages, as these both express a wealth of mashup knowledge and
also have a high didactic value. We did not focus much on the user interface
paradigms that can be used by mashup editors to communicate their internal
metamodel/language to the user of the editor. Not all editors directly expose
their plain language or an abstract modeling notation to their users. Most
editors adopt proprietary, domain-specific notations that aim to improve the
intuitiveness of the editor.

For instance: Swashup [186] leverages on traditional, manual coding of
mashups; domain-specific code is then translated into Ruby on Rails. Mash-
light [26] and mashArt [90] propose an own graphical modeling notation for
Web services, RSS/Atom feeds and UI widgets. Kongdenfha et al. [168] pro-
pose the use of spreadsheets for the design of mashups, where functions inside

Reference&architecture&for&

mashup&tools&

MASHUP'QUALITY'
Part&IV&

Learning&objec>ves&

1.   Component'quality'
–  Defini>on&of&the&main&data&quality&dimensions&to&

evaluate&mashup&components&

2.   Composi8on'issues'
–  Issues&related&to&the&assessment&of&the&quality&of&

composed&applica>on&

3.   Mashup'quality&
–  Defini>on&of&the&data&quality&dimensions&to&

evaluate&mashup&applica>ons&

The&importance&of&quality&

Garbage!in!!!garbage!out!

&Quality&

! ! ! !!
! !“Even!though!quality!!
! !!cannot!be!defined,!!
! !!you!know!what!it!is….”!
! ! ! ! ! ! ! !
! !Robert!Pirsig!

Is&Quality&Measurable?&

Quality&Assessment&

Dimensions! Metrics!

We!need!a!quality!model!!

Mashups&

“Mashups are Web applications that

integrate inside one web page two or more
heterogeneous resources….”&

….Integra>on&of&two&or&more&

heterogeneous&sources…&

Quality&of&a&composed&object&

The!quality!of!the!composed!objects!depends!
only!on!the!quality!of!the!components?!

FROM'THE'COMPONENTS'…A'
QUALITY'MODEL'

The&structure&of&an&API&

Quality&contribu>ons&

&

•  SoNware&quality&dimension:&ISO&standard&

•  Contribu>ons&addressing&quality&of&soNware&
components:&complexity,&modulariza>on,&

cohesion,&coupling&

The&quality&model&an&overview…&10.2 Component Quality 283

Component
quality

API quality Data quality Presentation
quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability API Usability Presentation
Usability

Maturity Learnability

Operability

Availability

Accessibility

Reputation

Fig. 10.1 Dimensions, attributes, and sub-characteristics for the quality of mashup
components [56].

10.2.1.1 API functionality

Functionality refers to the capability of an API to provide functions that sat-
isfy stated or implied needs. This attribute can be further refined by consid-
ering more peculiar characteristics, namely interoperability, compliance and
security, through which the ease of using the component in di↵erent situations
can be assessed.

Interoperability is one of the most important characteristics impacting
on the exploitation of a component’s functions. The di↵usion of a component
depends on its capability to be used in di↵erent and heterogeneous execu-
tion environments. The interoperability of a component can be assessed by
inspecting its API, since it mostly depends on the technologies used at the
application and data layers. At the application layer, the operations of a com-
ponent can be accessible through di↵erent APIs, each one based on specific
technologies, such as protocols or languages. The higher the number of the
o↵ered APIs for a given mashup component, the higher its interoperability.
At the data layer, interoperability instead depends on the number of data
formats o↵ered for information exchange. An interoperability measure for a
mashup component can thus consider the multiplicity of the available proto-
cols, languages, and data formats o↵ered by the di↵erent component APIs.

As reported in Table 10.1, the analysis of the components on program-
mableweb.com allowed us to identify the most prominent technologies
adopted by mashup components. Some data formats reported in the table
are standard (e.g., Atom, RSS, GData). Using standard formats increases
the interoperability level. It also enhances the component compliance, an-
other functionality characteristic that indeed refers to the capability of a
component to be compliant with standards or common technologies. Com-

[Cappiello2009]&&

API&quality&O&Func>onality&

Interoperability' Compliance'

Protocols.
Language.
Data.formats.

API&quality&–&Func>onality&&

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

0..1

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1

Security requirement = Developer key over SSL

API

Security requirement = No auth no SSL

44321

11111

Security'

API&Quality&O&reliability&

244 C. Cappiello, F. Daniel, and M. Matera

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1
Security requirement = Developer key over SSL

Security requirement = No auth no SSL

44321

11111

Fig. 3. Security mechanisms adopted by mashup components

statistics of usage of the component together with the frequency of its changes
and updates:

Maturitycomp = max(1 − CurrentDatecomp − LastUseDatecomp
CurrentDatecomp−CreationDatecomp

|Vcomp|

; 0)

where Vcomp is the set of versions available for a specific mashup component.

API Usability. Within the API quality dimensions, usability refers to the ease
of use of the API.2 API usability can be measured in terms of: understandability,
learnability, and operability. Given our black box approach, learnability and un-
derstandability can be evaluated by considering the component documentation.
Particularly relevant in the mashup scenario is the support offered to mashup
composers by means of examples, API groups, blogs, or forums, and any other
kind of documentation. The availability of each type of support contributes to
increase these quality attributes.

Operability also affects the ease of use of a component. It depends on the
complexity of the technologies used at the application and data layers, and of the
adopted security mechanisms. The operability of technologies at the application
level can be evaluated by considering the diffusion and the interaction overhead of
both protocols and languages used in the API development. In fact, the diffusion
of a protocol or a language enables the diffusion of a common knowledge that
supports its use. In the same way, the operability of a component is higher when
the interaction with the available API is easier. For example, the adoption of a
protocol is more complex than the direct invocation of an object method, since
dedicated standards and protocols might have to be used for the data exchange.
In Figure 4(a) we show a method to estimate the operability of the most common
technologies generally adopted at the application level.

Similarly, operability at the data layer can be evaluated by analyzing the data
formats offered by the component along two aspects: the need for a parsing,
meaning that further transformations are needed before the component can be
integrated in the final mashup, and the use of a standard format. Figure 4(b)
describes a method to assess the operability of the most common data formats.

2 We will discuss presentation usability later in this section.

Age. Usage. Maintainance.

API&usability&O&operability&

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1

Security requirement = Dev key over SSL

API op.

Security requirement = No auth no SSL

44321

11111

Data op.

Security op.

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

API&usability&O&learnability&

Documenta4on.

Examples.

Data&Quality&

Accuracy& Completeness&

Availability& Timeliness&

Presenta>on&Quality&

Usability'

Accessibility'

Reputa8on'

TO'THE'COMPOSITION…A'QUALITY'
MODEL'

Mashup quality: main aspects

Mashup component:
Google Maps

Mashup component:
Flickr

Mashup application:
e.g., BrusselStripstad.be

Garbage'in'!'Garbage'out'

Garbage'inside'!'Garbage'out'

Quality&assessment?&

Mashup component:
Google Maps

Mashup component:
Flickr

Mashup application:
e.g., BrusselStripstad.be

Q1	

Q2	

=	
 Q	
 ?	

Quality assessment: a first
experiment

•  We assess (by using automatic tools) the quality of 68
mashups on the basis of four criteria:

•  Usability: measures the ease of use of the mashup.
(SiteAnalyzer)

•  Readability: measures how easy or difficult it is to read and
understand the text rendered in the mashup. (Juicy Studio)

•  Accessibility: measures how well the mashup complies with
the W3C web accessibility guidelines. (SiteAnalyzer)

•  Performance: measures the loading time of the mashup till all
elements of the application are rendered in the page.
(Pingdom)

114

Mashups are accessible as normal Web pages...
...can we use the same models and tools developed for
quality assessment of traditional web pages?

Results of the experiment: five
“best" and five “worst" mashups.

•  Are these results reliable? We conducted five independent
evaluations by manually inspecting the same mashups and
we compared the two evaluations and we found…

... a counterexample...

•  Gaiagi Driver: 3D driving simulator

116

Mashup quality: the need for a
quality model

•  High&focus&on&composi8on&aspect&in&mashups:&&

•  Data&integra>on&&
•  Service&orchestra>on&and&UI&synchroniza>on&
•  Layout&

&

•  The&success&of&a&mashup&is&certainly&

influenced&by&the&added'value'that&the&final&
combina>on&of&components&is&able&to&provide.&

117

Composi>on&paoerns&

Slave Slave Slave Master Master

Filter Filter

Master

Filter Filter

(a) Slave-Slave pattern (b) Master-Slave pattern (c) Master-Master pattern

http://dailymashup.com/ http://www.housingmaps.com/ http://immo.search.ch/

[Cappiello2010]&&

The quality model

[Cappiello2011]&&

Data Quality

Inaccuracy&

Incompleteness&

Presentation quality
• Usability

• traditional dimensions such as
orientation, users control,
predictability, layout consistency
• Learnability: the mashup
features should be visible enough
and the corresponding commands
should be self-expressive so that
even naive users can easily
master the mashup execution.
• Layout consistency

• Accessibility
• Accessibility criteria do not need
to be specialized for mashups.

• Usability
• navigability and richness of links,
or any other criteria addressing
the hypertext structure
• readability, cohesion or
coherence

Composition Quality: added value

•  The added value of the composition can be related
to the amount of provided features and/or
offered data. The mashup has an added value if it
provides at least more functionality or data than
the ones provided by its components

Composition Quality: other
dimensions

•  Component suitability: it refers to the appropriateness of the
component features and data with respect to the goal that the
mashup is supposed to support.

•  Component usage: it may happen that, even though a
component is very rich from the point of view of data and
functionality, it is improperly used within a composition.

•  Consistency: poor quality compositions can also be caused
by inconsistencies at the orchestration level.

•  Availability: the degree in which the mashup can be properly
accessed during a given time interval. It depends on the
availability of the components and on their role in the
composition.

123

Remember….&

Garbage!in!!!garbage!out!

OUTLOOK'

Growth&

Threats&

Direc>ons&

Growth&

Threats&

Direc>ons&

Availability'of'
components' Benefit'of'reuse'

New'technologies'

EndXuser'skills'

EndXuser'
innova8on'

Growth&

Threats&

Direc>ons&

High'complexity'
Fast'evolu8on'

Development'
integra8on'

Nunfunc8onal'
proper8es'

Growth&

Threats&

Direc>ons&

Assistance'

Standardiza8on'

Quality'
assurance'Intui8ve'

technologies'

Main'reference'

[Soi2014]&S.&Soi,&F.&Daniel&and&F.&Casa>.&Conceptual&Development&of&Custom,&DomainOSpecific&

Mashup&PlaJorms.&ACM.Transac4ons.on.the.Web,&2014,&accepted&for&publica>on.&
[Aghaee2013]&S.&Aghaee,&C.&Pautasso,&A.&De&Angeli.&Natural&EndOUser&Development&of&Web&

Mashups.&VL/HCC.2013:&111O118.&
[Matera2013]&M.&Matera,&M.&Picozzi,&M.&Pini,&M.&Tonazzo.&Peudom:&A&mashup&plaJorm&for&the&

end&user&development&of&common&informa>on&spaces.&ICWE.2013,&pp.&494–497.&
[Jara2013]&J.&Jara&Laconich,&F.&Casa>,&M.&Marchese:&Social&Spreadsheet.&ICWE.2013:&156O170&
[Rümpel2013]&RAndreas&Rümpel,&Vincent&Tietz,&Anika&Wagner,&Klaus&Meißner,&Modeling&and&

U>lizing&Quality&Proper>es&in&the&Development&of&Composite&Web&MashupsCurrent&Trends&in&

Web&Engineering&Lecture&Notes&in&Computer&Science&Volume&8295,&2013,&pp&54O65&

[Daniel2014]&F.&Daniel&and&M.&Matera.&Mashups:.Concepts,.Models.and.
Architectures.&Springer,&2014.&ISBN&978O3O642O55048O5.&

Other'references'

[Cappiello2011]&Cappiello,&C.,&Daniel,&F.,&Koschmider,&A.,&Matera,&M.,&Picozzi,&M.:&A&Quality&Model&for&

Mashups.&In:&Auer,&S.,&Diaz,&O.,&Papadopoulos,&G.A.&(eds.)&ICWE&2011.LNCS,&vol.&6757,&pp.&137–151.&

Springer,&Heidelberg&(2011)&

[Cappiello2010]&Cinzia&Cappiello,&Florian&Daniel,&Maristella&Matera,&Cesare&Pautasso:&Informa>on&

Quality&in&Mashups.&IEEE&Internet&Compu>ng&14(4):&14O22&(2010)&

[Cappiello2009]&Cappiello,&C.,&Daniel,&F.,&Matera,&M.:&A&Quality&Model&for&Mashup&Components.&In:&

Gaedke,&M.,&Grossniklaus,&M.,&Diaz,&O.&(eds.)&ICWE&2009.&LNCS,&vol.&5648,&pp.&236–250.&Springer,&

Heidelberg&(2009)&

[Daniel2009]&F.&Daniel,&F.&Casa>,&B.&Benatallah&and&M.OC.&Shan.&Hosted&Universal&Composi>on:&Models,&

Languages&and&Infrastructure&in&mashArt.&ER.2009,&Pages&428O443.&

[Kongden}a2009]&W.&Kongden}a,&B.&Benatallah,&J.&Vayssière,&R.&SaintOPaul,&F.&Casa>:&Rapid&

development&of&spreadsheetObased&web&mashups.&WWW.2009:&851O860&
[Ogrinz2009]&M.&Ogrinz:&Mashup&Paoerns:&Designs&and&Examples&for&the&Modern&Enterprise.&AddisonO

Wesley&Professional,&2009&

[Abiteboul2008]&S.&Abiteboul,&O.&Greenshpan,&T.&Milo:&Modeling&the&mashup&space.&WIDM&2008:&87O94&

[Yee2008]&R.&Yee:&Pro&Web&2.0&Mashups:&Remixing&Data&and&Web&Services.&Apress,&2008&

[Sarkar2007]&Sarkar,&S.;&Rama,&G.M.;&Kak,&A.C.,&"APIOBased&and&Informa>onOTheore>c&Metrics&for&

Measuring&the&Quality&of&SoNware&Modulariza>on,"&SoNware&Engineering,&IEEE&Transac>ons&on&,&vol.33,&

no.1,&pp.14,32,&Jan.&2007&

[Olsina2005]&Olsina,&L.,&Covella,&G.,&Rossi,&G.:&Web&Quality.&In:&Web&Engineering,&pp.&109–142.&Springer,&

Heidelberg&(2005)&&

[Calero2004]&Calero,&C.,&Ruiz,&J.,&PiaÅni,&M.:&A&Web&Metrics&Survey&Using&WQM.&In:&Koch,&N.,&Fraternali,&

P.,&Wirsing,&M.&(eds.)&ICWE&2004.&LNCS,&vol.&3140,&pp.&147–160.&Springer,&Heidelberg&(2004)&&

&

