
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 1
Introduction

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2 1 Introduction

Google Map Craigslist.org

Housingmaps.com

Fig. 1.1 The housingmaps.com mashup providing for the synchronized exploration
of housing o↵ers from craigslist.com and maps by Google Maps.

The core value of the application is surely represented by the housing
o↵ers by craigslist.org, and everybody would be able also alone to
place o↵ers onto a map. However, everybody who has used Craigslist in the
past to find an apartment or a room in a new city whose geography and
street names are not yet known, will easily acknowledge the usefulness of the
map for automatically positioning the o↵ers’ locations inside the city. This
integration of two originally independent resources, i.e., the housing o↵ers
and the map, is the added value provided by the mashup.

In more technical terms, the mashup is a composite application that inte-
grates two components available on the Web. One component (Craigslist) is a
data source; the other (Google Maps) mainly plays the role of a reusable user
interface (UI), although it also provides some business logic functionality, for
example to identify the position of a marker on the map for a given address.
Integrating them means establishing an order of execution, a so-called control
flow (e.g., selecting a geographical area and/or price range causes the map
and housing o↵ers table to update; selecting an o↵er causes the map to show
a marker), and managing the propagation of data (e.g., synchronizing the
map requires geo-coordinates and info about the selected housing o↵er as in-
put). The propagation of data may also ask for suitable data transformations

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

1.2 Mashup Types 5

(a) All time most used APIs by registered mashups (b) All time most used tags to describe mashups

Fig. 1.2 A snapshot of the programmableweb.com mashup ecosystem (as of Octo-
ber 23, 2013).

1.2 Mashup Types

A good instrument to understand today’s mashup ecosystem is http://
www.programmableweb.com, an online registry of mashup components
and ready mashups that can be inspected, also hosting a variety of news
regarding mashups and a vivid mashup developer community.

In Figure 1.2, we illustrate a snapshot of the content of programmable-
web.com at the time of writing this text. Actually, we copied the pictures
this morning, while we are writing this text in the evening; in the meantime,
10 new APIs have been added to the API registry. We show the ranking of
the most used APIs (the components) in Figure 1.2(a); Figure 1.2(b) illus-
trates the most used tags to describe developed mashups. As perhaps ex-
pected by most readers, Google Maps turns out to be the most used compo-
nent by the community behind programmableweb.com, followed by Twitter,
YouTube, Flicker, etc. As for the categories of mashups developed by the
programmableweb.com community, in line with the popularity of the compo-
nents, we find mapping mashups at the first place, followed by “deadpool”
(by now dismissed mashups), search, social, and photo mashups, etc.

A closer look at the mashups listed in programmableweb.com however re-
veals that there are also many applications that would not qualify as mashups
according to our definition above, e.g., because they make use of only one sin-
gle component and do not set up any component inter-communication. This
may be compliant with some interpretations [207], but since in this book we
specifically aim to study the composite nature of mashups, we do not further
investigate the applications that make use of only one component.

Also, the tags used by developers to describe the mashups they developed
are certainly a good instrument to search for mashups in a given domain.
However, we do not think the resulting classification of mashups into map-
ping, search, social and similar mashups helps clarify the mashup ecosystem
from a research and engineering perspective, which is typically more inter-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6 1 Introduction

Composition

Domain

Environment

Generic Process Mobile Telco

UI

Logic

Data Web

Enterprise

The mashups

Fig. 1.3 The mashup cube with tree di↵erent perspectives on the mashup ecosystem.

ested in understanding how the internals of mashups look like and work and
how to support their development.

Mashup classes like Web mashups, mobile mashups, telco mashups, data
mashups and similar bear some more semantics from this perspective. Yet,
there still seems to be an arbitrary proliferation of prefix -mashup combina-
tions, without any evident connection among them and, more interestingly,
these types of mashups are not mutually exclusive (for example, there may
be mobile telco mashups or Web data mashups). We therefore analyzed the
most important mashup types we found in literature and found that the
prefixes used by these classifications can almost all be fit into one of three
perspectives. We graphically illustrate the resulting ecosystem of mashups
and mashup definitions as a cube in Figure 1.3. The perspectives are:

• Composition : This perspective emphasizes the internals of a mashup,
i.e., its components and how these are composed into a new application.
This perspective is the one driving our own definition of mashup in Defi-
nition 1.1. It stems from the traditional separation of concerns in software
development, which separates an application into three layers, a data layer,
an application logic layer and a presentation layer. This separation of con-
cerns did not influence only how applications are structured internally, but
it also fostered the growth of suitable API and component types at the
three layers, so as to ease interoperability and integration of the layers.
Looking at which layer of the application stack a mashup is composed,
the composition perspective therefore groups mashups into data mashups,
logic mashups, UI mashups, and hybrid mashups (any combination of the
former three types).

• Domain : This perspective emphasizes the purpose of a mashup, i.e., the
functionality it aims to provide. Partly, the tags used by developers to
describe their mashups fall into this perspective, as they too describe de-
limited domains. The domains in this context may be essentially of two
types: technological domains, such as for telco mashups or mobile mashups,
and application domains, such as for social mashups or mapping mashups.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8 1 Introduction

Number
of users

Applications

One

Few

Many

Thousands

Millions 20% of the applicatons

80% of the applications

Market opportunity for mashups

Developed
applications

Neglected applications

Fig. 1.4 The long tail of the software market and its opportunities for mashups.

empowers another, pre-existing community that is large, i.e., the community
of Craigslist users.

The observation that mashups are typically still limited in their scope
and simple is not ours only. In fact, mashup development – inside the larger
context of software development – has been associated relatively early with
the long tail of the software market [207]. The long tail market model [15, 16]
observes that traditional markets commonly target only 20% of the possible
products/solutions in a given domain, which however guarantee huge sales
numbers and large customer bases; the other 80% of the products are not
considered bestsellers and, therefore, not even sold. Novel companies, most
notably the online book store Amazon, instead make most of their money by
addressing exactly these latter products and, therefore, selling products in
the long tail of their market (e.g., books that are only very hard to find in
regular, physical book stores).

Figure 1.4 applies the long tail model to the software market and illus-
trates the 80/20 rule (the so-called Pareto principle) in terms of applications
and development e↵ort. The mainstream software market focuses on the 20%
of applications that guarantee high revenues, while the other 80% of appli-
cations, which would however bring added value to some users, are not even
developed. In terms of invested development e↵ort, the rule is typically in-
verted: 80% of the e↵ort by the market is invested into the 20% of bestselling
applications, and only 20% of the e↵ort goes into the other 80% of applica-
tions.

As the figure also highlights, it is this 80% of applications that are not
in the scope of the mainstream software market that represent the “market
opportunity” for mashups. We intentionally use quotes, as we do not want to
imply that mashups are mandatorily sold like any other product, although
they might. As we will see, mashups may also serve very personal, situational
needs that apply to an individual user only. However, if the development of
mashups is adequately supported, e.g., via suitable mashup tools and easily
accessible mashup paradigms, – this is the final goal of this book – also these
very limited needs can be satisfied.

