
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 9
Quality in Mashup
Development

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

10.2 Component Quality 283

Component
quality

API quality Data quality Presentation
quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability API Usability Presentation
Usability

Maturity Learnability

Operability

Availability

Accessibility

Reputation

Fig. 10.1 Dimensions, attributes, and sub-characteristics for the quality of mashup
components [56].

10.2.1.1 API functionality

Functionality refers to the capability of an API to provide functions that sat-
isfy stated or implied needs. This attribute can be further refined by consid-
ering more peculiar characteristics, namely interoperability, compliance and
security, through which the ease of using the component in di↵erent situations
can be assessed.

Interoperability is one of the most important characteristics impacting
on the exploitation of a component’s functions. The di↵usion of a component
depends on its capability to be used in di↵erent and heterogeneous execu-
tion environments. The interoperability of a component can be assessed by
inspecting its API, since it mostly depends on the technologies used at the
application and data layers. At the application layer, the operations of a com-
ponent can be accessible through di↵erent APIs, each one based on specific
technologies, such as protocols or languages. The higher the number of the
o↵ered APIs for a given mashup component, the higher its interoperability.
At the data layer, interoperability instead depends on the number of data
formats o↵ered for information exchange. An interoperability measure for a
mashup component can thus consider the multiplicity of the available proto-
cols, languages, and data formats o↵ered by the di↵erent component APIs.

As reported in Table 10.1, the analysis of the components on program-
mableweb.com allowed us to identify the most prominent technologies
adopted by mashup components. Some data formats reported in the table
are standard (e.g., Atom, RSS, GData). Using standard formats increases
the interoperability level. It also enhances the component compliance, an-
other functionality characteristic that indeed refers to the capability of a
component to be compliant with standards or common technologies. Com-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

10.2 Component Quality 285

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

0..1

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1

Security requirement = Developer key over SSL

API

Security requirement = No auth no SSL

44321

11111

Fig. 10.2 Possible security mechanisms adopted by mashup components and exam-
ples of component security scores [56].

10.2.1.2 API reliability

Reliability is the ability of a system to remain operational over time. Reli-
ability is generally measured as the probability that a system will not fail
to perform its intended functions over a specified time interval. The black-
box approach that we adopt for the component quality does not allow us to
evaluate the internal properties of code that impact on reliability. We there-
fore characterize reliability through factors that are more related to the user
perception of how a component behaves.

Form this perspective, reliability can be, for example, related to the con-
cept of maturity, a characteristic that can be assessed by considering the
available statistics of usage of the component (the more it is used, the more
it is reliable), together with the frequency of its changes and updates along
the di↵erent released versions. Frequent updates may indicate an accurate
maintenance by the component provider, and this can increase reliability.

Reputation is also an important characteristic which relates to the de-
gree in which a component is perceived reliable. In the Web, most of the user
actions are driven by reputation: users simply access and trust the informa-
tion provided by reliable institutions and/or authors. In the mashup scenario,
this trend is observable as well. Our analysis of the programmableweb.com
repository revealed that the most di↵used components are those distributed
by well-known and, therefore, credible providers (e.g., Google). In the quality
evaluation of a mashup component, the credibility of the provider can thus
not be neglected.

Form the component developer perspective, a reasonable level of reliabil-
ity can be achieved if the component documentation is available, especially
when it is distributed in di↵erent formats and through di↵erent channels (in-
cluding blogs, forums, wikies), by the compliance of presentation mechanisms
in the component UI – when available – with the most di↵used interaction
mechanisms, and the adoption of standard or most common technologies at
the function and data level.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

286 10 Quality in Mashup Development

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Fig. 10.3 Operability of the technologies used at the application and data level [56].

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1

Security requirement = Dev key over SSL

API op.

Security requirement = No auth no SSL

44321

11111

Data op.

Security op.

Fig. 10.4 Operability of the security mechanisms

10.2.1.3 API usability

Within the API quality dimension, usability refers to the ease of use of the
API, which is di↵erent from presentation usability that we will discuss later
in this section. API usability can be measured in terms of: understandability,
learnability, and operability.

Given our black box approach, learnability and understandability can
be evaluated by considering the availability of the component documentation.
The support o↵ered to mashup composers by means of examples, API groups,
blogs, or forums, and any other kind of documentation is particularly relevant
and increases these quality attributes.

Operability also a↵ects the ease of use of a component API. It depends
on the complexity of the technologies used at the application and data layers,
and of the adopted security mechanisms.

Operability at the application level can be evaluated by considering the dif-
fusion of both protocols and languages used in the API development as well
as the possible interaction overhead that might derive from their complexity.
The di↵usion of technologies also generates the creation of a common knowl-
edge that in a sense might facilitate learning how to use them. Similarly, the
component operability is higher when the programmatic interaction with the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

286 10 Quality in Mashup Development

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Fig. 10.3 Operability of the technologies used at the application and data level [56].

Interaction
overhead

DiffusionAPI operability

3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability

3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1

Security requirement = Dev key over SSL

API op.

Security requirement = No auth no SSL

44321

11111

Data op.

Security op.

Fig. 10.4 Operability of the security mechanisms

10.2.1.3 API usability

Within the API quality dimension, usability refers to the ease of use of the
API, which is di↵erent from presentation usability that we will discuss later
in this section. API usability can be measured in terms of: understandability,
learnability, and operability.

Given our black box approach, learnability and understandability can
be evaluated by considering the availability of the component documentation.
The support o↵ered to mashup composers by means of examples, API groups,
blogs, or forums, and any other kind of documentation is particularly relevant
and increases these quality attributes.

Operability also a↵ects the ease of use of a component API. It depends
on the complexity of the technologies used at the application and data layers,
and of the adopted security mechanisms.

Operability at the application level can be evaluated by considering the dif-
fusion of both protocols and languages used in the API development as well
as the possible interaction overhead that might derive from their complexity.
The di↵usion of technologies also generates the creation of a common knowl-
edge that in a sense might facilitate learning how to use them. Similarly, the
component operability is higher when the programmatic interaction with the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

290 10 Quality in Mashup Development

Consistency

Mashup quality

Information
quality

Presentation
quality

Composition
quality

Usability

Accessibility

Accuracy

Timeliness

Completeness

Availability

Aggregated
quality

Added value

Component
suitability

Consistency

Availability

Fig. 10.5 Dimensions, attributes and characteristics in a mashup quality model [55].

10.3 Mashup quality

Moving the focus to the quality of mashups, the problem is how to achieve
quality combinations starting from components that themselves are charac-
terized by their own quality properties. A specific quality model is needed
because the notion of quality already investigated in Software and Web En-
gineering may be partly appropriate to measure the internal quality; the
mashup code indeed is limited to the integration logic, while the other fea-
ture of a mashup derive from the components. Traditional quality models
may then result insu�cient to cover the mashup external quality. Some stud-
ies found that most quality dimensions and their decomposition into finer-
grained attributes, even considering only Web application development in
general, are domain-dependent. In other words, there is a strong impact by
the application domain on the usefulness of quality models [240]. Thus the
component-based nature of mashups and the importance of the integration
logic in shaping up the mashup behavior must not be neglected.

Our analysis on the programmableweb.com repository, for example,
showed that criteria that are cornerstone for the usability of traditional Web
applications, e.g., the richness of links and intra-page navigation, or the read-
ability of text, could not be adequate for mashups. To understand this aspect,
it is su�cient to observe that map-based components do not necessarily show
text; rather, they visually render location markers on a map. Nevertheless,
the e↵ectiveness of such components is still high and proved successful in
several contexts.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

292 10 Quality in Mashup Development

Ideal data set
(IDS)

Slave data set (DSs)
Master data set (DSm)

Missing data

Unnecessary data

Situational master data set (SDSm)
Situational slave data set (SDSs)

?

Join among data sets

Real data set (RDS)

Fig. 10.6 Data sets involved in information integration in mashups [57].

or combined multiple visualization mechanisms (the Ideal Visualization Set,
IV S).

A mashup’s behavior depends on the behavior of its components. Each
component has its own application feature set FSi, data set DSi, and possi-
bly multiple visualizations V Si. To fulfill the mashup requirements, smaller
portions of features (the Situational Feature Set SFSi), smaller portions of
data (the Situational Data Set SDSi) and one or few more visualizations (the
Situational Visualization Set SV Si) are considered, depending on the spe-
cific needs that the mashup is supposed to satisfy. To stress the importance
of having some form of integration, we assume, as minimum requirement,
that for each component included in the mashup at least one operation in a
component is coupled with an operation in another component, or that the
data sets originating from two di↵erent components are merged and visual-
ized through a unified visualization, or that two di↵erent visualizations have
some kind of synchronized behavior.

The integration of the three sets made available by the di↵erent compo-
nents generates in the mashup the Real Data Set, RDS ✓ IDS, the Real
Feature Set, RFS, and the Real Visualization Set, RV S, which correspond
to what the mashup actually o↵ers. In the best case, the real sets should
equal the corresponding ideal sets; however, it is possible to observe how
in many cases some elements of the ideal sets are not covered by the real
sets. Assessing the quality of the mashup integration strategy thus consists
of assessing the quality of such real sets, and in particular in comparing the
real sets made available by the composite application with the ideal sets at
the origin of the mashup conception (this is useful to evaluate whether the
mashup goals are satisfied), and with the component situational sets, to un-
derstand whether the integration introduces new capabilities, thus evident
advantages, with respect to the independent use of the single components.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

10.3 Mashup quality 295

Slave Slave Slave Master Master

Filter Filter

Master

Filter Filter

(a) Slave-Slave pattern (b) Master-Slave pattern (c) Master-Master pattern

http://dailymashup.com/ http://www.housingmaps.com/ http://immo.search.ch/

Fig. 10.7 Examples of (a) the slave-slave pattern, (b) the master-slave pattern, and
(c) the master-master pattern as observed in three online mashups [57].

We will see next in this section how a sensible definition of component
roles has an evident impact on the integration logic quality, and how, in
the assessment of mashup quality, the identification of roles can suggest how
to interpret and weigh the quality of single components within aggregated
measures.

10.3.3 Composition quality

Composition quality aims at evaluating the suitability of the integration
strategies adopted in a mashup, and in particular of the chosen components
and the composition patterns with respect to the ideal features, data and
visualization originally conceived for the mashup. It can be decomposed into
aggregated quality, added value, component suitability, consistency and avail-
ability.

Aggregated quality refers to the impact that the quality of single compo-
nents has on the overall quality of the composite application, and how it can
be tuned based on the role that the components have in the composition. Its
estimation is achieved by aggregating the quality measures of the di↵erent
components, for example computed on the basis of the component quality
model that we analyzed in the first part of this chapter. However, it is also
important to weigh such measures to reflect the role of the components in the
mashup. Based on our analysis of component roles and composition patterns,
it emerges that master components, being central points of synchronization,
have in general a major influence on the mashup quality – remember that a

