
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 2
Data and Application
Integration

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2.3 Data Integration 21

Virtual integrationMaterialized integration

Data Source

Wrapper
(local schema)

Wrapper
(local schema)

Wrapper
(local schema)

Mediator
(Global Schema)

… ...

… ...

query answer

Data Source Data Source

Integrated Information System

query answer

Data Warehouse

ETL

Data Source Data Source Data Source

load load load

Integrated Information System

load

query

query

answer

answer

Fig. 2.1 Typical architectures for materialized and virtual data integration [3].

The peculiarity of data wharehouses with respect to other integration so-
lutions is that the integrated data set is materialized and stored in a single
repository; therefore, query answering generally takes a short time. However,
several problems relate to data freshness. In fact, as represented in Figure
2.1, data are extracted from the data sources, transformed and loaded in the
warehouse prior to query time, for example at regular intervals, while global
queries are instead posed directly to the warehouse. This means that, in an
environment where data at the origin change very frequently, ETL opera-
tions would have to be performed with the same frequency of the data source
updates, and complexity would hence explode. For this reason, the adoption
of data warehouses is recommended when complex, ad-hoc data analysis and
mining of historical data have to be performed, while such systems are not
appropriate when frequent access to fresh data is required.

Loosely coupled solutions have then been proposed to provide unified in-
terfaces to real-time distributed data. These architectures support a virtual
data integration : as represented in Figure 2.1, data remain at the origi-
nal sources and, every time a query is posed to the integrated system, the
information is extracted directly from the data sources. This solution is par-
ticularly appropriate when autonomous and very heterogeneous sources, as
the ones available on the Web, have to be integrated, and also when the
integrated system is characterized by “transient” data integration tasks, im-
plying the dynamic access to fresh data and resulting into integrated data
sets that are useful and valid for a short period of time only [106].

It is evident that virtual approaches fit better the data integration re-
quirements generally occurring in mashup development. For this reason, in
the rest of this section we discuss in more details this class of data integration
solutions.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2.3 Data Integration 23

Source3

CUSTOMER(CustomerID,
Name, Surname, Address)

Source1

 ORDER(OrderID, SenderID,
DestinationAddress,
Description, PayerID,
PickUpDate, PickUpTime,
Weight, Size)

CRM data on customersShipment orders

Integrated
Order DB

SHIPMENT(OrderID, SenderID, SenderName, SenderSurname, SenderAddress, DestinationAddress,
 PickUpDate, PickUpTime)

Data on shipments (including pricing conditions)

Source2

Mediator (virtual global schema)

Data sources (local schemas)

Pricing data

PRICING_DATA(CustomerID,
Discount, Taxes)

BILLING(OrderID, CustomerID, Weight, Size, Discount, Taxes)

Fig. 2.2 Example of an integrated database storing shipment data extracted from
di↵erent data sources. Each data source is characterized by a local schema. Data inte-
gration is performed according to a vritual global schema managed by the mediator.

2.3.2.1 Global-As-View (GAV) mapping

In the Global-As-View (GAV) mapping, the content of each relation in
the mediated schema is specified through a query, i.e., a view, over a combi-
nation of the source local schemas. Figure 2.3(a) graphically illustrates the
definition, according to a GAV mapping, for the BILLING relation of our
reference example. We do not express the view definition in a query lan-
guage. However, intuitively, the figure describes how the BILLING tuples in
the global database can be built by combining data extracted from tuples
in the three sources: the attributes OrderID, CustomerID, Weight and
Size come from a tuple in the ORDER relation in Source1; CustomerName
and CustomerSurname from a tuple of the CUSTOMER relation in Source2
with the same CustomerID; and Discount and Taxes from a tuple in the
PRICING relation Source3 having the same CustomerID. Similar mappings
can also be specified for defining the SHIPMENT global relation.

GAV is conceptually simple [106]. Indeed, the defined views express exactly
how the elements of the global schemas have to be instantiated using the data
o↵ered by the data sources. The execution of queries thus simply requires
unfolding the global queries, taking into account the view definitions, and
issuing the resulting queries to the original data sources. Nevertheless, this
approach works well only for stable data sources. In the case of modifications
to the data sources (e.g., a local schema changes or a data source has to be
added or deleted) the global schema needs to be modified as well.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

24 2 Data and Application Integration

Source1.ORDER
 OrderID
 SenderID
 DestinationAddress
 PickUpDate
 PickUpTime
 Weight
 Size

Source2.CUSTOMER
 CustomerID
 Name
 Surname
 Address

Local sources Mediator

a) GAV Mapping for the global relation BILLING. The global relation is defined as a view on the local source relations.

b) LAV Mapping for Source2 and Source3. The local source relations are defined as views over the global relations.

Source3.PRICING
 CustomerID
 Discount
 Taxes

BILLING
 OrderID
 CustomerID
 CustomerName
 CustomerSurname
 Weight
 Size
 Discount
 Taxes

SHIPMENT
 OrderID
 SenderID
 SenderAddress
 DestinationAddress
 PickUpDate
 PickUpTimeSource2.CUSTOMER

 CustomerID
 Name
 Surname
 Address

Local sources Mediator

Source3.PRICING
 CustomerID
 Discount
 Taxes

BILLING
 OrderID
 CustomerID
 CustomerName
 CustomerSurname
 Weight
 Size
 Discount
 Taxes

Join

Join

Join

Fig. 2.3 Example of GAV and LAV schema mappings for the integrated order DB.

2.3.2.2 Local-As-View (LAV) mapping

With respect to GAV, the Local-As-View (LAV) mapping privileges more
the independence of the local sources with respect to the global schema defi-
nition, thus it tries to overcome the intrinsic rigidity of GAV which makes it
di�cult to modify the local schemas or to add a new data source. In LAV, en-
tities in the original sources are mapped to the mediated schema. This means
that the mediated schema is designed independently of the actual sources and,
instead of specifying how to compute tuples of the mediated schema like in
GAV, each data source is described as a view over the mediated schema.

For instance, in our reference example, a LAV mapping (see Figure 2.3)
would express that the attributes of the CUSTOMER relation in Source2
correspond to the CustomerID, CustomerName and CustomerSurname
attributes of the BILLING global relation; by means of a join on the
CustomerID attribute, the Address attribute is then mapped on the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

30 2 Data and Application Integration

Machine 1 Machine 2 Machine 3

Local OS 1

Network

Distributed application

Distributed system layer (middleware)

Local OS 2 Local OS 3

Fig. 2.4 The basic architecture of a distributed system and application.

the reason for which there is the need for an ingredient in the development
of distributed applications that is not needed in the development of conven-
tional, non-distributed applications, i.e., middleware.

Middleware is software that enables and mediates network heterogene-
ity and interactions among the pieces of a distributed application. That is,
middleware provides a distributed system layer that masks hardware and op-
erating system heterogeneity and provides an abstract view on the capabilities
of the distributed system. This abstract view is provided to the distributed
applications running on top, so as to enable and facilitate their development.
As such, the middleware services are typically used by developers who pro-
gram distributed applications and less by non-programmers like the users
of the distributed applications. Middleware therefore represents, on the one
hand, a computing infrastructure upon which distributed applications can
be developed and, on the other hand, a programming abstraction that eases
development.

Depending on the kind of abstraction and development support they pro-
vide, we distinguish four core types of middleware [13]:

• RPC-based middleware : The use of remote procedure calls (RPCs)
represents the most basic technique to implement a distributed system
and the foundation for many of today’s middleware solutions. RPC-based
middleware provides the necessary infrastructure to transform procedure
calls into remote calls that are able to invoke procedures running on a
di↵erent machine as if they were running locally. The problem with proce-
dure calls, independently of whether local or remote, is that they typically
implement a blocking invocation model, which requires the invoking en-
tity to wait till the invoked entity has finished processing. XML-RPC [278]
and the Simple Object Access Protocol (SOAP [47]) are examples of RPC
middleware.

• Object brokers: Object brokers address another issue of RPC-based mid-
dleware, i.e., their intrinsic focus on imperative, procedural programming
languages. With the advent of object-oriented programming, RPCs be-
came apparently obsolete, and the focus of middleware moved from RPCs

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

32 2 Data and Application Integration

formation operations may plugged-in in the form of external, custom appli-
cation logic, providing for extensibility. The configuration and operation of
the whole message broker can be managed via a dedicated administration in-
terface. Examples of message brokers are IBM’s WebSphere Message Broker
[153] and today’s enterprise service buses (ESBs).

2.4.2 Workflow management systems

Alonso et al. [13] correctly point out that the key contribution of message
brokers to application integration is their capability to hide the heterogeneity
and distribution of the information systems to integrate and to provide a
uniform view on their data and functionalities. Workflow management
systems (WfMSs) provide support for the last ingredient, i.e., the definition
of integration logic.

The initial application area of WfMSs was o�ce automation, whose pur-
pose is to automate the coordination of repetitive, administrative processes
involving multiple human actors and electronic documents. Soon, it became
evident that the automation support provided by WfMSs could be lever-
aged to coordinate also software systems, not only human actors. Nowadays,
WfMSs (or business process management systems, as they are called more
prominently today) are very flexible systems that enable the seamless coor-
dination of software and human actors, typically starting from a graphical
model that expresses the necessary integration logic. Most systems also pro-
vide support for advanced coordination features, such as transactions, ex-
ception handling, recovery and compensation, events, deadline management,
and similar.

sender
pays

Get shipment
details

Calculate
route

Compute
cost

Payment Delivery

Delivery Payment

receiver
pays

Shipment planning application

Customer relationship
management system Billing application

Payment
application

Delivery app

Delivery app
Payment

application

Fig. 2.5 A simplified workflow model of a possible integration logic for the logistics
application integration scenario. The model shows how the integration logic coordi-
nates the interaction with existing information systems.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2.4 Application Integration 35

ness processes and agile applications that span organizations and platforms
caused a re-thinking of some of the traditional development practices and the
emergence of a new paradigm. This new paradigm is called service-oriented
computing (SOC), and it is a computing paradigm that uses Web services
as building blocks for the engineering of composite, distributed applications
out of the reusable application logic encapsulated by Web services [46].

SOC builds on two ingredients: an ecosystem of readily reusable Web ser-
vices and a development paradigm based on composition as core abstraction.
We discuss both in the following.

2.4.4.1 Service-oriented architecture (SOA)

The architecture of the Web service ecosystem is commonly called a service-
oriented architecture (SOA), which is a logical architecture for the design
of software systems that provide services to either end-user applications or
to other services distributed in a network, via published and discoverable
interfaces [224].

The SOA can be articulated into three roles and two artifacts (see Figure
2.6): A web service (the first artifact) is implemented and made publicly
accessibly by a so-called provider (or service provider). In order to advertise
the web service and enable its potential clients to be aware of the existence of
the service, the provider publishes a service descriptor (the second artifact),
which describes the purpose and features of the service, where to access it (a
URI), and how to access it (e.g., using which communication protocol). This
advertisement is supported by a dedicated registry, which aggregates service
descriptors from multiple providers and allows potential consumers to search
for descriptors. If a consumer wants to use some external functionality, it can
query the registry for suitable web services, obtaining as response a service
descriptor (or a set thereof). Following the instructions on how to invoke the
service contained in the retrieved descriptor, the consumer can bind to the
concrete service and use it.

Provider

Consumer

Registry

publishes descriptor

searches for service

binds to and

uses service

Web
service

Service
descriptor retrieves descriptor

Fig. 2.6 The service-oriented architecture (SOA) with its roles and artifacts.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2.4 Application Integration 37

Provider 1 Consumer 2 Provider 2Consumer 1

Local OS 1

The Web

Local OS 2 Local OS 3

App. logic

Data

Present. App. logic

WS1
WS2

WS3

Web service compositionService-based application

Local OS 4

Web service middleware, SOAP, HTTP, TCP/IP

App. logic

WS4

WS5
App. logic

Process
engine

Fig. 2.7 The distributed computing environment enabled by web services as an
instance of the generic architecture of distributed systems (see Figure 2.4).

according programming libraries and/or Web service runtime environments
(e.g., so-called runtime containers). A process/service orchestration engine
(e.g., Apache ODE), an evolution and adaptation of WfMSs to Web services,
provides for the actual composition and facilitates the abstract definition of
integration logic and its execution. Pure service compositions may be built
exclusively using a process engine, service-based applications usually also rely
on hand-coded integration logics. Of course, the use of a process engine is
not mandatory in any case, but its composition-specific abstractions and run-
time support significantly eases the composition task compared to coding the
integration logic with common programming languages.

Process engines are instructed with an abstract specification of the process
(the Web services composition). An important role in service composition is
therefore played by the logical integration languages used to express this spec-
ification. In this respect, the standard language for Web service composition
today is the Web Services Business Process Execution Language (WS-BPEL
[163]), an XML dialect that is specifically tailored to the needs of Web ser-
vice composition and that enjoys large support by all major process engine
vendors.

Figure 2.8 provides an intuitive feeling of the syntax of WS-BPEL and
a functional view on the main composition features. The key aspects of a
process specification are the definition of the partner links, which define the
Web services to communicate with, the variables used to store intermediate
results and messages, and the structured set of activities, which implement
the actual integration logic. The language comprises activities for the interac-
tion with Web services (receive, reply, invoke, for storing data into variables
(assign), for common control flow specifications (sequence, if, while, etc.), as
well as for exception and event handling.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

38 2 Data and Application Integration

 <process name="NCName" targetNamespace="anyURI"
 queryLanguage="anyURI"?
 expressionLanguage="anyURI"?
 suppressJoinFailure="yes|no"?
 exitOnStandardFault="yes|no"?
 xmlns="http://docs.oasis-open.org/wsbpel/2.0/
 process/executable">

 <extensions>?
 ...
 </extensions>

 <import namespace="anyURI"?
 location="anyURI"?
 importType="anyURI" />*

 <partnerLinks>?
 <!-- Note: At least one role must be specified. -->
 ...
 </partnerLinks>

 <messageExchanges>?
 ...
 </messageExchanges>

 <variables>?
 ...
 </variables>

 <correlationSets>?
 ...
 </correlationSets>

 <faultHandlers>?
 <!-- Note: There must be at least one faultHandler -->
 ...
 </faultHandlers>

 <eventHandlers>?
 ...
 </eventHandlers>

 activity*

 </process>

The header of the process definition, among

others, specifies the languages used to query

XML data and define expressions (e.g., used

by the <condition> and <while> activities).

Partner links model relationships between

partner processes for peer-to-peer

communications. Partner links have a type

and an endpoint reference.

Extensions enable the definition of new

attributes, new elements, operation

extensions, etc.

Enables declaring dependencies on external

XML Schema or WSDL definitions.

Message exchanges associate outbound

messages with inbound messages.

Variables hold messages or data and capture

the state of the process.

Correlation sets are sets of properties shared

by all messages of a conversation.

Fault handlers allow the definition of fault

handling activities.

Event handlers enable reacting to external

events or alarms.

Activities specify the process logic.

Fig. 2.8 The basic structure of a service composition (a process) in BPEL [163].

For example, if we wanted to implement the shipment management pro-
cess of Figure 2.5 as a Web service composition (assuming that all involved
systems are equipped with a suitable Web service), the corresponding WS-
BPEL logic could look as follows: The Get shipment details task is initiated
by the operator of the logistics company through an application that sends
a message to the process. That is, the task starts with receiving a message.
Then the task invokes the CRM system to confirm sender and receiver data,
e.g., via a synchronous request-response operation. The received shipment
details are assigned to a variable, which can be used to forward them to
the shipment planning application via the invocation of the respective Web
service, which corresponds to the execution of the Calculate route task. The
calculated route details can be assigned to another variable, which can be
used as input for the Compute cost task. Doing so requires invoking the
billing application with attached the route details. And so on and so forth.

BPEL is a standard language for the composition of SOAP web services.
In [226] and [227], Pautasso shows examples of how to compose RESTful web
services by extending JOpera and BPEL, respectively.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

2.5 Cloud Computing 41

comes for the cost of the resources consumed by the virtualization itself. Yet,
practice has shown that the benefits largely outweigh this additional e↵ort.

2.5.2 Cloud architectures

In line with the above virtualization strategies, cloud architectures can be
structured into di↵erent logical layers, each providing a di↵erent type of re-
source as a service and, hence di↵erent abstractions. We illustrate these layers
in Figure 2.9 and discuss the three bottom-most layers, i.e., the technological
ones (for an explanation of the HaaS layer, we refer the reader to [31] or
[149]):

• Infrastructure as a Service (IaaS): IaaS provides computing infras-
tructure as a service, that is, it provides an abstract view on hardware
(e.g., computers, CPUs, storage devices, memory, etc.) and allows the
user to run own images of operating systems on top of the virtualized
hardware. The management interface provided by IaaS providers typically
allows their users to dynamically define the required hardware characteris-
tics and to start and stop operating system instances (e.g., to save money,
as running an instance costs money). The target user of IaaS is the system
administrator.

• Platform as a Service (PaaS): PaaS usually provides development
environments or runtime environments for software development and soft-

Cloud

Software as a Service (SaaS)

Applications

Application services

Platform as a Service (PaaS)

Integrated development environment

Runtime environment

Infrastructure as a Service (IaaS)

Infrastructure services

Resource set

Virtual resource set

Physical resource set

Human as a Service (HaaS)

Crowdsourcing

SaaS
PaaS
IaaS

HaaS

Fig. 2.9 A simplified cloud architecture stack with IaaS, PaaS, SaaS, and HaaS
(adapted from [172]).

