
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 3
Web Technologies

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

3.1 Introduction 47

Client
tier

Web
server tier Pres. logic

App. logic

Data

Presentation

Data Data Data Data

App. logic

Pres. logic

App. logic App. logic

Presentation

Pres. logic

Presentation

Pres. logic

Presentation

Pres. logic

App. logic

Presentation

Pres. logic

App. logic

Data

Distributed

web

application

Time

Mainframe
(1940s-1970s)

Client-server
(1970s-1990s)

Web 1.0
(1990s-2005)

Web 2.0
(2005-today)

Fig. 3.1 The change of the distribution of a web application’s internal architectural
layers over client and server over time (adapted from http://www.coachwei.com).

However, very often mashups also adopt a server-side logic. In some cases,
the server is exploited only for the storage of the resources (e.g., the HTML
and JavaScript files) and application data, while the application logic runs
at the client side and communicates back with the server only for operations
on the persistent data. In some other cases, the server also executes (part
of) the application logic. Several data mashups, for example, make use of
complex queries on multiple data sources that require a computation e↵ort
that would not be a↵ordable within the Web browser. Data integration is
therefore operated at the server-side. Process mashups also make use of a
server-side logic to combine functionality into one or more external processes.

Given these scenarios, this chapter aims to give an overview of the most
prominent technologies for the development of mashups executed on the Web.
We start with a short refresh of the Internet, its structure and underlying
protocols, so as to then illustrate the technologies for the development of Web
applications on top of this infrastructure. We discuss the most prominent lan-
guages for client-side and server-side programming and the main formats for
data representation on the Web. Our aim is neither to be omni-comprehensive
nor to teach how to use specific technologies; rather we want to illustrate the
most prominent representatives of the panorama of technology choices that
can be made when developing Web mashups.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

3.2 The Internet 49

Backbone

NAP

Regional ISP

Desktop workstation

Notebook

WiFi router

Email server

Web/
email server

Server farm

Web server

Telephone system
DSL

modem

Mobile telephone network

Mobile
devices

POP

Router

Distributed web application

Fig. 3.2 Internet architecture (adapted from [259]). The dashed polygon describes
a possible distribution of a web application over the Internet.

route tra�c from one node the another. If a packet is destined for a host
running outside the regional ISP’s network, the ISP hands it over to the
backbone operator, e.g., AT&T or Telecom, which provide for large interna-
tional network connections over fiber optics. If a packet needs to be delivered
via another backbone network, it traverses a so-called Network Access Point
(NAP), which connects the backbone networks of di↵erent operators. If we
assume that our packet is to be delivered on the mobile phone, it will be
shipped to the respective mobile telephone network operator and eventually
delivered to the phone via, for example, a GSM or UMTS connection. De-
pending on the size of companies and their need for fast communication,
their machines can be connected via DSL like private users do, or they may
connect to nodes of the ISP or even directly to the backbone itself (e.g., the
server farm in the figure).

3.2.2 The TCP/IP protocol stack

All the communications in the Internet are enabled by the TCP/IP stack
of network protocols, which was first discussed in 1974 by Cerf and Kahn
[68] and is the standard protocol stack for the Internet. Figure 3.3 compares
the TCP/IP stack with the more general OSI stack [102, 259]. While the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

50 3 Web Technologies

latter is commonly used as theoretical reference model, in practice today
most computer networks implement the TCP/IP stack of protocols.

The bottom of the stack is represented by the host-to-network layer, which
corresponds to the OSI datalink and physical layers. This layer is concerned
with the physical encoding and transmission of bits over the network and
not of great interest any longer today (by now, Ethernet has almost becomes
a de-facto standard). The actual contribution of the TCP/IP stack, as its
name already tells, starts with the internet layer. We intentionally do not
use an uppercase for this layer, in order to emphasize its actual purpose,
i.e., inter-connection di↵erent networks. What we know as the Internet (with
the uppercase) is a particular instance of network implementing the TCP/IP
stack that takes its name from the enabling OSI network layer. The internet
layer is in charge of delivering IP packets from one host to another. It does
not guarantee for the order of packets; the major issue is routing. It is the
transport layer on top that is in charge of ordering and assembling IP pack-
ets. Two transport protocols exist: TCP (Transmission Control Protocol) is
a reliable, connection-oriented protocol; UPD (User Datagram Protocol) in
an unreliable, connection-less protocol. The former is typically used for appli-
cations, the latter, for instance, for media streams (where occasional packet
losses are acceptable). On top of these two layers, we already have the appli-
cation layer. The TCP/IP stack does not provide a presentation or session
layer like the OSI model; these two aspects can be managed by the appli-
cations themselves. But we have di↵erent protocols at the application layer:
TELNET, FTP, SMTP, NNTP, HTTP, DNS, and many more.

Up to the early 1990s, the Internet provided four main types of appli-
cations: email (SMTP), news (NNTP), remote login (TELNET), and file
transfer (FTP). Only in 1989, the physicist Tim Berners-Lee invented the
World Wide Web based on the Hypertext Transfer Protocol (HTTP).

TCP/IP
reference model

OSI
reference model

Datalink

Physical

Network

Transport

Session

Presentation

Application Application

Transport

Internet

Host-to-network

TELNET

FTP HTTPSMTP

TCP

DNS

...

UDP

IP

Ethernet
Token ring

...

Layers

Protocols

Not supported

Fig. 3.3 The TCP/IP reference model compared to the OSI reference model.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

3.3 The Hypertext Markup Language (HTML) 53

<!DOCTYPE html>

<HTML>

<HEAD>

<TITLE>Expo 2015 – An example</TITLE>
<meta name="description" content="An HTML example">

<meta name="Keywords" content="HTML”>
</HEAD>

<BODY>

<div id="top">

</div>

<div id="center">

<h1>A simple Web page linking to the Expo2015 Web site</h2>

<p>We here show an example of image and video inclusion and of link definition</p>

</div>

<div id="youtube" class="container vertical">

 <iframe id="video_canvas" src="http://www.youtube.com/embed/mSbyzSJl-

eM?list=PL3IPVSF68uaEfHAVNek3RBb1w4P05KiHi" width="800"

height="500"frameborder="0" allowfullscreen></iframe>

</div>

<div id="bottom">

</BODY>

</HTML>

Fig. 3.4 A simple HTML page embedding an image and a video and including a
clickable hyperlink.

limit portions of content to give indications to the browser on how to display
such content or to define links to other Web pages. The document presenta-
tion is then managed by a processor embedded in the Web browser, which
interprets the meaning of the tags and transforms the marked up content
into a rendered document.

As illustrated in Figure 3.4, typically an HTML markup consists of:

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

3.5 Client-Side Scripting 59

<html>
<head>
<title>EXPO 2015</title>
<script type="text/javascript">

var nextButton;
var videoCanvas;
var videoArray;
var currentVideo = -1;

function nextVideo() {
currentVideo++;
if(currentVideo >= videoArray.length)

currentVideo = 0;
videoCanvas.setAttribute("src", videoArray[currentVideo]);

}

function init() {
nextButton = document.getElementById("next_button");
videoCanvas = document.getElementById("video_canvas");
videoArray = [

"http://www.youtube.com/embed/kNG_l_UKkgM",
"http://www.youtube.com/embed/JdK1bIg1VvA",
"http://www.youtube.com/embed/m_F8A5VdhsM"

];
nextButton.addEventListener("click", nextVideo, false);
nextVideo();

}
</script>
</head>
<body onload="init()">
/* mark-up for other page elements */

<p>Next video</p>
<iframe id="video_canvas" width="800" height="500" src="" frameborder="0"

allowfullscreen></iframe>
</body>
</html>

Fig. 3.5 An example of JavaScript code included in the head section of an HTML
page. The script adds interactivity to the page, by implementing a video slide show.

The function in particular defines an array of videos and manages moving
through the array, element by element, every time the link is clicked.

JavaScript is an interpreted language. JavaScript code is parsed and ex-
ecuted by the browser interpreters. For this reason, the cross-browser ex-
ecution of a same code might not result into the same page behaviour. To
cope with interoperability problems, and also to facilitate programming, some
development frameworks have been proposed to o↵er code libraries able to
mask interoperability problems and also facilitate the use of native JavaScript

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

62 3 Web Technologies

some input parameters and generates an output page. The invocation of the
external program occurs when the HTTP request includes a URL pointing to
a program instead of to a static document. To make the server communicate
with the external program, one of the first conceived solution was to use a
standard interface, called Common Gateway Interface (CGI), to allow the
Web server to invoke CGI programs, executed to dynamically construct the
page. A CGI program can issue queries over a database to extract data which
it then uses to assemble an HTML page, or it can store user inputs in the
database by inserting or updating data in it.

The CGI architecture, however, soon showed some limitations, first of all
its performance, which is downgraded especially by the strategy for managing
processes. For each HTTP request for a CGI script, the Web server initiates
a new process, which is terminated at the end of the execution of the script.
Process creation and termination are very costly activities. Additionally, ter-
minating the process after each request makes it di�cult to retain information
about the user session, unless such information is stored in a database, which
again impacts performance. Terminating the process also prevents the man-
agement of shared resources used by multiple users across multiple HTTP
requests.

Such limitations were bypassed by extending the capabilities of the Web
server with an application execution engine, that is a server-side execution
environment where the programs in charge of building the HTTP response
can be processed without being terminated after each request, and shared
resources can be associated with one or more applications and concurrently
accessed by multiple users. Such an extended architecture typically also o↵ers
a main memory environment for storing session data whose duration goes
across multiple HTTP requests.

3.7.1 Servlets

An example of extended Web server architecture is Javasoft’s Servlet API (il-
lustrated in Figure 3.6), which associates the Web server with a Java Virtual
Machine (JVM). The JVM supports the execution of a special Java program,
the servlet container, which in turn is in charge of managing session data and
executing Java servlets.

HTTP request

Client (browser) Web server Servlet container

HTTP response

Request parameters

Generated page

Fig. 3.6 Java servlet architecture.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

64 3 Web Technologies

day. It stems from the early days of the Web, when it was used for CGI
scripting. Now, it is a dynamically typed multi-paradigm programming lan-
guage, freely available on most platforms. Like PHP, it is open source, and
enjoys the support of a large community.

Java Server Pages (JSP) is a simple but powerful technology that extends
Java servlets. A JSP page is composed of blocks of static code (HTML,
JavaScript, CSS, etc.), mixed with dynamic blocks, i.e., portions of Java
code executed by the scripting engine.

Client (browser)

Web server

Request for index.jsp HTML response

JSP to servlet
translation

Servlet
compilation

Servlet
execution

Fig. 3.7 The translation of JSP pages into servlets.

Each time the Web server receives a request for a same JSP page, it verifies
whether changes to its code occurred since its creation by checking the content
of the Last Modified HTTP header. If not, the servlet instance for that
page stored in memory is recalled; otherwise, the JSP page is recompiled and
a new servlet instance is created and stored in memory. For this reason, the
first access to a JSP page requires a longer time (the so-called first-person
penalty), while the following requests are faster.

JSP

Directives

 <%@page contentType=”text/html”%>
Scripting elements

 <% int a=1; %>
Actions

 <%jsp:include page=”includeme.jsp”%>JSP page

Fig. 3.8 The structure of JSP pages.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

64 3 Web Technologies

day. It stems from the early days of the Web, when it was used for CGI
scripting. Now, it is a dynamically typed multi-paradigm programming lan-
guage, freely available on most platforms. Like PHP, it is open source, and
enjoys the support of a large community.

Java Server Pages (JSP) is a simple but powerful technology that extends
Java servlets. A JSP page is composed of blocks of static code (HTML,
JavaScript, CSS, etc.), mixed with dynamic blocks, i.e., portions of Java
code executed by the scripting engine.

Client (browser)

Web server

Request for index.jsp HTML response

JSP to servlet
translation

Servlet
compilation

Servlet
execution

Fig. 3.7 The translation of JSP pages into servlets.

Each time the Web server receives a request for a same JSP page, it verifies
whether changes to its code occurred since its creation by checking the content
of the Last Modified HTTP header. If not, the servlet instance for that
page stored in memory is recalled; otherwise, the JSP page is recompiled and
a new servlet instance is created and stored in memory. For this reason, the
first access to a JSP page requires a longer time (the so-called first-person
penalty), while the following requests are faster.

JSP

Directives

 <%@page contentType=”text/html”%>
Scripting elements

 <% int a=1; %>
Actions

 <%jsp:include page=”includeme.jsp”%>JSP page

Fig. 3.8 The structure of JSP pages.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

68 3 Web Technologies

With the advent of the Web, more and more data are available on-line,
and Web applications not longer source the data they use to provide their
services from a single, proprietary data source only. Increasingly, applica-
tions integrate data sourced from the Web, e.g., to translate IP addresses
into logical location information (e.g., a country and a city) or similar.
As we will see, sourcing and integrating data from the Web is one of the
key features of mashups and, depending on how data are published, the
complexity of this task may vary from relatively simple to very complex.
For instance, sometimes data are available only via the HTML markup
of a web application, and reusing them requires extracting them from the
markup, a task that is non-trivial in general.

Three-tiered architectures need an execution environment supporting in-
terlayer communication. Application servers provide such an environment.
By providing an intermediate layer between the Web server and the back-end
for resource management, they enable the e�cient execution of components
in the application logic layer, thus supporting the construction of dynamic
pages according to the execution flow depicted in Figure 3.9.

1. HTTP
request

Client
Web
server Application

server

8. HTTP
response Scripting

engine

Database server

Legacy systems

2. Script
request

3. Component
call 4. Query

5. Results6. Answer7. HTML
page

Fig. 3.9 Application server architecture

The Web server accepts the HTTP request coming from the client and
transforms it into a request to the scripting engine. The scripting engine
executes the program associated with the requested URL, which may also
include calls to business components hosted in the application server. Typ-
ically, such calls involve the retrieval and elaboration of data from one or
more data sources, such as corporate databases, legacy systems or external
Web services. The components managed by the application server dispatch
the query to the data source, collect the query results, possibly elaborate
them, and send them back to the scripting engine. Query results are then
integrated into the HTTP response by the scripts executed in the scripting
engine to obtain a result HTML page to be sent back to the client by the
Web server.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

70 3 Web Technologies

Web Page Title

Client
browser

Controller

Model

View

requests modifies

responds

selects

notifies state

Fig. 3.10 The Model-View-Controller pattern adapted to Web applications.

If a user issues a page request to the Web application, the request is in-
tercepted by the Controller, which is in charge of deciding which business
operation needs to be performed. The Controller, hence, invokes the respec-
tive component in the Model, which contains the necessary logic to execute
the requested action, to update the state of the application, and to assemble
the data to be presented to the user. The change of the application state
activates the View, which fills the presentation template with the data com-
puted by the Model. Finally, the so-constructed HTML response is sent to
the client browser.

There are several application frameworks o↵ering support for implement-
ing the MVC pattern. Apache Struts is one of these frameworks. It is open-
source and is based on Java-EE application server architecture. In Apache
Struts, the Model represents the underlying data, the View is the actual ren-
dered page, and the Controller handles HTTP requests, selects and invokes
application logic, and performs page selection (i.e., handles navigation logic).
For the Controller, Apache Struts relies on servlet technology and provides
a default servlet implementation for this purpose, while it suggests the use
of JavaServer Pages for a template-based approach to the View construction
(although other technology may be used). Apache Struts also provides its
own tag library so fostering additional expressibility.

It is worth noting that mashup development naturally follows the MVC
design pattern. The Model is the application domain supplied by the Web-
delivered services on which the mashup components are based, the View is
the layer in charge of displaying the user interfaces by rendering presentation
code, like HTML or JavaScripts, and the Controller is the middle interaction
logic between Model and View, which operates on the model, for example
requesting some new data from the involved components, and propagates
the changes to the view, and vice versa. In mashups, such a pattern can be
achieved both at the client side and at the server side [178]. In fact, MVC
is a design pattern, and as such it is not necessarily based on a multi-tier
architectural pattern as the one described in the previous section. In a client-
side mashup, for example, the logic for composing a map service with an
additional data source, including the invocation of the two services, can be

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

3.10 Summary and Bibliographic Notes 73

JSON

{"menu": {
 "id": "file",
 "value": "File",
 "popup": {
 "menuitem": [
 {"value": "New", "onclick": "CreateNewDoc()"},
 {"value": "Open", "onclick": "OpenDoc()"},
 {"value": "Close", "onclick": "CloseDoc()"}
]
 }
}}

XML

<menu id="file" value="File">
 <popup>
 <menuitem value="New" onclick="CreateNewDoc()" />
 <menuitem value="Open" onclick="OpenDoc()" />
 <menuitem value="Close" onclick="CloseDoc()" />
 </popup>
</menu>

Fig. 3.11 Examples of JSON and XML specifications. The represented data refer
the structure of a file menu (http://www.json.org/example)

.

JavaScript engines, to parse JSON documents. Instead of using an additional
parser, a JavaScript program can use the built-in eval() function to interpret
JSON data to produce native JavaScript objects.

Web applications that mainly rely on a client-side business logics imple-
mented with JavaScript, including Web mashups, can take advantage of the
adoption of JSON to consume data coming from remote services and APIs.
Many resources available online today, indeed, provide JSON-encoded data.

3.10 Summary and Bibliographic Notes

This chapter illustrated the most relevant technologies, standards, and speci-
fications for the Web, with the aim of presenting some important ingredients
for the development of mashups delivered on the Web. We started from the
basic protocols and languages, such as HTTP and HTML. Then, we dis-
cussed how combinations of technologies (HTML, DOM, JavaScript, AJAX),
extended the capabilities of HTML as a document markup language, allowing
for sophisticated interactive features and client-side business logic. We then
outlined some important server-side technologies for building pages dynami-
cally (such as servlets, server-side scripting, and tag libraries). The organiza-
tion of the di↵erent application components into multi-tier architectures was
also illustrated.

