Florian Daniel
Maristella Matera

Mashups

Concepts, Models
and Architectures

@ Springer

Chapter 4
Model-Driven
Software Development

Figures

Computation-independent

Platform-independent

Conceptual schema

> Manual transformation

Logical schema

> Manual transformation

Platform-dependent :/

Physical schema

Code

> Manual transformation

Fig. 4.1 The different schemas in the conceptual modeling stack for database design.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

Computation-independent model (CIM) . .
>Automat1c transformation

Platform-independent model (PIM) : . based on | Platform description
>Automatlc transformation -~ - > model (PDM)

Platform-specific model (PSM)

:>Automatic transformation
Code

Fig. 4.2 Models and transformations in the Model-Driven Architecture (MDA) [195].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

Architecture-centric model , , uses Code generation
Automatic transformation ----= >
templates
Code

Fig. 4.3 The ingredients of architecture-centric model-driven software development
(AC-MDSD) according to Stahl and Volter [256].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

M3 Meta-metamodel

N) describes metamodel
| <<instance of>>
! constructs
1
M2 Metamodel
/!\) describes model
| <<instance of>>
! constructs
1
M1 Model
/!\ . describes
! <<instance of>> instances
1
MO Instances

Fig. 4.4 The four metalevels proposed in OMG’s Meta Object Facility [215].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

M3 Meta-metamodel g ___

—_—— e e —

T |

| <<instance of>> <<instance of>> :<<instance of>> ! <<instance of>>
| 1 1 1
1
PIM 1 PIM 2 PSM 2
M2 Metamodel
metamodel metamodel metamodel
Y)))
| <<instance of>> | <<instance of>> <<instance of>> | <<instance of>>
I I I I
M1 Model PIM 1 PIM 2 PSM 2
| <<instance of>> transformation transformation
I
MO Instances

Fig. 4.5 Meta levels vs. abstraction levels. Abstraction levels express different ab-
stractions of a same artifact (the application) at metalevel M1; metalevels express
different artifacts (instances, model constructs, metamodel constructs).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

Exactly one start state AN Finite state
and at least one end state. ‘ machine FSM
Start state \\\ 1.N 0..N
source —
> State N Transition — Input
End state 0..N
target

Fig. 4.6 A platform-independent M2 metamodel for a finite state machine with
start and end states. The FSM triggers its transitions upon the reception of an input
character.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

MultiplicityElement

Generalization Type
Feature TypedElement
0..N 0..N [T
Classifi | I
& e StructuralFeature
? T
superclass I oN N
Class @ —— Property ———e| Association
0..N
T opposite |01 0.1
0..N T
0.N - 0.N MultiplicityElement
Type Operation |@——— Parameter |<3—
TypedElement

Fig. 4.7 A simplified version of the EMOF package, the core of the MOF [215].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

AN i
|
Exactly one start state MOF:Class | ________ ! MOF::Property
and at least one end state. | cinstance ofs> K
N A ’!\ I L M3
_______ ______|___|__:_____________'r___

M2

—_——————

|
<<instance of>> |
|
|

<<instance of>> |

Transition [@—— Input
End state 0..N

Start state .

Fig. 4.8 A metamodel for a FSM defined as instance of the Meta Object Facil-
ity (MOF) [215] with some <<instance of>> relationships highlighted: states and
transitions are instances of MOF: :Class, relationships of MOF: :Association, and
attributes of MOF: :Property.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

WB <<metaclass>> <<metaclass>> <<metaclass>>

exactly one start Class Association Property

state and at least “UML 2.0

one end state. " extension
relationship

\
<<stereotype>> <<stereotype>> <<stereotype>>
State Transition Input
\\ ~ o .
\ S
N Must have one B
<<stereotype>> <<stereotype>> Connects k property of type Input ‘
Start state End state only states

Fig. 4.9 A metamodel for a FSM defined as UML 2.0 profile. Syntactically, UML
profiles are at the metalevel M1, yet semantically they are at metalevel M2, as profiles

specialize the UML metamodel (e.g., UML: :Class).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

Classifier StructuralFeature Relationship
superclass [f
0..N |
0..N 0..N —
Class ——— Property L& Association
0..N 0..1 0.1
0..1 0..N
0..N 1..N
Operation Type

Fig. 4.10 A simplified excerpt of the Classes diagram of the Constructs package of
the UML metamodel [217], the starting point for the definition of UML profiles.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

a: Input c : Input
SE source target S - source
Start s’;ate : Transition Stat;e : Transition
target target
- source S3 - source - target S4 -
: Transition State : Transition End state
b : Input d: Input

Fig. 4.11 A model instance of the finite state machine defined in Figure 4.6 using a
UML object diagram as modeling syntax.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

transition
7/

input

. end state

identifies start state

Fig. 4.12 A model instance of the finite state machine defined in Figure 4.6 using
an own, more intuitive modeling syntax.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

*Application

L . Uses .
5| Configura Repetitive ||| _ 4%] Individual

Application
tion files code code

model

[Generative architecture | [7] J—— — ——— S i

Code
generator

Generation

Infrastructure components
templates

p—

Fig. 4.13 The typical MDSD code generation process based on code templates.
Depending on the platform features and the modeled application, either configuration
files or code or both are generated; individual code may be plugged in manually.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

Meta-
metamodel
N has
<<instance of>> ! \1/
1
defined on ;
---> Metamodel has Abstract syntax Static
! semantics
|
: based on extends
I
i Modeling has Concrete
' language syntax
<<instance of>> ,
: has
|
|
| Dynamic
: semantics
: expressed in
: gets meaning from
: complies with
e Model

Fig. 4.14 Summary of the key concepts of MDSD.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

