
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 4
Model-Driven
Software Development

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.2 Model-Driven Design 79

the context of model-based developed, i.e., conceptual modeling. We feel it is
important to introduce the respective ideas and concepts, in order to clarify
its di↵erences and commonalities with MDSD and the respective terminology.

4.2.1 Conceptual modeling

Conceptual modeling has its roots in databases [27]. Before implementing a
database, it is common practice today to first design one or more graphical
schemas (a synonym of “model” in the database community) of the database
structure to be implemented. As illustrated in Figure 4.1, there are typically
three di↵erent levels of abstraction in database design, in addition to the
final code that implements the models in the chosen database management
system:

• Conceptual schema: This schema expresses the concepts, i.e., the entities,
that the database will describe. The conceptual schema relates entities via
relationships, generalizations/specializations, and attributes. It is typically
expressed as Entity-Relationship (ER) diagram.

• Logical schema: This schema expresses the concepts of the conceptual
model in terms of concepts that are compatible with the target database
technology. For instance, a relational database does not allow the use of
m:n relationships, a construct of the conceptual schema; such relationships
must therefore be translated into two 1:n relationships and a bridge table,
in order for the model to be compatible with the relational data model.
The logical schema is typically expressed as ER diagram with only a subset
of constructs (e.g., without generalizations or m:n relationships).

• Physical schema: This schema eventually expresses the database struc-
ture in terms of the specific database technology and system chosen. For
instance, the physical schema tells how to actually store data into files,
how to index them, and similar. The physical model can, for example, be
expressed by drawing concrete tables, keys, and similar.

Conceptual schema

Physical schema

Code

Logical schema

Manual transformation

Manual transformation

Manual transformation

Platform-independent

Platform-dependent

Computation-independent

Fig. 4.1 The di↵erent schemas in the conceptual modeling stack for database design.

The conceptual schema is typically completely independent of any technol-
ogy or platform. The logical level is technology-dependent (e.g., relational vs.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.2 Model-Driven Design 81

• XMI : All MOF-compliant models can be serialized and stored in the XML
Metadata Interchange (XMI) format [216], an XML mapping for the MOF.
XMI enables interoperability among MDA tools like editors and code gen-
erators.

• Models at di↵erent levels of abstraction: Similarly to the conceptual mod-
eling approach, also MDA is based on three/four core models (see Figure
4.2) [195], which in the case of MDA are all MOF-based and typically
specified via dedicated UML profiles:

– Computation-independent model (CIM): This model captures the do-
main or business knowledge to be managed by the application under
development, typically in the form of a UML class diagram (similar in
expressive power to the ER diagram of a conceptual schema). It rep-
resents the static knowledge about the domain in a technology- and
computation-independent fashion. The CIM is optional in MDSD.

– Platform-independent model (PIM): This model describes the applica-
tion in terms of architectural styles, software components, relationships,
and similar. It describes a solution in a technology-independent but
computation-specific way, so that it is still portable among di↵erent
platforms with similar architectural and computing assumptions.

– Platform description model (PDM): This model describes the details
of the target platform that enables the implementation of the modeled
application. This model may come in a variety of di↵erent forms (from
formal models to informal documentation and manuals); the final vision
is to describe also the PDM in a MOF-compliant fashion.

– Platform-specific model (PSM): Given a PDM, it is possible to map the
PIM into a PSM, i.e., a model that expresses the PIM in terms of the
concrete platform chosen for the implementation of the application. The
level of abstraction of the PSM is not standardized and may vary from
concrete implementations that can already be executed to lower-level
PIMs that need further transformation.

• Multi-stage transformations and action languages: MDA fosters the use
of subsequent model-to-model transformations (e.g., from PIM to PSM),
model-to-code transformations, model markings to guide the transforma-
tion process, and action languages that are similar to model-based pro-

Computation-independent model (CIM)

Platform-specific model (PSM)

Code

Platform-independent model (PIM)

Automatic transformation

Automatic transformation

Automatic transformation

Platform description
model (PDM)

based on

Fig. 4.2 Models and transformations in the Model-Driven Architecture (MDA) [195].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.2 Model-Driven Design 83

Architecture-centric model

Code

Automatic transformation
Code generation

templates
uses

Fig. 4.3 The ingredients of architecture-centric model-driven software development
(AC-MDSD) according to Stahl and Völter [256].

UML profile specifically tailored to the needs of the particular family of ap-
plications to be supported. The necessary model-to-code transformation is
achieved via suitable code generation templates able to generate the infras-
tructure code of the generative software architecture. The architecture-centric
model is very focused on the infrastructural aspects of the application to be
developed and does not provide means for the modeling and automatic gener-
ation of custom, application-specific application code. Custom functionality
must be implemented manually by the developer and can typically be plugged
in in the form of instances of specific architectural components, e.g., a web
service or Java Bean.

This strong focus on infrastructural elements and the treatment of cus-
tom application logic as black boxes emphasizes the suitability of AC-MDSD
for the development of entire software families, such as EJB- or CORBA-
based client-server applications and web applications, rather than individual
products.

A very good example of AC-MDSD in practice is WebRatio (http:
//www.webratio.com/), an Eclipse-based engineering platform and mod-
eling tool for the model-driven development of Java-based, data-intensive
web applications. WebRatio is based on EJBs and an extended Model-View-
Controller (MVC) architecture, which allows the modular management of
typical web application concerns. The modeling tool is based on the Web
Modeling Language (WebML) [69], a platform-independent modeling lan-
guage featuring constructs such as pages, hyperlinks, content units (render-
ing content inside a web page), operation units (processing and manipulating
data), web service units (invoking remote web services), and similar. All units
have an optimized reference implementation (in the form of EJBs), which only
needs to be instantiated at runtime for each individual web application. This
instantiation is achieved by generating (among other artifacts) suitable XML
descriptors for each instance of unit in the WebML model, which can be
read and interpreted by the respective reference implementation at runtime
in order to provide the functionality expressed in the WebML model. The
initial versions of WebRatio featured an XSLT-based code generator, while
the latest version of the tool natively implements the code generation logic
in Java (according to the developers of WebRatio, for performance reasons).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

84 4 Model-Driven Software Development

4.3 Metamodeling

The centerpiece of MDSD are the models that are used to design applica-
tions in a graphical manner. Metamodeling is the activity that is concerned
with the design of the modeling languages that actually enable the abstract
development approach that characterizes MDSD. Good modeling languages
contain fundamental conceptual, domain, and technological knowledge re-
garding the development of their target applications and represent the core
value of MDSD. Without sensibly and purposefully designed modeling lan-
guages, MDSD would not be useful. It is therefore of utmost importance that
developers put the necessary e↵ort – and competence – into the design of
their modeling languages, especially if we consider that modeling languages
typically do not change fast over time and are designed to support the devel-
opment of multiple applications on top of a same platform infrastructure.

4.3.1 The metalevels

A model, e.g., a UML object diagram, describes the structure and nature of
instances, e.g., runtime objects for a given instant of time during the exe-
cution of an application. Similarly, a metamodel describes the structure and
nature of model elements, i.e., model constructs. The prefix “meta” indicates
that we are dealing with models about models. That is, the term is relative,
i.e., referring to the model the metamodel is talking about, not absolute.

In Figure 4.4, we show the four metalevels introduced by the OMG, de-
noted M0, M1, M2, and M3. The metalevel M0 corresponds to concrete run-
time instances of an application; the metalevel M1 to the model of the appli-
cation; the metalevel M2 to the model of the model (the metamodel), i.e., to

Meta-metamodel

Metamodel

Model

InstancesM0

M1

M2

M3

<<instance of>>
describes metamodel

constructs

describes model

constructs

describes

instances

<<instance of>>

<<instance of>>

Fig. 4.4 The four metalevels proposed in OMG’s Meta Object Facility [215].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.3 Metamodeling 85

Meta-metamodel

Metamodel

Model

InstancesM0

M1

M2

M3

<<instance of>>

<<instance of>>

<<instance of>>

PIM 1
metamodel

PIM 2
metamodel

PSM 2
metamodel

PIM 1 PIM 2 PSM 2

<<instance of>> <<instance of>> <<instance of>>

transformation transformation

<<instance of>> <<instance of>> <<instance of>>

Fig. 4.5 Meta levels vs. abstraction levels. Abstraction levels express di↵erent ab-
stractions of a same artifact (the application) at metalevel M1; metalevels express
di↵erent artifacts (instances, model constructs, metamodel constructs).

the specification of the modeling language that can be used in the metalevel
M1; and the metalevel M3 corresponds to the model of the metamodel, i.e.,
to the language that can be used for the specification of metamodels in M2.
The meta-metamodel in M3 is defined in terms of itself, a hierarchy that
can be iterated ad infinitum, without however practical implications in the
context of MDSD.

For instance, OMG’s MDA initiative proposes the use of UML at the met-
alevel M1 (e.g., object diagrams), of UML and UML profiles at metalevel M2
(e.g., class diagrams and UML extensions), and of the Meta Object Facility
(MOF) [215] at the metalevel M3. For metamodels that are not compliant
with the MOF, the metalevel M3 can also be neglected, while the metamodel
of the modeling language for M1 must be described formally, in order for
MDSD to be able to leverage on it.

Before looking at some concrete examples of metamodeling, we would like
to clarify upfront the di↵erence between abstraction levels (CIM vs. PIM vs.
PSM) and metalevels. The former are used to specify di↵erent views on a
same artifact, in order to ease development and to allow the developer to
incrementally focus on di↵erent aspects of the same software project. The
latter are used to specify artifacts that are independent of each other, i.e.,
instances, model constructs, and metamodel constructs. Although at first
glance also the latter might look like some form of “abstractions”, they are
not. A model is an instance of a metamodel; a PSM is a refinement of a PIM.
We graphically illustrate this di↵erence in Figure 4.5.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

86 4 Model-Driven Software Development

4.3.2 Metamodels, MOF and UML profiles

For the concrete specification of a metamodel, there are multiple techniques
that can be used, depending on the desired interoperability and the expected
importance of the metamodel to be developed: generic metamodels, UML
inheritance, MOF-based metamodels, and UML profiles.

4.3.2.1 Generic metamodel

In Figure 4.6 we show a generic metamodel for a finite state machine (FSM)
that reacts to the reception of simple characters in input, causing the FSM
to transition from one state to another without producing any own output in
response. We express the metamodel via a common UML class diagram at the
metalevel M2, yet other formalisms could also be used to express the same
information (e.g., the BNF). According to the metamodel, a FSM comprises
one or more states and a set of transitions with a source and a target state
and an input that triggers them. Two special states, a start state and an end
state further denote the starting and accepting states of the FSM.

source
1..N

Finite state
machine FSM

State Transition

target

0..NStart state

End state

Exactly one start state

and at least one end state.

0..N

0..N

M2

Input

Fig. 4.6 A platform-independent M2 metamodel for a finite state machine with
start and end states. The FSM triggers its transitions upon the reception of an input
character.

The metamodel in the figure is self-contained and does not depend on any
additional formalism beyond UML. It is an instance of the UML metamodel
and, hence, syntactically at metalevel M1 (in terms of UML). However, since
we use it here as metamodel for the definition of our own modeling language,
semantically, that is, from the point of view of MDSD, the metamodel is at
metalevel M2. The model describes all and only those constructs that are
necessary for the modeling of FSMs.

We could have defined a metamodel that is completely at metalevel M2
by specializing the metamodel of UML itself (the so-called base metamodel)
with the constructs necessary to model FSMs (e.g., by specializing the
UML::Class construct). The implication of this choice would have been

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.3 Metamodeling 87

that the resulting modeling language would in principle have the whole ex-
pressive power of UML, if the developer does not restrict himself (or the
modeling tool does so) to using only those constructs of the extended UML
metamodel that indeed refers to FMSs only. That is, specializing the UML
metamodel means inheriting the whole complexity of UML. The benefit of
doing so is a MOF-compliant metamodel and UML tool support.

Independently of which of the two options we choose, it is important to
note that the metamodel contains both modeling constructs and constraints.
In Figure 4.6 we simply use natural language to state that, in order for a
FSM to be correct, it must contain at least one start state and at least one
end state. In the context of UML, the more formal version of this statement
would be expressed in the Object Constraint Language (OCL) [212], which
can also be evaluated by advanced UML MDSD tools to check the expressed
properties. The constructs of the metamodel together with its constraints
define the so-called static semantics of the model.

4.3.2.2 MOF-based metamodel

Instead of specializing the UML metamodel, we can obtain a MOF-compliant
metamodel for our modeling language also if we directly use the MOF to spec-
ify the metamodel. That is, we neglect the whole metamodel of UML and
define our very own metamodel in terms of instances of MOF constructs.
Figure 4.7 depicts a simplified version (without attributes and detailed rela-
tionship descriptions) of the Essential MOF (EMOF) model [215], the core
of the MOF and the starting point for MOF-compliant metamodel specifica-
tions.

Class AssociationProperty

Classifier

Type Operation

StructuralFeature

0..N0..N

0..N

M3

TypeGeneralization

Parameter
MultiplicityElement

TypedElement

Feature TypedElement

MultiplicityElement

0..N 0..N

0..N

superclass

0..N

0..N 0..N

opposite 0..1 0..1

Fig. 4.7 A simplified version of the EMOF package, the core of the MOF [215].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

88 4 Model-Driven Software Development

Figure 4.8 provides an example of how our FSM metamodel could look like
as an instance of the MOF (still using a UML class diagram to instantiate
MOF elements). MOF is at metalevel M3; our metamodel at metalevel M2.

sourceState Transition

target

0..N

Start state

End state

Exactly one start state

and at least one end state.

0..N

MOF::Class

M3

M2

<<instance of>>

MOF::Association

MOF::Property

<<instance of>>

<<instance of>>

Input

<<instance of>>

Fig. 4.8 A metamodel for a FSM defined as instance of the Meta Object Facil-
ity (MOF) [215] with some <<instance of>> relationships highlighted: states and
transitions are instances of MOF::Class, relationships of MOF::Association, and
attributes of MOF::Property.

UML is not the only MOF-compliant modeling language. With the meta-
model in Figure 4.8 we developed our own MOF-compliant modeling lan-
guage. The benefit of doing so comes in the form of well-defined MOF se-
mantics and MOF-related tools and instruments we can reuse, such as MOF-
enabled modeling tools and XMI for the interchange of model instances.
Defining metamodels as MOF instances is typically only used for very big
modeling languages that cover a specific application or technological domain
and that aim to create consensus among multiple partners participating in the
definition of the new modeling language. An example of this is the Common
Warehouse Metamodel (CWM).

4.3.2.3 UML profiles

The use of the MOF allows both the specification of own, custom meta-
models as well as the extension of the base UML metamodel, which itself is
expressed in terms of MOF. Yet, UML also comes with its very own exten-
sion mechanism, UML profiles. Profiles allow the definition of UML-based,
domain-specific modeling languages. Since version 2.0 of UML, profiles are
defined formally as part of the UML metamodel. This means that concrete
profile definitions are at metalevel M1 from a UML point of view, while they
are at metalevel M2 from a MDSD point of view. After all, profiles are meta-
models of modeling languages; it’s just that they are expressed via UML.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.3 Metamodeling 89

Profiles are based on stereotypes, tagged values, and constraints:

• Stereotypes: Stereotypes are UML’s mechanism to extend the basic vo-
cabulary of UML with elements with custom meaning and properties,
starting from the core elements of UML itself (e.g., UML classes). For
instance, in Figure 4.9 we define stereotypes (graphically represented by
the <<stereotype>> adornment) for states and transitions as extensions
of the UML::Class concept. The figure uses the extension relationship
introduced in UML 2.0 for the definition of stereotypes [217].

• Tagged values: A stereotype can have attributes to define additional prop-
erties for new vocabulary elements. Being conceptually expressed at met-
alevel M2, these attributes do not refer to attributes of runtime instances,
but to attributes or properties of the modeling constructs at the M1 level,
i.e., metadata from the point of view of the model. There are di↵erent ways
of rendering tagged values in an M1 model instance, e.g., inside comments
attached to the respective modeling element. The purpose of tagged values
is typically that of providing the code generator with additional instruc-
tions on how to generate code or transform models or to provide means
for configuration management.

• Constraints: As for all metamodels in general, also profiles allow the use of
OCL for the specification of static constraints further refining the possible
use of the modeling constructs at metalevel M1.

<<stereotype>>

State
<<stereotype>>

Transition

There must be

exactly one start

state and at least

one end state.

<<metaclass>>

Class

M2

UML 2.0

extension

relationship

<<metaclass>>

Association

Must have one

property of type Input

<<stereotype>>

Input

<<metaclass>>

Property

<<stereotype>>

Start state
<<stereotype>>

End state
Connects

only states

Fig. 4.9 A metamodel for a FSM defined as UML 2.0 profile. Syntactically, UML
profiles are at the metalevel M1, yet semantically they are at metalevel M2, as profiles
specialize the UML metamodel (e.g., UML::Class).

The simple UML profile in Figure 4.9 expresses our metamodel of the FSM
by means of stereotypes and constraints that extend metaclasses of the UML
base model with custom meaning. The fact that transitions have a source and
a target state is expressed (i) implicitly by extending the UML association
element, which represents a relationship among two classes, and (ii) explicitly

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

90 4 Model-Driven Software Development

Class AssociationProperty

RelationshipClassifier

TypeOperation

StructuralFeature

0..N0..N

superclass

1..N

M2

0..N

0..N

0..1
0..1

0..N

0..1
0..N

Fig. 4.10 A simplified excerpt of the Classes diagram of the Constructs package of
the UML metamodel [217], the starting point for the definition of UML profiles.

by the constraint that limits transitions to connect only states. Associations
may further have properties; the second constraint of the transitions requires
each instance of a transition to have one input property.

Knowing the available UML constructs (defined in the Constructs package
of the UML specification [217]), i.e., its metaclasses, allows the definition of
relatively concise UML profiles to express metamodels. In Figure 4.10, we
show a very simplified excerpt of the UML metamodel, which is the reference
for the profile in Figure 4.9. UML profiles are typically used to define modeling
languages for limited domains. UML tools partly support profiles and are able
to enforce OCL constraints at modeling time.

4.3.3 Modeling syntax

The last ingredient for the specification of a modeling language is the syntax
of the language. While the metamodel expresses which modeling constructs
the language can use and the respective static semantics (two core conceptual
ingredients), the syntax is the “user interface” of the modeling language.
Just like for any other graphical formalism, the choice of how to visualize
modeling constructs strongly a↵ects the readability and understandability of
the modeling language and, hence, determines its success.

We specifically focus on the graphical modeling syntax a developer may
use inside a modeling tool. Of course, all the models designed by the de-
veloper also require an equivalent serialization for their persistent storage,
e.g., inside a model repository. In the context of MOF-compliant modeling
languages, this serialization could be XMI, which provides the mapping of
MOF constructs to XML already for free. However, also formats that are
di↵erent from XMI could be used for this purpose, depending on the specifics
of each individual MDSD project. We do not want to provide any restriction

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.3 Metamodeling 91

regarding the serialization of models; however, XML-based formats typically
facilitate the last step in the MDSD process, i.e., code generation, which we
talk about in the next section.

4.3.3.1 Abstract syntax

The first approach to assign a syntax to a metamodel like the one of our FSM,
is to use a UML object diagram, which allows the representation of instances
of metamodel elements. For example, in Figure 4.11 we model a state machine
with four states (S1-S4) and four transitions (T1-T4), respectively triggered
by the inputs “a”, “b”, “c”, and “d”. S1 is a start state; S4 an end state, S2
and S3 are intermediate states.

S1 :
Start state

S2 :
State

S3 :
State

: Transition

: Transition

: Transition

: Transition
S4 :

End state

M1

source target source

target

source

target

source target

a : Input

b : Input

c : Input

d : Input

Fig. 4.11 A model instance of the finite state machine defined in Figure 4.6 using a
UML object diagram as modeling syntax.

It is clear that the object diagram notation allows a developer to develop
an M1 model instance, but it is also relatively evident that this notation is
neither intuitive nor very expressive. The object diagram in fact still provides
only an abstract syntax to a modeling language.

4.3.3.2 Concrete syntax

In Figure 4.12, instead, we used a more intuitive and conventional syntax to
model a FSM, i.e., circles for states, directed arrows for transitions, labels
for the inputs for transitions, a node with a transition without source node
for the start node, and a circle with double borders for the end node. It is
self-evident that this kind of syntax is much more suitable to the domain of
finite state machines and that the right graphical notation improves model

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

92 4 Model-Driven Software Development

S1

S2

S3

S4

a

b
c

d

end state

identifies start state

transition

input

Fig. 4.12 A model instance of the finite state machine defined in Figure 4.6 using
an own, more intuitive modeling syntax.

readability and understandability. We call a syntax that defines a domain-
specific modeling notation for each modeling construct a concrete syntax.

Another example of expressive concrete syntax is represented by WebML
[69], which represents web pages as rectangular boxes, which contain content
units represented as boxes with icons that recall the visualization format
of content (e.g., lists or checkboxes). Hyperlinks are represented as arrows
connecting pages and units, and so on.

4.4 From the Model to the Application

As explained in the beginning of this chapter, the goal of MDSD is not just to
use models as application specifications that aid manual development but to
leverage on models to automate some of the manual work by the developer.
The two types of work that can be automated are model transformations and
code generation. The former refers to the transformation from one model into
another model, e.g., from a PIM to a PSM or from one PIM to another PIM.
The latter refers to the generation of application code out of a given model
(typically the PSM or in some cases also the PIM).

4.4.1 Model-to-model transformations

OMG’s MDA proposal with its various levels of abstraction (PIM, PSM,
PDM) subsumes a development process that starts from the PIM (or CIM),
refines such into a PSM with the help of a PDM, and finally into application
code. That is, the idea of transforming one model into another, typically
an abstract model into a less abstract one, is an integral part of the MDA
proposal. AC-MDSD, instead, is typically based on one single application
model and does not foresee the use of model-to-model transformations.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

94 4 Model-Driven Software Development

Application

Platform

Individual
code

Application
model

Repetitive
code

Code
generator

Generation
templates

Generative architecture

usesConfigura-
tion files

Infrastructure componentsInfrastructure componentsInfrastructure components

Fig. 4.13 The typical MDSD code generation process based on code templates.
Depending on the platform features and the modeled application, either configuration
files or code or both are generated; individual code may be plugged in manually.

as composed of all those code artifacts and software components (e.g., data
access APIs, technology adapters, data transformers, user interface gener-
ation logic, etc.) that are reusable inside the domain of a whole family of
applications. The opportunity to reuse artifacts and components in the de-
velopment of multiple applications of a same family justifies the investment
in the development of the platform in the first place.

As a consequence, generating code from a model is not as naive as to gen-
erate the complete code of the application specified in a model from scratch.
A large part of is functionalities is already available as reusable components
inside the target platform, and the code generation process only needs to
provide these components with suitable configuration settings and/or to gen-
erate code that makes use of them.

As illustrated in Figure 4.13, there is generally however an additional kind
of artifact that requires our attention: individual code, i.e., custom code and
functionality, which can be programmed manually and plugged into the ap-
plication to be generated. Especially in the context of AC-MDSD, where the
focus of the modeling e↵ort is on the careful selection and configuration of
readily available architectural elements, it is not given for granted that all
application capabilities expressed in the model are already supported by the
underlying platform. In order to overcome possible lacks of functionality, both
the platform and the model must support suitable extensibility mechanisms,
which allow the developer to plug in custom application logic. The final vi-
sion of MDA with its support for executable UML, instead, would allow the
developer to specify any kind of application logic in the model and to gener-
ate the respective code from it, practically turning the model into code. Yet,
this vision is not yet reality, and we are not sure it will ever become.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

4.5 Summary and Bibliographic Notes 97

4.5 Summary and Bibliographic Notes

We summarize the key concepts as illustrated in Figure 4.14. A model is an
instance of a metamodel, which, in turn, is an instance of a meta-metamodel.
That is, the meta-metamodel tells how to construct a metamodel; the meta-
model tells how to construct a model. The metamodel assumes a key role
in the MDSD process, in that it is the basis for the design of the modeling
language used to develop models. It has an abstract syntax and static se-
mantics. The abstract syntax specifies how the modeling language’s structure
looks like. The modeling language has a concrete syntax, which realizes the
abstract syntax and provides it with concrete constructs (e.g., XML elements,
graphical constructs, textual instructions, or similar). The concrete syntax is
what the parser of a model transformer or interpreter reads, the abstract
syntax expresses how they structure the parsed model internally (in mem-
ory). The static semantics of the metamodel defines the requirements for the
well-formedness of models (e.g., that a content unit construct can only occur
inside a page construct). The dynamic semantics of the modeling language
defines how models are processed and eventually turned into applications,
a logic the developer must intimately know in order to be able to correctly
express a target application via a model.

We discussed MDSD in this chapter, since MDSD is the basis for many
mashup tools and platforms and discussing them, first of all, requires the nec-
essary understanding of MDSD principles. We have seen that a well-designed
MDSD approach comes with the power of alleviating the developer from
some development tasks (typically, the most repetitive and annoying ones)
and speeding up development. However, MDSD does not come without prob-

Meta-
metamodel

Metamodel

Model

<<instance of>>

<<instance of>>

Abstract syntax
Static

semantics

Concrete
syntax

Modeling
language

Dynamic
semantics

has

has

expressed in

complies with
gets meaning from

has

has

extendsbased on

defined on

Fig. 4.14 Summary of the key concepts of MDSD.

