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Fig. 4.1 The different schemas in the conceptual modeling stack for database design.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.



Computation-independent model (CIM) . .
>Automat1c transformation

Platform-independent model (PIM) : . based on | Platform description
>Automatlc transformation -~ - > model (PDM)

Platform-specific model (PSM)

:>Automatic transformation
Code

Fig. 4.2 Models and transformations in the Model-Driven Architecture (MDA) [195].
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Fig. 4.3 The ingredients of architecture-centric model-driven software development
(AC-MDSD) according to Stahl and Volter [256].
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Fig. 4.4 The four metalevels proposed in OMG’s Meta Object Facility [215].
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Fig. 4.5 Meta levels vs. abstraction levels. Abstraction levels express different ab-
stractions of a same artifact (the application) at metalevel M1; metalevels express
different artifacts (instances, model constructs, metamodel constructs).
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Fig. 4.6 A platform-independent M2 metamodel for a finite state machine with
start and end states. The FSM triggers its transitions upon the reception of an input
character.
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Fig. 4.7 A simplified version of the EMOF package, the core of the MOF [215].
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Fig. 4.8 A metamodel for a FSM defined as instance of the Meta Object Facil-
ity (MOF) [215] with some <<instance of>> relationships highlighted: states and
transitions are instances of MOF: :Class, relationships of MOF: :Association, and
attributes of MOF: :Property.
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Fig. 4.9 A metamodel for a FSM defined as UML 2.0 profile. Syntactically, UML
profiles are at the metalevel M1, yet semantically they are at metalevel M2, as profiles

specialize the UML metamodel (e.g., UML: :Class).
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Fig. 4.10 A simplified excerpt of the Classes diagram of the Constructs package of
the UML metamodel [217], the starting point for the definition of UML profiles.
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Fig. 4.11 A model instance of the finite state machine defined in Figure 4.6 using a
UML object diagram as modeling syntax.
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Fig. 4.12 A model instance of the finite state machine defined in Figure 4.6 using
an own, more intuitive modeling syntax.
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Fig. 4.13 The typical MDSD code generation process based on code templates.
Depending on the platform features and the modeled application, either configuration
files or code or both are generated; individual code may be plugged in manually.
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Fig. 4.14 Summary of the key concepts of MDSD.
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