
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 5
Mashup Components

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

104 5 Mashup Components

the development of mashups is a component like the one modeled in Figure
5.1, which supports the reuse of either data or business logic (via a dedicated
operation), a piece of user interface, or both.

Component

Operation User interface

0..N
{or}

0..1

Fig. 5.1 The most basic component model consists of either one operation that can
be invoked or of a piece of UI that can be rendered, or of both.

Whether a component supports just operations, also UIs, or only UIs, as
well as which kinds of operations (e.g., synchronous vs. asynchronous opera-
tions), which UI formatting logic, etc. depends on the individual component
technology chosen to implement the component. We will see in the follow-
ing sections how each component technology expands this basic component
model, implementing di↵erent logics and interaction paradigms.

The conceptual models we use in this chapter aim to highlight commonalities
and di↵erences of the various component technologies. Part of this goal is also
the establishment of a common terminology to describe the technologies. We
particularly focus on the core, underlying concepts and principles and on
those aspects that a↵ect their use, especially in the light of the integration
needs of mashups. As such, the models presented in this chapter provide a
conceptual, usage-oriented view without the claim of completeness regarding
low-level technicalities or component-internal properties. The models should
also not be interpreted as meta-models of component description languages,
such as WSDL [75] or WADL [135], a topic we also touch in this chapter.

5.2.2 Component characteristics

Given the large variety of available component technologies, it is not trivial
to bring them all under one hood. This exercise requires identifying a set of
characteristic dimensions that allow us to compare technologies on a common
ground. Next, we introduce a set of dimensions that we think allow us to ad-
equately characterize component technologies, while in the following sections
we use them to actually describe concrete technologies.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.3 Logic Components 113

Message

Request-response
operation

Solicit-response
operation

Schema

complies with

1..N

0..1 0..1 0..1 0..1

has fault

Web service

Name

Endpoint

Protocol binding

Operation

Name

has output
has input

has
input

has output

1..N

The service's

business protocol

specifies the order

in which operations

can be invoked.

For synchronous

communications

For asynchronous

communications

One-way
operation

Notification
operation

has input0..1 0..1 has output

Fig. 5.2 Conceptual model of a web service consisting of a set of four di↵erent types
of message-based operations.

The former two operations provide support for synchronous transmission
styles, the latter two for asynchronous styles. The semantics of each operation
is decided by the web service (by its developer) and can usually be derived
from an operation’s name and input/output messages. Each of the messages
sent by either the web service or its client complies with a schema that is
given by the web service and describes how data are to be formatted to be
compatible with the web service. We use the term schema, as the payload of
the messages is typically an XML dialect (such as SOAP itself). That is, the
media type of the service is discrete; streaming is not supported (if not in
the form of sequences of discrete events, i.e., multiple notifications).

Regarding the instantiation model of web services, both stateless and state-
ful models are supported and only depend on the web service’s internal im-
plementation. Stateless web services, though, are not able to take action
autonomously, that is, they do not support solicit-response and notification
operations. Stateful web services support all four types of operations and
may require the addition of correlation information to the input messages of
request-response and one-way operations, in order to tell which instance of
the web service the specific invocation is referring to (in the presence of state-
ful components, we always must assume there are multiple instances running
in parallel on the same server).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.3 Logic Components 115

Get operation

Delete operation

Post operation

Put operation

RESTful
web service

Name

Entry point

Representation

Media type

1..N1..N

complies
with1..N

Link
Schema

Resource

Name
URL

HTTP operation

HTTP status code

renders

contains

references

0..N

1..4

supports

produces
consumes

0..1

produces

0..1

0..N

reads

creates

updates

deletes

Message

complies
with

0..N

0..N

The business protocol is

discovered incrementally by

navigating links to resources.

0..1

0..1

Fig. 5.3 Model of a RESTful web service delivering representations of and manipu-
lating resources in response to standard HTTP requests.

The best example of RESTful web services is, interestingly, a common web
application. It typically manages a set of resources in its internal database
and business logic. What is visible from the outside are the HTML pages sent
from the server to the client; these are the representations of the resources.
The pages contain hyperlinks, which allow the user to navigate from one page
to another, carrying over state information either in the query of the link
itself (which corresponds to an HTTP Get operation) or in the body of the
request sent to the client (which corresponds to an HTTP Post operation). A
RESTful web service is very similar to a web application, with the di↵erence
that it is not oriented toward human users but machines and, therefore, its
responses are rather formatted in XML or JSON, instead of HTML.

Figure 5.3 illustrates our conceptual view on RESTful web services, which
we identify by a name and an entry point (typically, a URL). As explained in
the example, a RESTful service is composed of two key ingredients: resources
and representations. The resources are the actual assets managed and made
available by the service. A flight booking service manages, for example, flights,
bookings, payments, and customers. Which exact resources a RESTful web
service uses internally we do not really know. What we know from the outside
are the representations of the resources that are made accessible via the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

118 5 Mashup Components

JavaScript file

Name
URL

JavaScript API

Name
Homepage

0..N

has

1..N

deployed as

0..N

Object

Name

Event

Function

0..N

0..N

Parameter

Name
Type

has 0..N

0..N consumes

declared in

1..N

produces

Event handler consumes

0..Nhas

0..N

For asynchronous

communications

produces

For synchronous

communications

User interface

0..1 0..N

controls

Fig. 5.4 Model of a typical JavaScript API. The gray shaded entity is not part of the
actual component model; it tells which artifacts the developer must deploy, in order
to be able to use the library. Pure logic components do not have a user interface.

well-known JQuery library for fast DOM processing and dynamically format-
ting HTML inside the browser is a good example of a library.

JavaScript libraries are also a good means to overcome lacking or non-
standard browser implementations of JavaScript APIs. For instance, sup-
port by the various web browsers for the new features introduced in HTML
5, i.e., for some of its APIs, is still weak or non-standard across browsers.
This fact has, for instance, led to the development of Modernizr (http:
//modernizr.com/), a very powerful JavaScript library that is able to
tell which HTML 5 and CSS 3 features are supported by a browser and to
dynamically load JavaScript libraries to backfill missing functionalities.

JavaScript APIs and libraries are components that are local to the client
(the web browser) and that may require installation. Typically, browser APIs
are built-in and directly available in the browser’s JavaScript runtime envi-
ronment. Libraries, instead, need installation on the client, so as to be avail-
able in the JavaScript runtime environment. In Figure 5.4, we highlight client-
side artifacts graphically with a gray shaded entity, in order to distinguish
them from the actual component model. In practice, the the installation of
the JavaScript library requires either downloading the respective JavaScript
file form the libraries home page and installing it locally on the own web
server or it is enough to simply link the file via its URL. Once installed, there
is no di↵erence between APIs and libraries.

An API comes in the form of one or more JavaScript objects (a library
may optionally also have an own UI; we treat this case when discussing user
interface components). The objects have functions that allow invocations via
local procedure calls (actually, function calls), but, given JavaScripts native
event-based flavor, objects may also handle and launch events for event-based
communications. This means that JavaScript APIs/libraries support both

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

122 5 Mashup Components

<rss version="2.0">
<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Liftoff to Space Exploration.</description>
...
<item>

<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
<description>

How do Americans get ready to work with Russians aboard the
International Space Station? They take a crash course in culture,
language and protocol at Russia’s
Star City.

</description>
<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>

</item>
...

</channel>
</rss>

Fig. 5.5 An excerpt of the RSS 2.0 news example by the RSS Advisory Board
(http://www.rssboard.org/files/sample-rss-2.xml).

RSS feed

Name

Entry point

Representation

MediaType {="application/rss+xml"}

Schema {="RSS Specification"}

renders

Get
operationsupports

produces

reads

The media type

and the schema are

fixed by the RSS

specification.

Resource

Name

URL

0..1

Fig. 5.6 The model of an RSS feed is simplified version of the model we presented
for RESTful web services (see Figure 5.3).

description are required elements, while language, publication date, image,
and similar are optional elements.

The distribution convention is that the providers of a publicly available
feed allow consumers of their feed to freely access and redistribute it and to
include it in the consumers’ own web sites without requiring them to ask for
any permission. Commonly, RSS feeds do therefore not provide complete con-
tent in their items (e.g., a full newspaper article) and rather publish the title
and an excerpt of it and link the reader to the provider’s own web site (e.g.,
the newspaper web site), which may have its own content reuse and licensing
rules. For example, the listing in Figure 5.5 shows a self-explaining excerpt
of the RSS example provided by the RSS Advisory Board, the group of peo-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

122 5 Mashup Components

<rss version="2.0">
<channel>
<title>Liftoff News</title>
<link>http://liftoff.msfc.nasa.gov/</link>
<description>Liftoff to Space Exploration.</description>
...
<item>

<title>Star City</title>
<link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
<description>

How do Americans get ready to work with Russians aboard the
International Space Station? They take a crash course in culture,
language and protocol at Russia’s
Star City.

</description>
<pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
<guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>

</item>
...

</channel>
</rss>

Fig. 5.5 An excerpt of the RSS 2.0 news example by the RSS Advisory Board
(http://www.rssboard.org/files/sample-rss-2.xml).

RSS feed

Name

Entry point

Representation

MediaType {="application/rss+xml"}

Schema {="RSS Specification"}

renders

Get
operationsupports

produces

reads

The media type

and the schema are

fixed by the RSS

specification.

Resource

Name

URL

0..1

Fig. 5.6 The model of an RSS feed is simplified version of the model we presented
for RESTful web services (see Figure 5.3).

description are required elements, while language, publication date, image,
and similar are optional elements.

The distribution convention is that the providers of a publicly available
feed allow consumers of their feed to freely access and redistribute it and to
include it in the consumers’ own web sites without requiring them to ask for
any permission. Commonly, RSS feeds do therefore not provide complete con-
tent in their items (e.g., a full newspaper article) and rather publish the title
and an excerpt of it and link the reader to the provider’s own web site (e.g.,
the newspaper web site), which may have its own content reuse and licensing
rules. For example, the listing in Figure 5.5 shows a self-explaining excerpt
of the RSS example provided by the RSS Advisory Board, the group of peo-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.4 Data Components 123

Get operation

Delete operation

Post operation

Put operation

Atom feed

Name

Entry point

Representation

MediaType {="application/atom+xml"}

Schema {="Atom Syndication Format"}

1..N1..N

Link

Resource

Name
URL

HTTP operation

HTTP status code

renders

contains

references
0..N

1..N

supports
produces

consumes

0..1

produces

0..N

reads

creates

updates

deletes

Message

Schema {="Atom

Syndication Format"}

The media type and the schema

are fixed by the Atom Syndication

Format standard.

0..1

The business protocol is regulated by the

Atom Publishing Protocol specification

Fig. 5.7 The model of an Atom feed including the features specified in the Atom
Publishing Protocol is that of a RESTful web service with schema and media type
restrictions.

ple that publishes and maintains the RSS specifications (there are di↵erent
versions of the specification).

We describe the model of RSS feeds in Figure 5.6. An RSS feed is essen-
tially a RESTful web service that has one resource (the channel) and that
implements only one of the standard HTTP operations, i.e., the Get opera-
tion. This operation allows the consumer of a feed to obtain the representation
of the channel, which is formatted according to the RSS specification. There
is an own media type for RSS feeds (application/rss+xml). We omit the
HTTP status code entity from the model, since status codes are not managed
by the RSS feed itself; the codes a consumer of the feed gets are generated
by the web server.

Therefore, all the properties that hold for RESTful web services also hold
for RSS feeds, except those that refer to the incremental discovery of the ser-
vice’s protocol (in RSS the links are only links referencing external resources,
not own resources of the feed), the use of operations (we only have the Get
operation), and the media type and schema (which are fixed for RSS feeds).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

126 5 Mashup Components

The interactive point-and-click data extraction canvas allowing the
user to select and deselect HTML elements for data extraction

A preview of the data that can be extracted from the
source web page with the user's current selection

The list of identified and named
data items to be extracted

Overview of the
steps of the data
extraction process

Selected content to be extracted

Fig. 5.8 Screen shot of the Dapper content extraction tool in action: interactive
extraction of data from the New York Times web site and publication as RSS feed.

current selection and add it to the list of data items to be extracted (at
the right hand side in the figure). Once all data items of interest have been
identified and named, Dapper allows the user to view a preview of the final
result and to publish the extracted content in a variety of formats, e.g., as
XML, RSS or even as Google gadget (see Section 5.5.3).

5.4.5 Micro-formats and linked data

Recognizing the value of the data that is published inside common HTML-
formatted web pages, the lack of adequate data structures in HTML markup
(allowing, for instance, a crawler to extract data from web pages), and the
di�culty of providing suitable data components for all data published on
the Web, a compromise emerged: micro-formats. Micro-formats [12] extend

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.4 Data Components 127

<div class="vcard">
<div class="fn n">

Daniel
Florian

</div>
<div class="org">University of Trento</div>
Via Sommarive 5,
38123
Povo (TN),
Italy

</div>

Fig. 5.9 An excerpt of HTML markup annotated with the hCard micro-format for
annotating contact details. hCard uses class names to identify its elements.

HTML with annotation constructs that superimpose data structures and
meaning on top of HTML-formatted data elements, easing the extraction
of data items from web pages. That is, micro-formats extend HTML with
meta-data that can be used to guide the data extraction process.

There are at least three di↵erent techniques to define micro-formats (actu-
ally, the name “micro-format” is specific only to the first of these, but we use
the term to refer to all of the specifications collectively): micro-formats, an
open community e↵ort for the definition of open standards for micro-formats
(http://microformats.org/); microdata, a set of annotation tags intro-
duced by the W3C witch HTML 5 [145]; and RDF annotations, an annotation
technique based on a lightweight RDF annotation format (RDFa) [4].

Many di↵erent annotation vocabularies, i.e., reference specifications that
assign meaning (semantics) to annotations, exist, e.g., for events, organiza-
tions, people, products, movies, and the like. Schema.org (http://schema.
org/) is, for instance, an initiative by Bing, Google, Yahoo! and Yandex that
aims to provide a set of reference vocabularies, but developers are also free
to use their very own vocabularies.

The HTML markup code in Figure 5.9, for instance, has been anno-
tated with the hCard micro-format (http://microformats.org/wiki/
hcard), which is tailored to the annotation of contact information embed-
ded in common web pages. The micro-format is a one-to-one representation
of the vCard business card format defined by the IETF [101]. As the exam-
ple shows, the micro-format does not alter the actual HTML formatting of
the content and instead uses class names to identify data items and to give
meaning to them, according to the hCard vocabulary.

Another way of publishing data on the Web that is currently gaining mo-
mentum is linked data [39, 137, 44] (also called Linking Open Data, LOD).
The idea of linked data is to create a network of interlinked data items, in
which related items refer to each other via links that can be navigated and
that allow one to easily find related data, given one data item. Data items (or
things) are identified by URIs, HTTP URIs dereference things, dereferenced
things are described in RDF [236], and the RDF description contains links to
other things on the Web. RDFa [4] provides for the definition of linked data

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

128 5 Mashup Components

A
s

of
 S

ep
te

m
be

r
20

11

M
us

ic
B
ra

in
z

(z
it
gi

st
)

P2
0

Tu
ri
sm

o
de

Z
ar

ag
oz

a

yo
vi

st
o

Ya
ho

o!

G
eo

Pl
an

et

YA
G

O

W
or

ld

Fa
ct

-
bo

ok

El

V
ia

je
ro

To
ur

is
m

W
or

dN
et

(W

3C
)

W
or

dN
et

(V

U
A
)

V
IV

O
 U

F

V
IV

O

In
di

an
a

V
IV

O

C
or

ne
ll

V
IA

F

U
R
I

B
ur

ne
r

S
us

se
x

R
ea

di
ng

Li

st
s

Pl
ym

ou
th

R
ea

di
ng

Li

st
s

U
ni

R
ef

U
ni

Pr
ot

U
M

B
EL

U
K
 P

os
t-

co
de

s

le
gi

sl
at

io
n

da
ta

.g
ov

.u
k

U
be

rb
lic

U
B

M
an

n-
he

im

TW
C
 L

O
G

D

Tw
ar

ql

tr
an

sp
or

t
da

ta
.g

ov
.

uk

Tr
af

fic

S
co

tl
an

d

th
es

es
.

fr

Th
es

au
-

ru
s

W

to
tl
.n

et

Te
le

-
gr

ap
hi

s

TC
M

G
en

e
D

IT

Ta
xo

n
C
on

ce
pt

O
pe

n
Li

br
ar

y
(T

al
is

)

ta
gs

2c
on

de

lic
io

us

t4
gm in
fo

S
w

ed
is

h
O

pe
n

C
ul

tu
ra

l
H

er
it
ag

e

S
ur

ge

R
ad

io

S
ud

oc

S
TW

R
A
M

EA
U

S
H

st
at

is
ti
cs

da
ta

.g
ov

.
uk

S
t.

A
nd

re
w

s
R
es

ou
rc

e
Li

st
s

EC
S

S
ou

th
-

am
pt

on

EP
ri
nt

s

S
S
W

Th

es
au

r
us

S
m

ar
t

Li
nk

S
lid

es
ha

re
2R

D
F

se
m

an
ti
c

w
eb

.o
rg

S
em

an
ti
c

Tw
ee

t

S
em

an
ti
c

X
B
R
L

S
W

D
og

Fo

od

S
ou

rc
e

C
od

e
Ec

os
ys

te
m

Li

nk
ed

 D
at

a

U
S
 S

EC

(r
df

ab
ou

t)

S
ea

rs

S
co

tl
an

d
G

eo
-

gr
ap

hy

S
co

tl
an

d
Pu

pi
ls

 &
Ex

am
s

S
ch

ol
ar

o-
m

et
er

W
or

dN
et

(R

K
B

Ex
pl

or
er

)

W
ik

i

U
N

/
LO

C
O

D
E

U
lm

EC
S

(R
K
B

Ex
pl

or
er

)

R
om

a

R
IS

K
S

R
ES

EX

R
A
E2

00
1

Pi
sa

O
S

O
A
I

N
S
F

N
ew

-
ca

st
le

LA
A
S

K
IS

TI

JI
S
C

IR
IT

IE
EE

IB
M

Eu
ré

co
m

ER
A

eP
ri
nt

s
do

tA
C

D
EP

LO
Y

D
B
LP

(R

K
B

Ex
pl

or
er

)

C
ri
m

e
R
ep

or
ts

U

K

C
ou

rs
e-

w
ar

e

C
O

R
D

IS

(R
K
B

Ex
pl

or
er

)
C
it
eS

ee
r

B
ud

ap
es

t

A
C
M

ri
es

e

R
ev

yu

re
se

ar
ch

da
ta

.g
ov

.
uk

R
en

.
En

er
gy

G

en
er

a-
to

rs

re
fe

re
nc

e
da

ta
.g

ov
.

uk

R
ec

ht
-

sp
ra

ak
.

nl

R
D

F
oh

lo
h

La
st

.F
M

(r

df
iz

e)

R
D

F
B
oo

k
M

as
hu

p

R
åd

at
a

nå
!

PS
H

Pr
od

uc
t

Ty
pe

s
O

nt
ol

og
y

Pr
od

uc
t

D
B

PB
A
C

Po
ké

-
pé

di
a

pa
te

nt
s

da
ta

.g
o

v.
uk

O
x

Po
in

ts

O
rd

-
na

nc
e

S
ur

ve
y

O
pe

nl
y

Lo
ca

l

O
pe

n
Li

br
ar

y

O
pe

n
C
yc

O
pe

n
C
or

po
-

ra
te

s

O
pe

n
C
al

ai
s

O
pe

nE
I

O
pe

n
El

ec
ti
on

D

at
a

Pr
oj

ec
t

O
pe

n
D

at
a

Th
es

au
-

ru
s

O
nt

os

N
ew

s
Po

rt
al

O
G

O
LO

D

Ja
nu

s
A
M

P

O
ce

an

D
ri
lli

ng

C
od

ic
es

N
ew

Yo

rk

Ti
m

es

N
V
D

nt
nu

sc

N
TU

R
es

ou
rc

e
Li

st
s

N
or

w
e-

gi
an

M

eS
H

N
D

L
su

bj
ec

ts

nd
ln

a

m
y

Ex
pe

ri
-

m
en

t

It
al

ia
n

M
us

eu
m

s

m
ed

u-
ca

to
r

M
A
R
C

C
od

es

Li
st

M
an

-
ch

es
te

r
R
ea

di
ng

Li

st
s

Lo
ti
co

W
ea

th
er

S
ta

ti
on

s

Lo
nd

on

G
az

et
te

LO
IU

S

Li
nk

ed

O
pe

n
C
ol

or
s

lo
bi

d
R
es

ou
rc

es

lo
bi

d
O

rg
an

i-
sa

ti
on

s

LE
M

Li
nk

ed
M

D
B

Li
nk

ed
L

C
C
N

Li
nk

ed
G

eo
D

at
a

Li
nk

ed
C
T

Li
nk

ed
U

se
r

Fe
ed

ba
ck

LO
V

Li
nk

ed

O
pe

n
N

um
be

rs

LO
D

E

Eu
ro

st
at

(O

nt
ol

og
y

C
en

tr
al

)

Li
nk

ed

ED
G

A
R

(O
nt

ol
og

y
C
en

tr
al

)

Li
nk

ed

C
ru

nc
h-

ba
se

lin
gv

oj

Li
ch

fie
ld

S
pe

n-
di

ng

LI
B
R
IS

Le
xv

o

LC
S
H

D
B
LP

(L

3S
)

Li
nk

ed

S
en

so
r

D
at

a
(K

no
.e

.s
is

)

K
la

pp
-

st
uh

l-
cl

ub

G
oo

d-
w

in

Fa
m

ily

N
at

io
na

l
R
ad

io
-

ac
ti
vi

ty

JP

Ja
m

en
do

(D

B
tu

ne
)

It
al

ia
n

pu
bl

ic

sc
ho

ol
s

IS
TA

T
Im

m
i-

gr
at

io
n

iS
er

ve

Id
R
ef

S
ud

oc

N
S
Z
L

C
at

al
og

H
el

le
ni

c
PD

H
el

le
ni

c
FB

D

Pi
ed

m
on

t
A
cc

om
o-

da
ti
on

s

G
ov

Tr
ac

k

G
ov

W
IL

D

G
oo

gl
e

A
rt

w

ra
pp

ergn
os

s

G
ES

IS

G
eo

W
or

d
N

et

G
eo

S
pe

ci
es

G
eo

N
am

es

G
eo

Li
nk

ed
D

at
a

G
EM

ET

G
TA

A

S
TI

TC
H

S
ID

ER

Pr
oj

ec
t

G
ut

en
-

be
rg

M
ed

i
C
ar

e

Eu
ro

-
st

at

(F
U

B
)

EU
R
ES

D
ru

g
B
an

k

D
is

ea
-

so
m

e

D
B
LP

(F

U

B
er

lin
)

D
ai

ly
M

ed

C
O

R
D

IS
(F

U
B
)

Fr
ee

ba
se

fli
ck

r
w

ra
pp

r

Fi
sh

es

of
 T

ex
as

Fi
nn

is
h

M
un

ic
i-

pa
lit

ie
s

C
hE

M
B
L

Fa
nH

ub
z

Ev
en

t
M

ed
ia

EU
TC

Pr

od
uc

-
ti
on

s

Eu
ro

st
at

Eu
ro

pe
an

a

EU
N

IS

EU

In
st

i-
tu

ti
on

s

ES
D

st

an
-

da
rd

s

EA
R
Th

En
ip

ed
ia

Po
pu

la
-

ti
on

 (
En

-
A
K
Ti

ng
)

N
H

S
(E

n-
A
K
Ti

ng
)

M
or

ta
lit

y
(E

n-
A
K
Ti

ng
)

En
er

gy

(E
n-

A
K
Ti

ng
)

C
ri
m

e
(E

n-
A
K
Ti

ng
)

C
O

2
Em

is
si

on
(E

n-
A
K
Ti

ng
)

EE
A

S
IS

V
U

ed
uc

at
io

n.
da

ta
.g

ov
.u

k

EC
S

S
ou

th
-

am
pt

on

EC
C
O

-
TC

P

G
N

D

D
id

ac
ta

l
ia

D
D

C
D

eu
ts

ch
e

B
io

-
gr

ap
hi

e

da
ta

dc
s

M
us

ic
B
ra

in
z

(D
B
Tu

ne
)

M
ag

na
-

tu
ne

Jo
hn

Pe

el

(D
B
Tu

ne
)

C
la

ss
ic

al

(D
B

Tu
ne

)A
ud

io
S
cr

ob
bl

er

(D
B
Tu

ne
)

La
st

.F
M

ar

ti
st

s
(D

B
Tu

ne
)

D
B

Tr
op

es

Po
rt

u-
gu

es
e

D
B
pe

di
a

db
pe

di
a

lit
e

G
re

ek

D
B
pe

di
a

D
B
pe

di
a

da
ta

-
op

en
-

ac
-u

k

S
M

C
Jo

ur
na

ls

Po
ke

de
x

A
ir
po

rt
s

N
A
S
A

(D
at

a
In

cu
-

ba
to

r)

M
us

ic
B
ra

in
z

(D
at

a
In

cu
ba

to
r)

M
os

el
ey

Fo

lk

M
et

of
fic

e
W

ea
th

er

Fo
re

ca
st

s

D
is

co
gs

(D

at
a

In
cu

ba
to

r)

C
lim

bi
ng

da
ta

.g
ov

.u
k

in
te

rv
al

s

D
at

a
G

ov
.ie

da
ta

bn
f.
fr

C
or

ne
tt

o

re
eg

le

C
hr

on
ic

-
lin

g
A
m

er
ic

a

C
he

m
2

B
io

2R
D

FC
al

am
es

bu
si

ne
ss

da
ta

.g
ov

.
uk

B
ri
ck

lin
k

B
ra

zi
lia

n
Po

li-
ti
ci

an
s

B
N

B

U
ni

S
TS

U
ni

Pa
th

w
ay

U
ni

Pa
rc

Ta
xo

no
m

y
U

ni
Pr

ot
(B

io
2R

D
F)

S
G

D

R
ea

ct
om

e

Pu
bM

ed
Pu

b
C
he

m

PR
O

-
S
IT

E
Pr

oD
om

Pf
am

PD
B

O
M

IM
M

G
I

K
EG

G

R
ea

ct
io

n

K
EG

G

Pa
th

w
ay

K
EG

G

G
ly

ca
n

K
EG

G

En
zy

m
e

K
EG

G

D
ru

g K
EG

G

C
om

-
po

un
d

In
te

rP
ro

H
om

ol
o

G
en

e

H
G

N
C

G
en

e
O

nt
ol

og
y

G
en

eI
D

A
ff
y-

m
et

ri
x

bi
bl

e
on

to
lo

gy

B
ib

B
as

e

FT
S

B
B
C

W
ild

lif
e

Fi
nd

er

B
B
C

Pr
og

ra
m

m
es

B
B
C

M
us

ic

A
lp

in
e

S
ki

A
us

tr
ia

LO
C
A
H

A
m

st
er

-
da

m

M
us

eu
m

A
G

R
O

V
O

C

A
EM

ET

U
S
 C

en
su

s
(r

df
ab

ou
t)

Fig. 5.10 The Linking Open Data cloud diagram by Richard Cyganiak and
Anja Jentzsch (http://lod-cloud.net/) visualizing the interrelations among the
datasets that have been published in Linked Data format.

by annotating data items inside HTML markup, bridging between linked data
and micro-formats.

1
2
8

5
M
a
sh
u
p
C
o
m
p
o
n
en

ts

As of September 2011

Music
Brainz

(zitgist)

P20

Turismo
de

Zaragoza

yovisto

Yahoo!
Geo

Planet

YAGO

World
Fact-
book

El
Viajero
Tourism

WordNet
(W3C)

WordNet
(VUA)

VIVO UF

VIVO
Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UniRef

UniProt

UMBEL

UK Post-
codes

legislation
data.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov.

uk

Traffic
Scotland

theses.
fr

Thesau-
rus W

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

Open
Library
(Talis)

tags2con
delicious

t4gm
info

Swedish
Open

Cultural
Heritage

Surge
Radio

Sudoc

STW

RAMEAU
SH

statistics
data.gov.

uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

SSW
Thesaur

us

Smart
Link

Slideshare
2RDF

semantic
web.org

Semantic
Tweet

Semantic
XBRL

SW
Dog
Food

Source Code
Ecosystem
Linked Data

US SEC
(rdfabout)

Sears

Scotland
Geo-

graphy

Scotland
Pupils &
Exams

Scholaro-
meter

WordNet
(RKB

Explorer)

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS
KISTI

JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints dotAC

DEPLOY

DBLP
(RKB

Explorer)

Crime
Reports

UK

Course-
ware

CORDIS
(RKB

Explorer)
CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov.

ukRen.
Energy
Genera-

tors

reference
data.gov.

uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

Rådata
nå!

PSH

Product
Types

Ontology

Product
DB

PBAC

Poké-
pédia

patents
data.go

v.uk

Ox
Points

Ord-
nance
Survey

Openly
Local

Open
Library

Open
Cyc

Open
Corpo-
rates

Open
Calais

OpenEI

Open
Election

Data
Project

Open
Data

Thesau-
rus

Ontos
News
Portal

OGOLOD

Janus
AMP

Ocean
Drilling
Codices

New
York

Times

NVD

ntnusc

NTU
Resource

Lists

Norwe-
gian

MeSH

NDL
subjects

ndlna

my
Experi-
ment

Italian
Museums

medu-
cator

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

Weather
Stations

London
Gazette

LOIUS

Linked
Open
Colors

lobid
Resources

lobid
Organi-
sations

LEM

Linked
MDB

LinkedL
CCN

Linked
GeoData

LinkedCT

Linked
User

Feedback
LOV

Linked
Open

Numbers

LODE

Eurostat
(Ontology
Central)

Linked
EDGAR

(Ontology
Central)

Linked
Crunch-

base

lingvoj

Lichfield
Spen-
ding

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Klapp-
stuhl-
club

Good-
win

Family

National
Radio-
activity

JP

Jamendo
(DBtune)

Italian
public

schools

ISTAT
Immi-
gration

iServe

IdRef
Sudoc

NSZL
Catalog

Hellenic
PD

Hellenic
FBD

Piedmont
Accomo-
dations

GovTrack

GovWILD

Google
Art

wrapper

gnoss

GESIS

GeoWord
Net

Geo
Species

Geo
Names

Geo
Linked
Data

GEMET

GTAA

STITCH

SIDER

Project
Guten-
berg

Medi
Care

Euro-
stat

(FUB)

EURES

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

CORDIS
(FUB)

Freebase

flickr
wrappr

Fishes
of Texas

Finnish
Munici-
palities

ChEMBL

FanHubz

Event
Media

EUTC
Produc-

tions

Eurostat

Europeana

EUNIS

EU
Insti-

tutions

ESD
stan-
dards

EARTh

Enipedia

Popula-
tion (En-
AKTing)

NHS
(En-

AKTing) Mortality
(En-

AKTing)

Energy
(En-

AKTing)

Crime
(En-

AKTing)

CO2
Emission

(En-
AKTing)

EEA

SISVU

educatio
n.data.g

ov.uk

ECS
South-
ampton

ECCO-
TCP

GND

Didactal
ia

DDC Deutsche
Bio-

graphie

data
dcs

Music
Brainz

(DBTune)

Magna-
tune

John
Peel

(DBTune)

Classical
(DB

Tune)

Audio
Scrobbler
(DBTune)

Last.FM
artists

(DBTune)

DB
Tropes

Portu-
guese

DBpedia

dbpedia
lite

Greek
DBpedia

DBpedia

data-
open-
ac-uk

SMC
Journals

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Metoffice
Weather
Forecasts

Discogs
(Data

Incubator)

Climbing

data.gov.uk
intervals

Data
Gov.ie

data
bnf.fr

Cornetto

reegle

Chronic-
ling

America

Chem2
Bio2RDF

Calames

business
data.gov.

uk

Bricklink

Brazilian
Poli-

ticians

BNB

UniSTS

UniPath
way

UniParc

Taxono
my

UniProt
(Bio2RDF)

SGD

Reactome

PubMed
Pub

Chem

PRO-
SITE

ProDom

Pfam

PDB

OMIM
MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Com-
pound

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Affy-
metrix

bible
ontology

BibBase

FTS

BBC
Wildlife
Finder

BBC
Program

mes BBC
Music

Alpine
Ski

Austria

LOCAH

Amster-
dam

Museum

AGROV
OC

AEMET

US Census
(rdfabout)

F
ig
.

5
.1
0

T
h
e

L
in
k
in
g

O
p
en

D
a
ta

clo
u
d

d
ia
g
ra
m

b
y

R
ich

a
rd

C
y
g
a
n
ia
k

a
n
d

A
n
ja

J
en

tzsch
(h
t
t
p
:
/
/
l
o
d
-
c
l
o
u
d
.
n
e
t
/
)
v
isu

alizin
g
th

e
in
terrela

tion
s
a
m
o
n
g
th

e
d
a
ta
sets

th
a
t
h
ave

b
een

p
u
b
lish

ed
in

L
in
k
ed

D
a
ta

fo
rm

a
t.

by
an

n
otatin

g
d
ata

item
s
in
sid

e
H
T
M
L
m
arku

p
,b

rid
gin

g
b
etw

een
lin

ked
d
ata

an
d
m
icro-form

ats.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.5 User Interface Components 131

Source file

Name
Format

Java portlet

Name

Package

contains

Configuration
document

1..N

deployed as

2

Operation

init

destroy

processAction

renderproduces
1..N

1..N

Portlet mode

Content

User interface

encodes
1..N

represents

has

1..N

implements

1..N

1..N

Fig. 5.11 Model of a Java portlet UI component according to JSR 168 [1].

5.5.2 Java portlets

Java portlets (JSR 168 [1]) are Java-based UI components that are able to
process user requests and to generate dynamic content. They are simple,
server-side web applications developed to fit into small areas of a web page
(not the whole browser window), so as to facilitate placing multiple portlets
next to each other inside a single web page. Portlets are typically used by
portals (we discuss them in the next chapter) as pluggable user interface
components that provide a reusable presentation layer.

We provide our conceptual view on portlets in Figure 5.11. As we can see
from the model, portlets are peculiar as UI components, in that they do not
really implement an own UI themselves. Instead, portlets are Java objects
that expose a set of operations for life cycle management (e.g., init and
destroy) and interaction (processAction and render). The operations
implement synchronous local procedure calls. The processAction opera-
tion allows users to trigger state changes of the portlet (e.g., to store data).
The render operation generates content, the so-called fragments, which are
pieces of markup (e.g., HTML, XHTML, WML media types) adhering to
certain rules that can be aggregated with other fragments, but that require
integration into a document (e.g., an HTML page), in order to be rendered
to their users. Portlets generating HTML fragments must not make use of
the HTML tags base, body, iframe, frame, frameset, head, html and
title, in order to support their correct integration into portals. The user
interface of the portlet therefore consists of a set of markup fragments. Dif-
ferent user interfaces are tailored to the portal view modes (view, edit and
help), corresponding to the actions the users can perform on the portlet.

Portlets are similar to Java servlets [86], but they cannot be executed and
accessed independently; they depend on a so-called portlet container for the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

132 5 Mashup Components

Source file

Name
Format

Java portlet

Name

Package

contains

Configuration
document

1..N

deployed as

2

Operation

init

destroy

processAction

processEvent

produces

1..N

1..N

Portlet mode

Content

User interface

encodes
1..N

represents

has

1..N

implements

1..N

1..N

render

Session parameter

Name
Value

Render parameter

Name
Value

Event

Name
Object

shares

0..N 0..N 0..N

Fig. 5.12 Extended model of a Java portlet according to JSR 286 [143] with a the
possibility to share session and render parameters, to launch events, and to process
events via the processEvent operation.

mangement of their life cycle and their execution inside another web page.
The portlet container also manages the deployment of the portlet (local to
the container), which comes as package containing the source files implement-
ing the portlet. Two configuration documents (web.xml for web resources
and portlet.xml for portlet-related resources) configure the portlet. Being
instantiated inside the portlet container, portlets are typically stateful. The
order of invocation of the operations depends on the user interface exposed
to the users, which enact them by interacting with the UI.

The original JSR 168 specification su↵ered of two main shortcomings. First
portlets lacked any mechanism for the inter-portlet communication, i.e., for
communication between two portlets inside a portal. Developers had therefore
to implement own extensions (e.g., using the so-called portal context) if there
was a need to have portlets interact with each other. Second, only portlets
that were installed locally in the portlet container could be used in the portal
running on top of the container.

The JSR 286 specification [143] (portlet specification version 2.0) eventu-
ally provided an answer to the first shortcoming by introducing three di↵er-
ent techniques:shared session and render parameters for the sharing of simple
parameter-value pairs with user session and navigation information and port-
let events for the sharing of generic Java objects (see Figure 5.12). The Web
Services for Remote Portlets specification [264] provided an answer to the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.5 User Interface Components 133

second shortcoming by standardizing a protocol for the interaction with re-
mote portlets accessed via SOAP web services. The integration of remote
portlets still occurs inside the web server running the portal.

Today, portlets are therefore described in one of two ways: either via an
XML deployment descriptor for locally deployed portlets or via a WSDL
descriptor for remote portlets.

5.5.3 Widgets and gadgets

One recently standardized UI componentization technology for the client
side is W3C widgets [272], which are similar to OpenSocial gadgets [219],
Google gadgets (https://developers.google.com/gadgets/) or Ya-
hoo! widgets (http://widgets.yahoo.com/, discontinued since April
2012). W3C widgets (short, widgets) are simple, but full-fledged, client-side
web applications that are similar in appearance to Java portlets. Widgets are
JavaScript-based and, hence, locally running applications; the use of AJAX,
however, allows them to interact with own server-side application logic, pos-
sibly providing them with advanced computing or data features.

Source file

Name

Format

W3C widget

Name
URL

1..N

provides access to

User interface Package
implements

defines

contains

Configuration
document

Widget
interface

implements

1..N

Metadata

deployed as

1..N

1..N

Fig. 5.13 Model of a W3C widget. In white the actual component model; in gray
the artifacts of the component.

The component model of widgets is very simple (see Figure 5.13: A widget
has a name and a URL from which it can be downloaded, and it consists of a
user interface for the human user (standard HTML pages) and of a JavaScript
API (the so-called widget interface) for programmatic access to widget meta-
data. Contrary to portlets, widgets manage their UIs autonomously through
dynamic HTML inside the web browser. The design of a widget’s user inter-
face is rather standard web development; the widget family of specifications

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

134 5 Mashup Components

Source file

Name

Format

W3C widget

Name
URL

1..N

provides access to

User interface Package
implements

defines

contains

Configuration
document

Widget
interface

implements

1..N

Metadata

deployed as

1..N

1..N

Event Event handler

0..N 0..N
0..N 0..N

Parameter

Name

Type

emits has

consumescarries

Fig. 5.14 Model of a W3C widget with inter-widget communication extension [277].

[272] rather focuses on the packaging and configuration of widgets, that is,
on how widgets can be distributed over the Web and configured for local
execution. As illustrated in Figure 5.13, a widget is deployed as a package
(a common ZIP archive file) that contains the source files of the widgets,
such as HTML pages, CSS style sheets, JS files, images, etc. A configuration
document (config.xml) contains widget meta-data, such as name spaces,
version number, size, view modes, name, author, required features, a descrip-
tion, and similar.

The Widget Packaging and XML Configuration specification [52] tells how
the configuration file is formatted and how files are structured into folders
and packaged. This is important, because a client that wants to instanti-
ate a widget must know how to work with the package. The specification
also specifies a set of nine steps for processing and locally deploying wid-
get packages. Since the procedure is relatively cumbersome, widget runtimes
or containers, such as Apache Rave (http://rave.apache.org/), ease
the management and instantiation of widgets inside the client browser. Yet,
widgets may also require some supporting features, i.e., software components
the widget can use at runtime (e.g., geo-localization), to be provided ei-
ther by the widget container at the client side or by a so-called widget en-
gine at the server side. A widget engine, such as Apache Wookie (http:
//incubator.apache.org/wookie/), is a server application that allows
one to upload and deploy widgets, so that they are available for their instan-
tiation and use in client applications. That is, for widgets the container and
the engine are distributed over client and server, while for portlets both these
functionalities are located on the server.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

136 5 Mashup Components

Source file

Name

Format

mashArt UI
component

Name

URL

1..N

User
interface

instantiates

Event

Event handler
0..N

0..N 0..N

0..N

Parameter

Name

Type

emits

has

consumes

produces

Constructor

has

consumes
0..N

deployed

as

Fig. 5.15 The mashArt UI component model for UI components extracted from web
applications annotated with the mashArt Event Annotation [96].

An assisted approach to UI component extraction that makes use of micro-
formats to annotate source applications is proposed in [96]. The approach
uses an abstract component descriptor in the mashArt Description Language
(MDL) [90] to describe an applications inter-communication capabilities, a
micro-format (the mashArt Event Annotation - MEA) for the annotation of
the application with events and operations, and a generic wrapper structure
able to support the runtime componentization of the application, producing
UI components according to the model illustrated in Figure 8.2, which is
conceptually similar to the one of JavaScript UI components (see Figure
5.4).

5.6 Real-Time Streaming Components

The last type of components we discuss are real-time streaming components,
e.g., for the communication of audio and video streams. So far, all compo-
nent types described featured discrete media types (for remote components)
or function outputs (for local components). Some of the technologies de-
scribed, for instance, SOAP web services or JavaScript APIs, could also be
used for the implementation of “streams” of data chunks (e.g., sensor readings
coming form a wireless sensor network) by periodically sending data from a
source component to a sink (e.g., using notification operations or events).
We use quotation marks to emphasize the di↵erence of this kind of stream
from the streams we discuss in this section, which instead are based on an
application-layer protocol that manages the stream of data on behalf of the
component and that is alternative to HTTP (which is instead used by the
remote components discussed so far).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

5.6 Real-Time Streaming Components 137

Media stream

Name
URL

Control
signal

Media
resource

Streaming
channel 0..N

Parameter

Name

Type

has

controls state of

1..N

1..N
provides access to

uses

Control signals control the state of

the streaming channel. Which signal

can be used when depends on the

state of the channel.

Fig. 5.16 Model of a real-time multimedia streaming component.

5.6.1 Multimedia resources

The simplest type of streaming components we know from the Web are mul-
timedia resources like audio or video files that can be embedded into web
pages and reproduced inside the client browser. This is common practice
today, YouTube being one of the best examples of application for the distri-
bution and viewing of videos.

Multimedia resources are di↵erent from other web-accessible resources,
such as HTML or XML files, in that they are intrinsically stateful. In fact, if
we neglect the option of downloading the media resource before reproducing it
in the browser (which is not always feasible), accessing the resource typically
starts the respective data stream from the server hosting the resource to
the client viewing it. This stream needs control. For instance, it is common
that we pause a video, jump forward or backward, start it again, or stop it
completely.

From a conceptual point of view, multimedia resources therefore comply
with a component model like the one illustrated in Figure 5.16, which de-
scribes a media stream as composed of two core parts, the actual media
resource and the set of control signals (operations) that allow the client to
control the behavior of the stream. The actual stream occurs via a dedicated
streaming channel, e.g., implementing streaming media protocol like RTSP
[251] or RTP [250]; control signals may still be sent over HTTP. The order of
which control signals can be used when depends on the state of the streaming
channel, e.g., we can pause a stream only after starting it.

In order to reproduce a multimedia resource inside a web page, we have
di↵erent options:

• Media player : We can use a dedicated media player implementing to nec-
essary streaming protocol and taking over the management of the stream.
These media players typically allow human users to control the media
resource being reproduces and they provide programmatic access to the
same capabilities. These kinds of media players are typically implemented
in technologies like Flash, Silverlight, or Java applets. The programmatic

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

140 5 Mashup Components

Telco stream

ID

Control
signal

Streaming
channel 0..N

Parameter

Name

Type

has

controls state of

1..N

1..N

provides access to

uses

Session

ID

1..N

0..N1..N

Control signals control the state of

the streaming channel (one per

participant). Which signal can be

used when depends on the state of

the respective channel.

The session identifier must be

shared with all participants to

allow them to connect to the

right instance of conference.

Fig. 5.17 Simplified model of a telco streaming component for audio/video confer-
encing with a shared session and multiple participants (streaming channels).

5.7 Summary and Bibliographic Notes

It is simply not possible to condense into fewer pages all the di↵erent com-
ponent technologies and models, which are the foundation of the mashup
ecosystem and strongly influence the content of the chapters to follow. In
this chapter we tried to describe the technologies as concisely as possible, yet
the number of technologies to describe just grew during the chapter writing
– and we were not able to discuss all of them. However, this is exactly what
characterizes mashups in the first place, i.e., the huge variety and hetero-
geneity of component technologies and models one may have to master and
conciliate when developing a mashup.

The goal of this chapter is therefore to introduce the reader to a repre-
sentative spectrum of component technologies and to highlight conceptual
similarities and di↵erences. For this purpose, we introduced a set of compo-
nent characteristics that capture the most important aspects about how to
use components. Figure 5.18 recalls the characteristics.

Component

Operation User interface

0..N
{or}

0..1

1. Component type

2. Runtime location

3. Invocation model

4. Transmission style

6. Instantiation model

5. Media type

7. Invocation order

C
o

m
p

o
n

en
t

ch
ar

ac
te

ri
st

ic
s

Fig. 5.18 Summary of the component characteristics that impact on the way com-
ponents are to be used and, hence, on how they can be integrated with each other.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

140 5 Mashup Components

Telco stream

ID

Control
signal

Streaming
channel 0..N

Parameter

Name

Type

has

controls state of

1..N

1..N

provides access to

uses

Session

ID

1..N

0..N1..N

Control signals control the state of

the streaming channel (one per

participant). Which signal can be

used when depends on the state of

the respective channel.

The session identifier must be

shared with all participants to

allow them to connect to the

right instance of conference.

Fig. 5.17 Simplified model of a telco streaming component for audio/video confer-
encing with a shared session and multiple participants (streaming channels).

5.7 Summary and Bibliographic Notes

It is simply not possible to condense into fewer pages all the di↵erent com-
ponent technologies and models, which are the foundation of the mashup
ecosystem and strongly influence the content of the chapters to follow. In
this chapter we tried to describe the technologies as concisely as possible, yet
the number of technologies to describe just grew during the chapter writing
– and we were not able to discuss all of them. However, this is exactly what
characterizes mashups in the first place, i.e., the huge variety and hetero-
geneity of component technologies and models one may have to master and
conciliate when developing a mashup.

The goal of this chapter is therefore to introduce the reader to a repre-
sentative spectrum of component technologies and to highlight conceptual
similarities and di↵erences. For this purpose, we introduced a set of compo-
nent characteristics that capture the most important aspects about how to
use components. Figure 5.18 recalls the characteristics.

Component

Operation User interface

0..N
{or}

0..1

1. Component type

2. Runtime location

3. Invocation model

4. Transmission style

6. Instantiation model

5. Media type

7. Invocation order

C
o

m
p

o
n

en
t

ch
ar

ac
te

ri
st

ic
s

Fig. 5.18 Summary of the component characteristics that impact on the way com-
ponents are to be used and, hence, on how they can be integrated with each other.

