
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 6
Mashups

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.1 Introduction 145

to spend herself/himself to retrieve the same information through separate
services.

The characterization of mashups as applications that introduce added value
through component integration is not obvious. A study that we conducted on
the large on-line repository of mashups published by programmableweb.
com, showed, first of all, that there is no general consensus on what a mashup
is and what it is not [55]. The systematic analysis of a sample of about
150 di↵erent mashups randomly selected out of the whole repository using a
Simple Random Sample (SRS) technique revealed that 29% of the considered
mashups make use of only one single API (in most cases a map), without
featuring an integration of multiple components into a new application.

This means that many of the “mashups” published on the Web can actually
not be called “component-based applications” or “composite applications.”
However, as our definition shows, we strongly believe that it is the presence of
multiple components (at least two) and their sensible coupling that provides
most of the added value that mashups can bring to their users. For instance,
integrating a Google Map to graphically visualize an address, as many com-
panies, restaurants, institutions, and similar do today (e.g., in their How to
get there page) is just not enough to call a web application a mashup – at
least not from our point of view.

In Figure 6.1 we roughly position the types of applications that we consider
mashups, compared to the more traditional integration practices of applica-
tion integration and data integration introduced in Chapter 2. The charac-
terizing dimensions are the application complexity and the layer of the ap-
plication stack at which integration is performed. One can immediately note
the contribution of mashup development as practice enabling integration at

Presentation

Logic

Data

Non-mission-critial

applications

Transactional

applications

Mission-critical

applications

 Data integration

 Application integration

Application layer

Application
complexity

Mashups

Fig. 6.1 Positioning of mashups compared to other integration practices, such as
application integration and data integration. Mashups introduce integration at the
presentation layer and typically focus on non-mission-critical applications.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

148 6 Mashups

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.2 The basic mashup model: a mashup integrates a set of components, possibly
puts them into communication, and optionally renders results or components.

• An optional presentation logic, which specifies how the mashup and
the content and functionalities the mashup integrates are presented to its
users, so as to enable user interactions. Independently of what component
types a mashup integrates, each mashup may feature an own user interface.
If a mashup is based on UI components, this user interface will include the
UIs of the components. How the final UI is achieved is defined by the
mashup’s presentation logic.

Depending on the type of mashup (we define these types in the following),
there exist di↵erent solutions for each of these three aspects. Which options
are available for each aspect is what we discuss next.

Before doing so, it is important to note that the model in Figure 6.2
and this chapter focus on the internals of a mashup intended as a compo-
sition of components. From an external perspective, however, mashups may
themselves be seen as components and reused in the development of another
mashup. In fact, the basic notion of composition is recursive.

Which mashup can be seen as component mostly depends on its type: it
is straightforward to reuse a mashup that comes as an RSS feed or as a Web
service, while it is harder to reuse a mashup that comes with an own UI. The
di�culty of reusing mashups with UI is due to the lack of recursive UI com-
ponentization models and suitable runtime environments. For instance, W3C
widgets [272] currently do not support recursive composition. In the follow-
ing, we do not further elaborate on the recursive composition of mashups.

6.2.2 Mashup characteristics

The basic mashup model above highlights the core ingredients that may be
needed to develop a mashup. In order to better understand and be able to
categorize and compare mashups, it is however necessary to further specialize
these ingredients and to look into the di↵erent options for approaching them
in practice. In the following, we therefore introduce seven characteristics,

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

156 6 Mashups

Data
mashup

Component

1..N

invokes

Data access

Data interpretation

Data mediation

Data manipulation

1..N

Data

produces

interprets reformats

modifies

0..1

0..1

0..1

0..N

0..N

0..N

Integration
logic

Invocation
logic

Entity resolutionlinks

0..1

0..N

Fig. 6.3 A conceptual model for data mashups.

and component models of the available data sources (e.g., Atom feeds vs.
SOAP services for data provisioning). Data access requires only a very
limited “coordination” of data components (the data sources), as the ac-
tual integration is done on the component’s data sets after invocation and
there is no communication among data sources.

• Data interpretation : Once data is loaded from a remote data source, the
data must be interpreted, i.e., it is necessary to parse the data format used
by the data source to encode the data and to bring them into a format that
can be used for the manipulation of the data. We have already seen earlier
that on the Web there are a variety of di↵erent data formats, ranging from
the RSS or Atom formats over CSV or text formats to proprietary formats
used by SOAP or RESTful web services and JSON. Except RSS and Atom,
all other formats are typically proprietary, that is, they do not have a
standardized schema their data complies with. Parsing data therefore may
require first understanding these proprietary formats, commonly expressed
via XSD schemas or just described verbally on common web pages.

• Data mediation : As soon as data is available to the mashup, it may
be necessary to perform data mediation operations, whose duty it is to
transform loaded data into a homogeneous data structure with agreed on
semantics. Data mediation may therefore require operations ranging from
the resolution of mismatches between component data models (such as the
same terms having di↵erent meanings) to the construction and mainte-
nance of virtual schemas and mappings between global and local schemas,
splitting or merging individual data attributes, etc. and loading the trans-
formed data into an integrated data layer, which can be materialized or
remain virtual – depending on the internal implementation of the data

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

158 6 Mashups

Web server

Data mashup
Public data access API

Protocol adapter

Data format parser

JSON
parser

Microf.
parser

XML
parser

CSV
parser

RDF
parser

Data
extractor

Data processing
functions

Filter

Merge

Split

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Mashup
control logic

Annotated
web page

Count

Edit Sort

Trunc

Fig. 6.4 Basic data mashup architecture with direct data passing among data pro-
cessing functions.

From an implementation point of view, there are many ways to implement
data mashups. The rest of this section describes in particular three archi-
tectural patterns that we consider the most representative ones; di↵erent
variations and nuances thereof may of course exist.

It is important to note that the model we propose in Figure 6.3 illus-
trates the characteristics of the most used types of data mashups so far, i.e.,
stateless data mashups that are processed in one shot and that terminate
after producing an output. We however acknowledge that we may also have
steaming data mashups (e.g., [43]), which are of long-living nature in that
they stay alive and process data items (e.g., sensor readings from a wireless
sensor network or new items added to an RSS feed) until the mashup is not
explicitly terminated. We defer the discussion of how the necessary interac-
tion state with the streaming data source can be managed to the explanation
of logic mashups; the rest of the internal logic of streaming data mashups is
as explained in this section.

6.3.1 Point-to-point data mashups

The first architectural pattern we call point-to-point data mashups, as data
integration is achieved as the result of a direct interplay of data sources with
data processing functions or of one data processing function with another,
with the mashup establishing the necessary direct point-to-point communi-
cations.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

160 6 Mashups

Web server

Data mashup
Public data access API

Integrated
data store

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Data processing
functions

Filter

Merge

Split

Count

Edit Sort

Trunc

Data format parser

JSON
parser

Microf.
parser

XML
parser

CSV
parser

RDF
parser

Data
extractor

Mashup control logic

Data
mediator

Fig. 6.5 Data mashup architecture with data mediation and integrated data store.

integrated data store. In point-to-point data mashups, where there is no data
mediation, each data processing function has to understand two potentially
di↵erent data models, i.e., the data model of the input data and that of the
data produced as output.

Given the similarity of the architectures of the two types of data mashups,
also their mashup characteristics are essentially the same. Yet, in centrally
mediated data mashups, we can no longer have direct data passing among
source components and data processing functions or among functions them-
selves. Data passing from source components to the integrated data store is
mediated, data passing among data processing functions is typically based on
a shared memory (the integrated data store).

6.3.3 Data mashups with external data processing logic

Finally, the last type of data mashups we consider are data mashups with
external data processing logic (see Figure 6.6), which, besides internal data
processing functions, make use of web services or similar to reuse third-party
data processing capabilities and power. Not always it is possible to get access
to all the necessary data sources to obtain a desired output (e.g., by joining
the data), but suitable web services may help out. For instance, if we want to
add human-understandable location information to an RSS feed containing
GPS coordinates (expressed via longitude and latitude geo-coordinates), it is

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.4 Logic Mashups 161

Web server

Data mashup
Public data access API

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Exteral data
processing

functionsSOAP service RESTful service

Integrated
data store

Unified data
processing
functions

Data format
parser

Mashup control logic

Data
mediator

Data format
parser

Data format
parser

Unified data
processing
functions

Data
processing
functions

Fig. 6.6 Architecture of a data mashup with external data processing logic.

practically impossible to find a data sources for all cities and street names
that could be joined with geo-coordinates. However, there exist, for example,
free services accessible over the Web1 that provide for the translation of geo-
coordinates into city and street names, which can be used for this purpose.

The integration of these kinds of services serves the purpose of trans-
forming data and should not be interpreted as web service composition, as
described in the next section. The characteristics of data mashups with ex-
ternal data processing logic are therefore the same as the ones of any of the
two previous data mashup configurations, depending on whether the mashup
is based on centrally mediated data or not. Of course, unlike internal data
processing functions, external data processing services cannot access the in-
tegrated data store directly and therefore require data passing by value.

6.4 Logic Mashups

Logic mashups extend the scope of integration from data to logic components.
A logic mashup integrates mashup components at the application logic
layer of the application stack, by enabling the composition of functionality

1 See, for instance, the GeoNames services: http://www.geonames.org/export/
ws-overview.html.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

162 6 Mashups

Logic
mashup

Component

1..N

Asynchronous
communication

Data interpretation
Data mediation

Entity resolution

1..N

Data

consumes/
produces

interprets

reformats

links

0..1

0..1

0..1

0..N

0..N
0..N

Integration
logic

Invocation
logic

Synchronous
communication

0..1

0..1

1..N

Progression state
0..1

Business protocol
0..1follows tracks0..N

invokes

Message
correlation

Operation

1..N

1..N

correlates
0..1

Data manipulationmodifies0..N 0..1

Fig. 6.7 Mashup model with support for stateless and long-living logic mashups.

published by logic or data components, and mediating data compatibility
issues where necessary. The output is a process that orchestrates components,
which is in turn published as logic component, e.g., a SOAP web service or
JavaScript object.

In addition to managing the various aspects of data integration as dis-
cussed for data mashups, integrating logic components (e.g., web services)
specifically asks for the orchestration of the respective communications with
components. Data mashups essentially neglect this aspect, since data compo-
nents typically act as static data resources and do not accept data as input,
nor do they process data on behalf of their clients. This is the core feature
provided by logic components, which, given the di↵erent ways remote appli-
cation logic may be delivered to its clients, however come with some peculiar
requirements that a developer must master when developing logic mashups.
Figure 6.7 illustrates an according conceptual model that extends that of data
mashups with five new concepts (next to highlighting that now components
may have multiple operations):

• Synchronous communication : This is the most common invocation
paradigm for logic components, not only on the Web. As already intro-
duced in Section 5.3 when discussing the di↵erent types of logic compo-
nents, synchronous communication may refer to local or remote procedure
calls and are blocking communications. Local procedure calls are used,

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.4 Logic Mashups 165

Web server

Logic mashup
Public service API

Protocol adapter

Mashup control logic

Data
mediator

Unified data
processing
functions

Unified data
processing
functions

Data
processing
functions

Data format
parser

Data format
parser

Data format
parser

State
manager

Notification handler

Correlation
manager

SOAP service RESTful service Web page

Fig. 6.8 Generic architecture of logic mashups with support for synchronous and
asynchronous communication; data are processed like for data mashups.

6.4.1 Stateless logic mashups

According to our definition of the mashup characteristics, a stateless mashup
is a mashup that does not need to keep internal state in memory. In line with
this definition, we can define stateless logic mashups as logic mashups that
don’t require state for their processing. In practice, this means that these
mashups don’t integrate logic components that make use of asynchronous
communications.

The functional architecture in Figure 6.8 provides an idea of how generic
logic mashups may be structured internally. A stateless logic mashup would
not make use of the notification handler, which is in charge of managing in-
coming, component-initiated communications like callbacks. This also means
that we do not need the state manager and the correlation manager, which
boils the architecture down to a structure that is similar to that of data
mashups illustrated in Figure 6.4. In fact, a logic mashup that invokes only
stateless components that do not require following any business protocol is
very similar to a data mashup that invokes read-only data components.

We can therefore conclude that conceptually it is possible to implement
logic mashups that have a stateless instantiation model if they integrate logic
components that do not require complex, asynchronous interactions. Logic
mashups are typical server-side mashups, although it would also be possible

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.5 User Interface Mashups 167

UI mashup

Component Presentation
logic

1..N

Viewport Template

0..1
hosts

0..1

User interface
has

0..N0..1

Fig. 6.9 User interface mashup model without inter-component communication.

mediating possible data mismatches. The output is typically published as a
web application the users can interact with.

UI mashups are particularly appropriate when integration at the other lay-
ers is just not feasible, such as when components don’t expose proper APIs,
or when developing a new UI from scratch is simply too costly, such as when a
component changes frequently its APIs or developing a new UI would be too
complex. Also, there are components, such as W3C widgets, which natively
are UI-only components and thus can be exclusively integrated at the pre-
sentation layer. The resulting UI mashups are mostly client-side applications,
since the logic to render and invoke UI components and to integrate them is
typically located on the client side (except for portlets and portals); as such,
they are generally short-living applications. UI mashups can be relatively sim-
ple applications, as it happens if integration occurs merely in terms of laying
out components in a common page template; but they may also grow com-
plex, for example when they require di↵erent communication/synchronization
logics among integrated components.

Figure 6.9 illustrates a specialization of the basic mashup model of Figure
6.2 for UI mashups without inter-component communication . The
model comes with two extensions, one regarding the rendering of components
and one regarding the layout of the components inside the mashup’s UI. The
extensions refer to the following elements:

• User interface : UI components have a native UI that can be reused as is
for the development of the mashup’s composite UI. Reusing a component’s
UI generally enables users to interact with the component in the most
appropriate fashion and relieves the mashup developer from one of the
most sensible aspects of software development, i.e., interaction design.

• Templates: the layout and style of the overall presentation of the mashup.
UI mashups have a user interface that partly derives from the composition
of component UIs, partly from the sca↵olding template that hosts the
components and adds additional style and content elements to them (e.g.,
suitable titles or background images). As the rendering of the mashup
occurs in the web browser, templates typically come in form of HTML
pages, each page able to host one or more UI components.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.5 User Interface Mashups 169

UI mashup

Component Presentation
logic

1..N

Viewport Template

hosts

0..1

User interface

has
0..N0..1

Operation UI event

Invocation
logic

Data

Data mediation

Data manipulation

0..1

0..1

Integration
logic

Shared memory

0..1

0..N 0..N 0..N

consumes/produces

reformats

modifies

stores

0..N 0..N

0..N
0..N

Entity resolution

0..1

0..N
links

Fig. 6.10 User interface mashup model with inter-component communication.

meaningful state changes, which may be of interest to other components
of a some mashup, not mere JavaScript or DOM events (like mouse moves
or clicks). UI events, like any other operation, may carry parameters with
them, for example to communicate which new city has been selected in
a map component; the data entity in the model also represents event pa-
rameters.

• Shared memory : Inter-component communication can make use of a
shared memory for the exchange of data among components, e.g., in the
absence of UI events or when data are to big to be passed via events.
Components may also use a shared memory to store data and use events
to notify other components about the availability of new data. In principle,
a shared memory also enables data mediation (to transform data), but UI
synchronization typically requires exchanging only simple data structures
or even scalars (e.g., parameter-value pairs), which do not require complex
transformation capabilities.

In the rest of this section, we illustrate di↵erent ways to achieve integration
of UI components in practice. As we have seen, UI integration is intrinsically
event-based, a property that distinguishes it from integration at the data or
logic layers. However, given the relative immature technologies involved in UI
integration and their heterogeneity, it is common to find a mix of di↵erent
communication and integration techniques at the presentation layer.

Also in the case of UI mashups we may have mashups that integrate
streaming components, e.g., a multi-media component that allows users to

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.5 User Interface Mashups 171

YouTube videos

Expo 2015 banner

Amazon pageFlickr page

Fig. 6.11 The simplest UI mashup: embedding external resources inside own HTML
code.

of content synchronization that does not require any direct communication
among the components. The result is a web page embedding di↵erent UI
components without any mutual interaction.

Copying and pasting markup may at first glance look like the worst op-
tion to integrate third-party content. Interestingly, however, this is not only
the oldest reuse practice in software developmentin general; it is nowadays
also becoming some kind of standard technique supported by major so-
cial networking or content sharing sites. For example, Twitter (https:
//dev.twitter.com/) allows one to easily generate custom markup to
include timelines, tweets, or buttons in own pages; YouTube (http://www.
youtube.com/) provides a similar feature via the Share option just be-
low a video; and also Google Maps (https://developers.google.com/
maps/) provides similar customizable markup snippets for the embedding of
its map.

Figure 6.12 illustrates the architecture of an HTML UI mashup like the
one illustrated above, which reflects the client-side nature of this kind of

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

172 6 Mashups

Web browser

Web page

Web page
Image

iframe

Video
JS UI library

Fig. 6.12 Architecture for a simple HTML mashup. It embeds, within a Web page,
HTML snippets for displaying contents retrieved in a remote site and JavaScript code
to interact with a remote JS library or API.

applications. The mashup consists of an HTML page, which may include
URI-based references to entire Web pages, multimedia content or JavaScript
UI libraries. When rendering the page, it is the web browser who requests
linked sources and makes them available inside the mashup. Resources em-
bedded via iframes are isolated and executed as if rendered in an own web
browser. This architecture of UI mashups clearly highlights the UI-based in-
tegration logic with no data passing among components. The presentation
logic is based on reused UIs (the iframes, multimedia objects, or images),
and the instantiation model is by definition short-living.

6.5.2 Wrapped UI mashups

We now try to understand how to obtain UI mashups that, with some addi-
tional logic to instantiate and invoke components, also support the synchro-
nization of UI components during the mashup execution (see Figure 6.10 for
the respective mashup model). Given UI components like HTML snippets,
third-party web sites or similar, which were not developed for interoperabil-
ity, achieving synchronization typically requires two new ingredients: wrap-
pers, i.e., extensions of the basic component models (e.g., client-side scripts),
which are able to provide the components with a suitable UI and/or to equip
them with the necessary support for inter-component communication; and
an integration logic that puts the components into communication.

Let’s consider the development of a mashup that helps its users to find
music events in the Milan area using a list of concerts, a map, and a calendar.
The involved components are a concert listing providing a list of music events
as an RSS feed, a map able to render points of interest, and a calendar view
of the concert list. The combined e↵ect that we want to achieve is that when

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

176 6 Mashups

Web server

Web browser

Portal

Web page

Local portlet containter

Portlet 1
Portlet 2

Portlet 3

Portlet 4

Users

WSRP adapter

Portal page
templates

Remote portlet 1

Remote portlet 2

Protocol adapter

SOAP service RESTful service

Shared
context

Event bus

access to fully rendered page

Fig. 6.13 Simplified architecture of a portal serving local and remote portlets.

Assembling a portal page is performed in two phases: (i) generation of
markup fragments by portlets and (ii) aggregation of fragments into the por-
tal page. The portlet markup fragments adhere to rules that facilitate content
aggregation into portals. Portals interpret the portlet markup code, allocate
suitable space for the rendering of each portlet, and generate the compos-
ite UI. Portals typically allow users to customize the composite UI (e.g., to
rearrange or show/hide individual portlets), and provide facilities like single
sign-on and role-based personalization for portlets.

Analogous to Java servlets, portlets implement a standard Java interface
(JSR-168 [1]), to enable developers to create portlets that can be plugged into
any standard-conform portal. JSR-168 also defines a runtime environment for
portlets, the portlet container, and the Java API between the container and
the portlets. Figure 6.13 illustrates a typical portal architecture. The portlet
container hosts portlets and o↵ers support for their deployment and execu-
tion, i.e., it provides the required runtime environment, e.g., with support for
persistent storage to store portlet preferences. The portlet container receives
requests for the execution of portlets from the portal, where the actual user
interaction with the portlet takes place. As such, the portal aggregates the
markup of its portlets and manages communications with the portlet con-
tainer in a centrally mediated fashion. That is, the portlet container is not
responsible for aggregating and displaying the fragments produced by the
portlets; this is under the responsibility of the portal.

JSR-168 focused on portals that use only portlets installed locally in the
portlet container. The Web Services for Remote Portlets specification [264]
then standardized the interaction with remote portlets accessed via SOAP

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

178 6 Mashups

Fig. 6.14 An example of widget-based mashup created using the Netvibes platform.
Di↵erent areas of the page correspond to di↵erent viewports, each one displaying the
content of a di↵erent widget.

of portals is distributed over client and server, and portlets feature reusable
UIs that are rendered inside viewports of the portal page.

6.5.3.2 Widget-based mashups

As discussed in Chapter 5, a relatively young family of UI components, com-
pared to portlets, are so-called widgets. These are full-fledged, packaged web
applications which can be rendered inside viewports like portlets, and are
mainly executed at the client side. W3C widgets, Yahoo! widgets, OpenSo-
cial gadgets, are all examples of such client-side UI components. Since the
most promising standardization activities currently focus on W3C widgets,
in the following we too focus on the composition of W3C widgets, also be-
cause the trend of the other technologies is towards the harmonization with
this standard. In fact, the issues related to the composition of such packaged
components and their execution within dedicated environments are common
across the di↵erent technologies.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

180 6 Mashups

Web server

Web browser

Widget engine

Users

Protocol adapter

Persistent
data

Web page

Widget 2
rendering

Widget 3
rendering

Widget client runtime

Widget
container

Communication bridge

Communication
proxy

Shared
context

SOAP service RESTful service

Event bus

Widget repository

Widget 1
Widget 2

Widget 3

Widget 4

Widget
lifecycle
manager

access to widgets management of users/data remote invocations

Fig. 6.15 Conceptual architecture of a widget portal with client-side inter-widget
communication.

However, the technology is still young and evolving. There are indeed al-
ready research works (e.g., [252, 277]) that have started proposing extensions
to the widget model to make widgets inter-operable (at least within a same
page). Similar discussions are also ongoing in the widget standardization
group. The most accredited approach proposes extending the W3C widget
model with client-side event generation and handling capabilities. For exam-
ple, the approache presented in [277] propose the addition of a dedicated In-
tercom Interface that extends the W3C Widget Interface to support: (i) rais-
ing events, i.e., producing messages to communicate internal state changes,
(ii) invoking operations on widgets, and (iii) exposing metadata about the
events and operations supported by a widget. Event transmission is medi-
ated by a dedicated client-side event bus (see Figure 6.15 or publish-subscribe
frameworks (e.g., pmrpc, http://code.google.com/p/pmrpc/) as ex-
tensions of the widget runtime environment. Chudnovskyy et al. [76], instead,
describe a technique to wrap widgets and to equip them with event handling
support, if they don’t support events natively.

These extensions enable both the orchestration and choreography of wid-
gets within a same page: In an orchestrated widget integration, it is the central
mashup logic that subscribes operations to events, as for example shown in
[277]. In a choreographed widget integration, each widget publishes its events

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

182 6 Mashups

Hybrid
mashup

Component Presentation
logic

1..N

Viewport Template

0..1

hosts

0..1

User interface

has
0..N0..1

Operation UI event

Invocation
logic

Data

Integration
logic

0..N 0..N 0..N

consumes/
produces

0..N

0..N0..N

0..N

Synch.
comm.

Asynch.
comm.

Progression stateBusiness protocol
0..1

follows
tracks

0..N

1..N

0..1

Msg. correlation 0..1correlates

0..1

Data mediation

Data manipulation

0..1

0..1

Shared memory

0..1

reformats

modifies

stores

Entity resolution

0..1

links

0..N

Fig. 6.16 The hybrid mashup model conciliating integration at the data, logic, and
presentation layer.

integrate them with common UI components. We can easily imagine a
mashup that fetches data from di↵erent sources and, before constructing
a UI on top, integrates and processes fetched data on the server-side.

• Logic/UI mashups , which distribute their integration logic over the logic
and presentation layer. Similar to data/UI mashups, a logic/UI mashup
may rely on a set of external web services to integrate application logic not
yet contained in the UI components used at the presentation layer (search
or order services).

• Universal mashups, which distribute their integration logic over all
three layers of the application stack. These are typically very mature
mashups with a high, internal separation of concerns. Data are mediated
at the data layer; web services are orchestrated at the logic layer; and UIs
are assembled at the presentation layer.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.6 Hybrid Mashups 183

Web browser

Web page

Visualization widgetsVisualization widgetsVisualization widgets

Web server

Data mashup back-end
Data access API

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Access control logic

Protocol adapter

Mashup control logic

Data format
parser

Data format
parser

Data format
parser

Integrated data store

Data
mediator

Unified data
processing
functions

Unified data
processing
functions

Data
processing
functions

Fig. 6.17 Architecture of a data mashup with client-side integration logic and visu-
alization (we omit the client-internal details regarding UI management).

For each of these types of hybrid mashups, we can then have di↵erent types
of architectures, especially depending on how integration logic is distributed
over the di↵erent tiers of the (distributed) mashup. For simplicity (and as
this is the most common case), in the following we specifically focus only
on one client tier and one server tier and discuss three typical examples of
hybrid mashups and illustrate possible architectures.

Figure 6.17 shows an example of data/UI mashup with client-side data
integration and presentation logic and with an intermediate data inter-
pretation step executed at the server side. In particular, the architecture
proposes a configuration where the mashup is started and operated by the
web user via a common web browser, while the back-end part of the mashup
running on the web server serves as proxy toward the actual data sources and
to pre-process fetched data and transform them into a common format (e.g.,
JSON) that is immediately accessible to the client-side data integration logic
(e.g., coded in JavaScript). Data integration at the client-side is not a typical

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

184 6 Mashups

Web browser

Web page

Web server

Data mashup

Integrated
data store

Data format
parser

Mashup control logic

Data
mediator

Data format
parser

Data format
parser

Unified data
processing
functions

Unified data
processing
functions

Data
processing
functions

Data access API

Protocol adapter

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

Protocol adapter

Notification API

fetch mashup result push progression updates

Event handler

Visualization widgetsVisualization widgetsVisualization widgets

Fig. 6.18 Architecture of a data mashup with client-side rendering of results and
possible intermediate progression information.

choice for data mashups, but it may make sense if the amount of data to be
processed is small and the web server is required to support many di↵erent
users in parallel.

This type of hybrid mashup therefore integrates data and UI components
in an orchestrated fashion (some UI components may also be integrated in a
choreographed fashion). The runtime location of the integration logic is dis-
tributed over client and server and adopts a mediated data passing approach
in the client. The presentation of the data integration outcome requires the
development of ad-hoc UIs. Di↵erently from pure data mashups, this kind
of data mashup with UI follows a short-living instantiation model, i.e., its
lifetime depends on the user’s browsing session.

Figure 6.18 illustrates an example of data/UI mashup with server-side data
integration and client-side presentation logic. The architecture proposes again
a configuration where the mashup is started by the web user via the browser,

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

186 6 Mashups

Web server

Servser-side
mashup logic

Protocol adapter

Service orchestration logic

Data
mediator

Unified data
processing
functions

Unified data
processing
functions

Data
processing
functions

Data format
parser

Data format
parser

Data format
parser

State
manager

Notification handler

Correlation
manager

RSS feed

Atom feed
XML, JSON, CSV

resource
Web page

Annotated
web page

SOAP service RESTful service

Web browser

Web page

Access API

Protocol adapter

Notification API

fetch mashup results and

deliver UI events

push progression updates and

web service notifications

Event handler

Visualization widgetsVisualization widgetsVisualization widgets

Fig. 6.19 A possible architecture for a universal mashup, integrating web services
and processing data on the server side while using custom UI widgets for the visual-
ization of results and the interactive control of the mashup.

6.7 Summary and Bibliographic Notes

The goal of this chapter is to introduce the basic types of mashups, along with
the key conceptual concerns a developer will have to master when implement-
ing a mashup. As for mashup components, a set of cross-cutting character-
istics have been defined to better characterize the various types of mashups,
and to better highlight ther distinctive capabilities, especially the di↵erent

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

6.7 Summary and Bibliographic Notes 187

architectural configurations that we proposed throughout this chapter. Figure
6.20 recalls the seven characteristics.

Mashups are a new type of integration, fueled by the constantly growing
availability of reusable resources on the Web. In the previous chapter, we
have seen that the Web o↵ers a very rich set of reusable resources, which may
turn mashup development into a complex endeavor. The chapter is structured
according to the four values of the first mashup characteristic, the mashup
type. Considering the possible values of the other characteristics gives an idea
of the variety of the possible implementations of these basic types of mashups.

One interesting aspect of mashups, as applications focusing on the reuse
of web resources, which we did not consider throughout our discussion, is the
reusability of mashups themselves as components for other mashups. Alter-
natively, we can also speak about hierarchical composition. While for data
and logic mashups this is not an issue, as they typically are delivered via
RSS/Atom feeds or web services that are reusable components by defini-
tion, reusability becomes an issue for UI and hybrid mashups. Of course,
it is always possible to extract pieces of UI from any kind of web applica-
tion, but this is generally not a good practice, and one would simply expect
more attention to this problem from mashups. However, as we will see when
discussing mashup platforms, the publication of mashups as reusable compo-
nents is mostly neglected or hard to achieve with current implementations,
e.g., based on the runtime interpretation of mashup model instances (dia-
grams).

As for the further reading, we already discussed data and application inte-
gration in Chapter 2, introducing the basics and foundations underlying both
data and logic mashups. Doan et al. [107] provide a very good summary of the
problems and solutions regarding data integration. Alonso et al. [13] surely
represent a reference for application integration with a special focus on the
case of web services, while Papazoglou [224] more specifically explains the use
of web service technologies in practice, e.g., also providing good insight into
the problem of correlation in the context of BPEL. Although mashup do not
aim at the full power of BPEL, the problem re-presents itself in similar terms

1. Mashup type

2. Component types

3. Runtime location

4. Integration logic

7. Instantiation model

5. Data passing logicM
as

hu
p

ch
ar

ac
te

ri
st

ic
s

6. Presentation logic

Component

Mashup

Integration
logic

1..N

renders

0..1

Presentation
logic

0..1

1..N0..N

interacts with

Invocation
logic

mediates between

0..N

Fig. 6.20 Seven characteristics to distinguish di↵erent mashup models.

