
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 7
Advanced Mashups

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

192 7 Advanced Mashups

Mashup

Component

Web page

1..N

User

renders

1..N

0..N

0..N
has access to

0..N

Fig. 7.1 A simplified model of concurrent mashup components with components
managing own users.

shared with a set of other people in read/write mode, once started in their
respective Web browsers, the mashup allows these people to collaboratively
and concurrently edit the document. Other possible components integrated
into the mashup have local e↵ects only. For example, next to the Google Doc
component there could also be a calendar component, which allows each user
to view his/her own appointments independently of the other users working
on the Google Doc.

This is a very simple way of enabling multiple users to collaborate. In
fact, as modeled in Figure 7.1, all the user management is taken over by
Google, which is in charge of managing user profiles, log-in, authentication,
access rights management, data sharing, event propagation, and persistent
data storage (of the document). The problems with this kind of mashups
are essentially twofold: (i) it is hard to find many good components on the
Web that internally already support this kind of user management and (ii)
if such components exist, they work in an isolated fashion, i.e., they are
typically not able to exchange runtime information with other components,
independently of whether they are local single-user components or remote
multi-user components. Jointly using a Google Doc and a Google Spreadsheet
would probably still lead to acceptable user experience (users and access
rights are managed by Google in both cases), but if we mix, for instance,
a Google Doc with a Skype conferencing component it is obvious that both
have for example di↵erent user IDs, policies and protocols. Getting them
to work together would, of course, be technically feasible (e.g., by suitably
wrapping them and extracting content), but it would surely be a very hard
and error-prone endeavor.

Heinrich et al. [142] acknowledge this latter point and propose a generic
collaboration infrastructure able to turn single-user web applications into
multi-user applications (they specifically focus on editors) by monitoring the
DOM and propagating DOM modifications among participating parties. In
[140] the authors apply their approach to the development of multi-user wid-
gets, which can be mashed up (e.g., in widget runtimes like Apache Rave)
and used collaboratively by multiple users, while in [141] they provide an an-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.2 Multi-User Mashups 193

notation format that allows developers to natively extend their applications
with collaboration support.

7.2.2 Concurrent mashups

A way to solve the isolation problem of concurrent mashup components is to
make the mashup itself concurrent: A concurrent mashup is a multi-user
mashup that enables its users to operate a same instance of the mashup via
a same view (e.g., a set of pages) in parallel, i.e., concurrently.

That is, in a concurrent mashup it is the mashup that takes over the man-
agement of users and component synchronization. As illustrated in Figure
7.2, this poses new requirements to the mashup itself: now it is the mashup
that must be able to keep track of its user basis, to manage possible ac-
cess rights (e.g., remember which user has access to which mashup or page
thereof), and – more importantly – to synchronize at runtime the views of the
di↵erent users participating in a same mashup instance. Storing user profiles
and managing user registrations and access rights is relatively simple. What
is complicated is the synchronization at runtime of the Web pages, i.e., of
the components running inside the Web browsers of the di↵erent users. The
e↵ect we would like to achieve with concurrent mashups is, e.g., that if one
user performs a selection of an item in one component, also all other compo-
nents connected to the same mashup instance see the selection in their own
browser. This requires UI events to be propagated from the user performing
the selection to all other users whose mashups are in “listening mode.”

Extending what we have seen for UI mashups in the last chapter (and in
line with the infrastructure support proposed in [142]), concurrent mashups
must therefore implement:

• A distributed eventing infrastructure , which allows a mashup in-
stance in one Web browser to notify other instances running in other Web
browsers about selected user interactions. It is generally neither necessary

Mashup

Component

Web page

1..N

User

renders

1..N has access to

0..N

1..N 1..N

0..N

Fig. 7.2 A simplified model of concurrent mashups with multiple users accessing in
parallel a same instance of mashup.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.2 Multi-User Mashups 195

business process is enacted by a single organization, but it may interact with
business processes performed by other organizations.

The definition introduces three new concepts: activities, which represent
individual, atomic pieces of work that can be assigned to and performed
by participants in the business process (e.g., select a book or pay an order);
coordination, which structures activities so that their joint execution achieves
a pre-defined e↵ect (e.g., before paying the order, it is necessary to select the
book); and the business goal, which is the e↵ect the business process wants to
achieve (e.g., online book sales). Usually, business processes are expressed via
business process models, e.g., using the Business Process Modeling Notation
(BPMN [211]), which can be parsed and enacted by a business process engine,
causing the engine to interact with the people involved in the process and to
automatically orchestrate their work.

Figure 7.3 provides an example of a business process model expressed in
BPMN. The model illustrates a naive business trip approval and reimburse-
ment process. The process is initiated by an employee, who creates a business
trip request, which is inspected by the head of the employee’s business unit
and approved or rejected; alternatively, the head may also ask for additional
details or changes to the request. If the request is rejected, the process ends
(represented by the bold circle). If the request is accepted, the employee goes
on the trip (note that this activity is not represented in the model as it is out
of the control of the business process engine) and, once back, submits his ex-
penses for reimbursement. Again, the head has to sign o↵ declared costs and,
once approved, the secretary takes care of reimbursing the employee. Given
this process model, a process engine can coordinate the tasks of the involved
actors and automatically trigger them when their intervention is needed.

In process mashups, we do not necessarily have the same kind of separation
of process model and process engine, and it is the mashup itself that acts as
both process model and process engine. A process mashup is therefore a

Create business
trip request

Approve/
reject request

Send reimburse-
ment request

Check reimburse-
ment request

Reimburse
employee

Em
pl

oy
ee

H
ea

d
Se

cr
et

ar
y

reject

approve

ask for changes ask for details

approve

Fig. 7.3 A simple BPMN diagram representing a business trip approval and reim-
bursement process involving three actors.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.3 Mobile Mashups 197

Mashup

Component

Web page

1..N

Actorrenders

1..N

Activity
performs0..N

0..N

0..N

0..N

0..N

1..N 1..N

implemented by

0..N

Coordination
logic

implemented by

orders

1..N

Fig. 7.4 A simplified model of process mashups involving di↵erent actors performing
activities.

Mashup

Component
Mobile client

UI view

1..N
renders

0..N

Web APIs Device APIs

Fig. 7.5 Simplified model of mobile mashups.

(similar to the ones used in MashArt [90]), managing the rendering of UI
components and the propagation of local, browser-internal UI events.

This is only one example of how process mashups can be implemented. In
[95], the authors review di↵erent tools and their suitability for the develop-
ment of process mashups. They specifically highlight the three core dimen-
sions introduced by process mashups, i.e., the multiple users, multiple pages,
and business process logics, and argue that developing good process mashups
is a complex task that only skilled developers are able to master.

7.3 Mobile Mashups

Next to being used by multiple users, mashups are also increasingly becoming
more personal and pervasive, in that they may also run on smart phones or
tablets, i.e., on mobile, carry-on devices. In this case, we speak about mobile
mashups, i.e., mashups that run on a mobile device (e.g., a smart phone
or tablet) and that, besides integrating remote Web APIs, may make use
of device-specific components, such as device APIs, and/or device-specific
implementation frameworks.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.3 Mobile Mashups 197

Mashup

Component

Web page

1..N

Actorrenders

1..N

Activity
performs0..N

0..N

0..N

0..N

0..N

1..N 1..N

implemented by

0..N

Coordination
logic

implemented by

orders

1..N

Fig. 7.4 A simplified model of process mashups involving di↵erent actors performing
activities.

Mashup

Component
Mobile client

UI view

1..N
renders

0..N

Web APIs Device APIs

Fig. 7.5 Simplified model of mobile mashups.

(similar to the ones used in MashArt [90]), managing the rendering of UI
components and the propagation of local, browser-internal UI events.

This is only one example of how process mashups can be implemented. In
[95], the authors review di↵erent tools and their suitability for the develop-
ment of process mashups. They specifically highlight the three core dimen-
sions introduced by process mashups, i.e., the multiple users, multiple pages,
and business process logics, and argue that developing good process mashups
is a complex task that only skilled developers are able to master.

7.3 Mobile Mashups

Next to being used by multiple users, mashups are also increasingly becoming
more personal and pervasive, in that they may also run on smart phones or
tablets, i.e., on mobile, carry-on devices. In this case, we speak about mobile
mashups, i.e., mashups that run on a mobile device (e.g., a smart phone
or tablet) and that, besides integrating remote Web APIs, may make use
of device-specific components, such as device APIs, and/or device-specific
implementation frameworks.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.3 Mobile Mashups 199

Execution environment

Runtime engineOperating system

Binding
manager

Data
manager

UI manager

Device APIs

UI component
wrappers

Web APIs Data sources

Fig. 7.6 Execution of native mobile mashups on mobile devices in the MobiMash
platform [60, 59].

UI views (e.g., the selection of a data item) with the invocation of op-
erations in UI components (e.g., a search on Flickr, based on a search
key selected in the core data view). Di↵erently from Web-based mobile
mashups, native mobile mashups are not sandboxed and therefore allow
easy access to di↵erent remote data sources and services, which makes
them less dependent on a Web server.

Both types of mobile mashups are typically hybrid mashups, where the
integration of data sources produces data views that are visualized through
UI views that in turn are able to synchronize with UI components and the
device-native services through events – which is proper of UI mashups. Mo-
bile mashups are also usually distributed over client and server, while native
mobile mashups may also run on the client device only.

Figure 7.6 highlights the main architectural components in the runtime
environment of a native mobile mashup [59]. The client-side logic consists of
a UI manager handling the dynamic creation of UI views. It makes use of the
device technology to generate the di↵erent “screens”, both the ones display-
ing the integrated data view and the ones for wrapped UI components. For
example, in the Android operating system, the UI manager can be achieved
through di↵erent activities, each one managing the generation at runtime of
the code handling a specific screen.

The management of the data sets (service querying and result set parsing
and manipulation) is then operated by a data manager. Typical choices need
to be made regarding the integration of data:

• If a hosted solution is adopted (that is, if there is also a server-side part of
the mashup), data can be integrated at the server side, based on a mashup

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

7.4 Telco Mashups 201

network gateway is one that allows one to send SMS messages from the Web
to mobile phones. This is the most common way to cross the boundaries of
the Internet for Web applications in general, yet, an application or mashup
may also implement internally a communications manager, which is able to
directly talk to the target operator network without the need for a network
gateway. While this is theoretically possible, in practice the costs for this are
prohibitive, and this is therefore not an option for individual mashups (the
idea expressed in the figure is that a dedicated telco mashup platform could
make this kind of service available to its mashups, that is, to a multitude of
mashups).

Assuming a suitable communications manger is available, it is possible to
implement, for instance, a mashup that connects users with the three client
devices shown in Figure 7.7: a conventional desktop Web client, a mobile
smartphone accessing the Web via the Internet, and a conventional dial-in
client (a phone) without visualization capabilities. In order to correlate the
three devices, the communications manager would use an internal channel
table, which allows it (i) to accept incoming phone calls and (ii) to corre-
late them with the respective mashup instances running in the platform. In
practice, this may happen as with todays phone conferencing systems: the ini-
tiator of the mashup notifies all participants about the dial-in phone number
(to reach the communications manager) and the access code to be used (to
correlate users with mashup instances). Next, the communications manager

Telco mashup platform
Server-side runtime environment

Mashup service container

Web client

UI viewer

Mobile client

Web browser runtime environment

Mashup life cycle manager Communications
manager

Network
gateway

Mobile RT env. Internet

Operator
network

Telco protocols

Channel table

Charging
Manager

QoS
Manager

Dial-in
client

Converged services

Internet telco svcs.

Signaling
services

Signaling services

Converged services

Internet telco srcs.

Mashup
repository

User profile
repository

Device APIs

Device APIs

UI viewer

Mashup instance pool

M1 M5
M3 M2

M4

Telco
protocols

Telco
protocols

Web protocols

Telco
protocols

Web protocols

Web protocols

Web protocols
Web protocols

Web protocols

Web protocols

Web protocols

Web
protocols

Fig. 7.7 Reference telco mashup architecture as defined by Gebhardt et al. [121].

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

206 7 Advanced Mashups

Corporate security server

Security layer

Web browser

Mashup
page

HTTP

Corporate mashup server Corporate data server

Mashup logic Data integration logic

RDF data store

Non-RDF

data store

Secure user

ID store

Third-party

web server

Security adapter

Third-party

email server
Corporate

firewall

Data mediator

Data

processing functions

Data format

parser

State

manager

Notification handler

Correlation

manager

Service orch. logic

Authentication

module

Visualiz.

widgets
Visualiz.

widgets
Visualiz.

widgets

Internet

HTTP

data
protocol Data access

APIs

security protocol + HTTP

security protocol + HTTP

security protocol +
HTTP

Fig. 7.8 A typical enterprise mashup architecture with logic layer, data layer includ-
ing semantic data repositories, and security layer (based on [136]).

7.6 Summary and Bibliographic Notes

In this chapter, we overviewed of some of the mashup types we call “ad-
vanced,” that is, mashups that can be characterized not only in terms of
where in the application stack the integration of components happens, but
more in terms of what kind of applications or uses they support. The last
chapter was more technology-centric and generic, this one is more application-
centric and specific to application scenarios (e.g., collaboration or processes).
Since the number of application domains is essentially unlimited, e.g., com-
pared to the number of technologies and the number of integration techniques
that characterize mashups, this chapter is by no means intended as exhaus-
tive or comprehensive. Many di↵erent types of mashups tailored to specific
functionalities, purposes and users can be envisioned, are already in use, or
will emerge sooner or later. The goal we pursued with this chapter is to have
a look beyond the mere practice of integration and to show some prominent
examples of useful specifications of the generic types of mashups introduced
in the previous chapter. We believe it is important to understand that de-
veloping good mashups is not just a matter of knowing technologies and of
knowing how to hack into existing applications, it is also a matter of knowing

