
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 8
Tool-Aided Mashup
Development

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.3 Abstracting Components 215

UI wrapper

UI widget

REST wrapper

RESTful
Web service

SOAP wrapper

SOAP
Web service

JavaScript events

SOAP messages

HTTP calls
Locally installed
and running

Running remotely

Common
component

model, access
mechanism/

protocol, data
format

Data formatted as
structured parameters

XML payload

JSON formatted data

Fig. 8.1 Wrapping components into a unified view on native component models.

and similar. Which concrete instance of a component is represented is typi-
cally set via suitable configuration parameters of the construct. The benefit
of this modeling abstraction is that it favors simpler, cleaner models com-
pared to the previous level of abstraction, while maintaining technology-
specific characteristics (which may be important). The downside is that
the additional level of abstraction introduced by component types, makes
the resulting model more abstract, i.e., logical rather than concrete, which
may hinder the comprehension by less skilled developers.

• Unified components: The highest level of abstraction we propose – ac-
tually there could be an arbitrary number of levels – is based on one single
modeling construct for all types and instances of components. Condensing
everything into one construct requires a component model, we can call it
a unified component model, which is able to accommodate all component
types of interest. In some cases, it may be possible to take one component
type as reference and to map other components into that type’s compo-
nent model (e.g., it is reasonable to map an RSS feed into a RESTful
Web service, which it actually is). In some other cases, however, it may
be necessary to invent a new component model from scratch (e.g., it is
hard to conciliate an RSS feed with W3C widgets). The benefit of this
level of abstraction is a high level of simplification and model readability
(all components abide by the same model). The drawback is the lack of
distinguishing features of components, which, if the modeler knows that
the underlying resources are di↵erent, can also have a disorienting side-
e↵ect. Of course, a component model that is not a standard component
model also requires the modeler to get familiar with the model, which is
a cognitive overhead.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

216 8 Tool-Aided Mashup Development

X: 10 Ɣ F. Daniel, S. Soi, F. Casati, and B. Benatallah

ACM Trans. Web, Vol. X, No. Y, Article Z, Pub. date: XYZ.

Here we need to discuss the nature all of the components we are able to integrate and
then we show how our unified model accommodates all of them.

Figure 1 The unified component model

Supported components are mapped to the unified model as follows:
� UI components
� JavaScript components
� SOAP web services
� RESTful web services
� RSS/Atom feeds

Say that what we integrate in the end are always components that comply with the model
in Figure 2. SOAP/RESTful services or RSS/Atom feeds are hidden behind their respec-
tive adapters, which are able to mediate between the unified component logic and their
native implementation logic as the level of single invocations.

[ER paper] The first step toward the universal composition model is the definition of a
component model. MashArt components wrap UI, application, and data services and ex-
pose their features/functionalities according to the mashArt component model. The model
described here extends our initial UI-only component model presented in [3] to cater for
universal components.
The model is based on four abstractions: state, events, operations, and properties. The
state is represented as a set of name-value pairs. What the state exactly contains and its
level of abstraction is decided by the component developer, but in general it should be
such that its change represents something relevant and significant for the other compo-
nents to know. For example, for our Process browser component, we can change the col-
or in which the process is displayed or rearrange the process graph. This is irrelevant for
the other components that need not be notified of these changes. Instead, clicking on a
specific process or drilling down on a specific step may lead other components to show
related information or application services to perform actions (e.g., compute compliance
indicators). This is a state change we want to capture. In our case study, the state for the
Process browser component is the process or process step that is being displayed. Model-
ing state for application components is something debatable as services are normally used
in a stateless fashion. This is also why WSDL does not have a notion of state. However,
while implementations can be stateless, from a modeling perspective it can be useful to
model the state, and we believe that its omission from WSDL and WS-* standards was a
mistake (with many partial attempts to correct it by introducing state machines that can

User interface

Event Operation

mashArt
component

0..N0..N

Name
0..N

has output

Name
Binding
URLType 0..N

1..1

has input

0..1

0..N
Constructor

Parameter
Name
Value
isOptional

Simple Parameter
0..NName

Value

Name
Reference

0..1

1..1 1..1

0..1

0..N
is of type

Fig. 8.2 Unified component model of mashArt components for SOAP/RESTful web
services, UI components and RSS/Atom feeds [90].

Figure 8.1 illustrates what it means to provide this highest level of ab-
straction with the necessary infrastructure support: in essence, it is neces-
sary to develop suitable wrappers that wrap di↵erent component types (or
instances) into a common component model that exposes common access
mechanisms, communication protocols, and data formats. This in turn re-
quires each of the wrapper to master the technicalities of the component
type it wants to abstract and to mediate communications between the fea-
tures of the specific component type and those exposed by the wrapper via
the common component model. In practice, it may therefore be necessary
to mimic active behaviors for RESTful Web services, e.g., by periodically
polling the service and launching events in response to changes in the ser-
vice’s output. Or, the other way around, it may be necessary to inhibit active
behaviors, such as events, by bu↵ering them and making them available only
upon explicit request from the outside via operations of the common compo-
nent model.

As an example of how such a unified component model could look like, in
Figure 8.2 we propose the internal component model of the mashArt platform
[90]. mashArt is a platform for hybrid mashups, so it is based on an event-
based UI component model, which allows it to conveniently express di↵erent
types of component technologies:

• UI components (e.g., a Google Maps component): these can be mapped
straightforwardly to the unified model. A UI component in mashArt has
a mandatory user interface, an optional set of simple parameters, an op-
tional constructor, a possibly empty set of type definitions, and events and
operations. UI component are identified by means of the binding “compo-
nent/UI” of the mashArt component entity.

• JavaScript components (e.g., a client-side shopping cart object): these are
mapped to the unified model similarly to UI components. They do not have
a user interface but may have a constructor and a set of simple parameters.
JavaScript function calls are mapped to operations, and function param-
eters to operation parameters. If a function returns a result, the receipt

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

218 8 Tool-Aided Mashup Development

source

RSS feed

Data flow
connector

target

Union

0..1

1..N

M2

Sink

target

0..1

0..1

0..1A mashup must

contain exactly

one sink.

URL
has

source

Filter Filter condition

Name
has

has

target 0..1

source

0..1

A data flow

connector has

exactly one source

and one target.

Fig. 8.3 Metamodel (M2) of a very simple data flow mashup language: it supports
fetching di↵erent RSS feeds from the Web, computing their union and/or filtering
them, and publishing the result again as an RSS feed on the Web (the sink). A data
flow connector must always have exactly one source and one target.

8.4.1 A simple example

Both to recall the basic meta-modeling concepts and to show an example
that is easy to understand, in this section we develop a simple modeling
language for the development of data mashups. The language is not used
in any concrete mashup platform, and serves rather the didactic purpose of
illustrating how to develop a mashup modeling language.

Let’s assume we want to support the development of data mashups with
the following simple set of requirements:

• A mashup integrates RSS feeds only, where each feed is identified by a
unique name and the URL of the feed.

• A mashup has two types of operations: the union operation allows one to
merge multiple RSS feeds into one, e.g., by concatenating them; the filter
operator allows one to filter out items of an RSS feed that satisfy a given
condition, e.g., expressed in JavaScript or any other language.

• The end of a mashup’s integration logic is uniquely identified by a sink
component, which provides for the publication of the mashup output again
as RSS feed.

• Components and operators of the mashup are connected via suitable data
flow connectors.

In Figure 8.3 we draw a possible metamodel for the target mashup lan-
guage. Each construct of the modeling language that a developer needs to
operate (e.g., draw or provide an input for) is represented by an own concept
of the model. The most interesting concept in the model is the data flow con-
nector, which – according to our interpretation of the above requirements,
expressed as a comment in the metamodel – has exactly one source and one

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.4 Mashup Metamodels 219

R1:
RSS feed

DF1 : Data flow
connector

M1
source target

R2:
RSS feed

DF2 : Data flow
connector

source target

U1 : Union
DF3 : Data flow

connector

source

target

F1 : Filter S1 : Sink
DF4 : Data flow

connector

source target

title contains 'IT' :
Filter condition

http://rss.
nytimes.com/... :

URL

NY Times :
Name

BBC News :
Name

http://feeds.bbci.
co.uk/news/rss.xml :

URL

Fig. 8.4 A simple data flow model (M1) complying with the metamodel of Figure
8.3 expressed in an abstract syntax, i.e., a UML object diagram.

target. RSS feeds can only be sources; filters and unions can be both sources
and targets; sinks can only be targets. Also, unions may have multiple inputs,
i.e., a union may be the target of multiple di↵erent data flow connectors. This
allows one to model mashups in which one union operator merges multiple
RSS feeds. Via another comment, the metamodel further specifies that, in
order for a mashup to be correct, it must have exactly one sink component.
That’s it. There are no other integration activities supported by this simple
mashup language.

In line with the MDSD approach described in Chapter 4, we can now
represent a model instance via an abstract syntax , such as a UML Object
Diagram. Figure 8.4 proposes a possible mashup model in abstract syntax:
We have two RSS feeds (NY Times and BBC News), which we merge into
one single feed using a union operator, followed by a filter operator, which lets
pass only items that contain the substring “IT” (for simplicity, we express
conditions in natural language). Finally, a sink component indicates the end
of the processing logic and makes the result of the mashup available as RSS
feed accessible via the Web.

Figure 8.4 is a full-fledged model of a mashup that complies with our
initial requirement, implemented in the metamodel of Figure 8.3. However,
the reader will easily agree that the abstract syntax of the model does not
help the readability and understandability of the model. The convention of
using a UML Object Diagram may be good as first check of the correctness
of a metamodel and its corresponding modeling language, or to understand
how to implement code generators or model interpreters, but it certainly is
not meant to be used to really model mashups. For this purpose, in Figure
8.5 we invented a graphical, concrete syntax , whose aim is to make the
semantics of modeling constructs intuitively understandable: Data flows from

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

220 8 Tool-Aided Mashup Development

RSS feed:
New York Times

RSS feed:
BBC News

URL: "http://rss.nytimes.com/..."

URL: "http://feeds.bbci.co.uk/news/rss.xml"

Union SinkFilter

Condition:

"title contains 'IT'"

URL attribute

Data flow connector

Connector

target

Filter condition

Connector

source

Name of

the feed

Fig. 8.5 The simple data flow model (M1) of Figure 8.4 expressed in a concrete
syntax that highlights the semantics of the constructs and eases readability.

left to right. RSS source components have an outward pointing arrow at
the right side, while sinks have only an inward pointing arrow a the left
side. Union and filter operators have both inward and outward arrows. The
arrows indicate whether the component expects inputs or produces outputs.
The name of an RSS feed can be written inside the construct, while its URL
is specified below the construct, just like the condition for a filter. Data flow
connectors are simple lines, whose endpoints, the inward vs. outward arrows,
respectively, identify the target and source of the connector. The resulting
model is equivalent to the model in Figure 8.4, but much more “fit” for a
model-driven mashup approach, e.g., as one would expect to find inside a
visual mashup tool.

If we have a closer look at the proposed modeling language, we see that
the metamodel is very simple: it only supports four types of components,
which all work on RSS-formatted data. The metamodel does not propose
any abstraction for components, and each component is modeled with all its
characteristics at the component instance level: RSS feeds, for instance, have
only outputs; a union may have multiple inputs, a filter only one, and a sink
does not have outputs at all. Of course, from a metamodel point of view, this
level of abstraction is not easy to scale up to, e.g., several dozens or hundreds
of di↵erent components. Yet, as discussed earlier, it has the benefit of being
immediately accessible to the modeler.

8.4.2 Yahoo! Pipes

In order to find an example of data mashup modeling language that abstracts
away from component peculiarities and proposes a unified component model,
we can, for instance, study Yahoo! Pipes (http://pipes.yahoo.com/).

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.4 Mashup Metamodels 221

Figure 1 Implementation of the example scenario in Yahoo! Pipes

The pipe that implements the required feature is illustrated in Figure 1. It is com-
posed of five components: The URL Builder is needed to set up the remote Geo
Names service, which takes a news RSS feed as an input, analyzes its content, and
inserts geo-coordinates, i.e., longitude and latitude, into each news item (where possi-
ble). Doing so requires setting some parameters: Base=http://ws.geonames.org, Path
elements=rssToGeoRSS, and Query parameters=FeedUrl:news.google.com/news?
topic=t&output=rss&ned=us. The so created URL is fed into the Fetch Feed compo-
nent, which loads the geo-enriched news feed. In order to filter out the news items we
are really interested in, we need to use the Filter component, which requires the set-
ting of proper filter conditions via the Rules input field. Feeding the filtered feed into
the Location Extractor component causes Pipes to plot the news items on a Yahoo!
Map. Finally, the Pipe Output component specifies the end of the pipe.

If we analyze the development steps above, we can easily understand that develop-
ing even such a simple composition is out of the reach of people without program-
ming knowledge. Understanding which components are needed and how they are
used is neither trivial nor intuitive. The URL Builder, for example, requires the setting
of some complex parameters. Then, components need to be suitably connected, in
order to support the data flow from one component to another, and output parameters
must be mapped to input parameters. But more importantly, plotting news onto a map
requires knowing that this can be done by first enriching a feed with geo-coordinates,
then fetching the actual feed, and only then the map is ready to plot the items.

Enabling non-expert developers to compose a pipe like the above requires telling
(or teaching) them the necessary knowledge. In WIRE, we aim to do so by providing
non-expert developers with interactive development advices for composition, inside

Fig. 8.6 A simple pipe that enriches an RSS feed with geographical location infor-
mation and plots it on a map (the Location Extractor component).

Yahoo! Pipes is an online data mashup platform that allows one to visually
compose and manipulate RSS feeds and similarly formatted data sources.

Figure 8.6 shows a screen shot of Pipes in action. As customary for most
online mashup platforms, at the left hand side there is a toolbox with the
available components. These can be dragged and dropped into the modeling
canvas at its right, causing the tool to draw a construct for each component.
Modeling constructs can be connected via data flow connectors, which – as
in the simple example before – determines the flow of data and intrinsically
also the order of activation of components. Each component in the canvas
can be seen as a wrapper of either external data sources (e.g., RSS feeds or
RESTful Web services, internal operators (e.g., Count or Filter), or external
operators (e.g., RESTful Web services).

If we analyze the modeling language proposed in Figure 8.6, we can reverse-
engineer a simplified version of a metamodel as it could have been used as
basis for the development of Yahoo! Pipes (see Figure 8.7). For instance: A
component has a name, which is graphically rendered in the header of the
component construct (e.g., “URL Builder”) and uniquely identifies the type
of component, and a set of parameters (e.g., “Path elements” or “URL”). Pa-
rameters may have a value (e.g., “Path elements” is set to “rssToGeoRSS”)
and can be of two types. Configuration parameters (e.g., value of the “feed-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

222 8 Tool-Aided Mashup Development

source
Component

Data flow
connector

0..1

0..N

M2

Pipe Output

A pipe must
contain exactly
one pipe output
component,
which cannot be
the source of a
data flow
connector.

has

target

XOR

ParameterValue

0..N

Input par.Config. par.
target

0..1

0..1

0..N

URL Builder Fetch Feed
Location
ExtractorFilter

Name

0..1

Fig. 8.7 A simplified metamodel of Yahoo! Pipes for the pipe in Figure 8.6.

Url” parameter) accept only manual input of constant values; input param-
eters (e.g., the “URL” parameter of the Fetch Feed component) can also be
the target of input data flows and accept attributes of incoming data items as
values (treating all similar attributes of the input data items as a set). Data
flow connectors connect component outputs with either another component
(e.g., the connector from the Fetch Feed to the Filter component) or with an
input parameter (e.g., the connector from the URL Builder to the Fetch Feed
component). We represent the di↵erent component types by sub-typing the
component entity. One of the sub-types, i.e., Pipes Output, has a particular
role: it indicates the end of a pipe model. Each correct pipe model must have
exactly one Pipe Output component, which only accepts one input data flow.
Ready pipes can be stored on the Yahoo! Pipes platform and accessed via
a unique URL, which allows one to enact the execution of the data mashup
and to fetch its result as an RSS feed.

This metamodel is by definition only a simplification of the real metamodel
underlying Yahoo! Pipe’s modeling language; we derived it only from the
model visible in Figure 8.6. Looking at all its constructs and systematically
analyzing the behavior of each construct would allow one to fully re-engineer
at least the externally visible part of the platform’s metamodel. With “ex-
ternally visible” we refer to all those properties that can be inferred from
the UI of the platform. Possible attributes of the modeling constructs that
are not rendered in the canvas (contrary to, for instance, the “URL Builder”
meta-attribute) can of course not be identified. Not visible attributes could,
for example, be used by Pipe’s internal representation of the graphical models
to provide the parser with suitable runtime configurations or similar.

We omit the obvious representation of the pipes model in Figure 8.6 in
abstract syntax, similar to the model illustrated in Figure 8.4.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.4 Mashup Metamodels 223

8.4.3 mashArt

As last example of mashup metamodel, we briefly study the internals of the
mashArt platform [90], which proposes an integration approach called by the
authors “universal integration.” Universal integration in this context refers
to the integration of data, application logic and UIs inside one and the same
modeling environment. Specifically, mashArt supports SOAP and RESTful
Web services, RSS/Atom feeds, as well as a proprietary format of JavaScript-
based UI components (similar to W3C widgets) [282].

Figure 8.8 shows an example mashup modeled in mashArt, i.e., a mashup
for business compliance monitoring that leverages on a set of company-
internal components. When discussing the mashArt component model (Sec-
tion 8.3), we have seen that it is based on events and operations. Composing
a mashup therefore means connecting events and operations via data flows.
The mashup is composed of three UI components (Policy browser, Process
browser and Analysis browser and the four Web services (Repository, Engine,

Component browser

UI componentService component

Composition canvas

Data flow connector

Events and operations

Fig. 8.8 A mashup modeled in mashArt [90]. The model represents a simple appli-
cation for the monitoring of compliance.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

224 8 Tool-Aided Mashup Development

0..N

M2

has

Data flow
connector

Event

Name

Operation

Name

Component

Type Name

Parameter

Name
Type

Constructor
parameter

Name
Type

Value

Dynamic par.

Static par.

Template

Placeholder

has0..N

0..N

has

source

target

has

has

has
renders

contains
1..N

produces

consumes

0..N

0..N produces

0..N

Parameter
mapping

0..N

has

from

to

Parameter mappings of a connector refer

only to the parameters of the connectors's

source event and target operation.

Fig. 8.9 Metamodel of the mashArt modeling notation based on the unified compo-
nent model of Figure 8.2.

Analyzer and Mail). The composition has four so-called listeners, i.e., event
processing flows:

1. If a user selects a policy from the list of policies, the mashup retrieves the
list of processes associated with that policy from the repository and queries
the process engine to understand which of those processes are actually
deployed in the system, so as to display them in the Process browser.

2. By selecting a process from the list rendered in the Process browser
(ProcessSelected event), the user can fetch the respective compliance
analyses from a Web service and view them (if any) by synchronizing the
Analysis browser (LoadAnalysis operation).

3. In parallel to the previous step, if a user selects a process, the mashup
retrieves the list of policies associated with that particular process and
shows it in the Policy browser.

4. Finally, if by looking at the analysis data the user detects a compliance
violation, she can send an email to a responsible person.

The metamodel underlying this modeling formalism can be approximated
as illustrated in Figure 8.9 (we omit the details of the internal serialization
format of the visual model). If we carefully look at the metamodel, we can
spot how the unified component model introduced in Figure 8.2 influences
the modeling language’s structure: Components may have constructor pa-
rameters, events and operations, and can be given a name by the modeler.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.5 Mashup Languages 227

Fig. 8.10 A screenshot of Presto Wires for data mashups serialized in EMML.

“news.” <directinvoke> provides access to the di↵erent data sources sup-
ported by EMML in a homogeneous fashion, and it supports the basic HTTP
Get, Post, Put and Delete operations on remote resources. The mashup defini-
tion terminates withe a <filter> operation, which operates on the “news”
variable and forwards the result to the “result” output variable.

While this kind of EMML code can certainly be developed manually,
it is also intuitive that directly writing XML is not the best way to de-
velop and that, given the abstractions already intrinsically present inside the
EMML markup, a visual development notation may be developed on top
of EMML. This approach is what JackBe followed with its Presto mashup
platform (http://jackbe.com/products), which comes with a graphi-
cal, EMML-compliance mashup tool called Wires. Figure 8.10 shows a screen
shot of Wires in action. In line with most Web-based mashup tools, Wires
comes with a tool bar on the left-hand side, which allows the developer to
choose from di↵erent modeling constructs and to drag and drop them onto
the canvas at the center. Data mashups are represented as data flow graphs.
Properties of components and operators can be set in the panel at the right-
hand side. Similar to Yahoo! Pipes, also Wires supports a preview panel of the
computed data in the lower part of the screen. Ready mashups can be stored
on the Presto server (in EMML) and are ready for execution by the EMML
engine. The visualization of mashup outputs can be configured outside of
Wires in a dedicated visualization dashboard.

At first sight, EMML seems similar to BPEL [163]. Yet, a closer analysis re-
veals that EMML is at a slightly higher level of abstraction: for example, it ab-
stracts multiple di↵erent component technologies into one <directinvoke>
construct, and it supports data mashup specific data transformations such as
join or sort. BPEL focuses on SOAP Web services only and does not come
with sophisticated built-in data transformation constructs.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.5 Mashup Languages 229

ICT OMELETTE

Report D7.3 Final Demonstrators

Page 9 of 32

WP7: Use Cases and Evaluation

T7.3: Demonstration and Evaluation

Status: Final – Distribution: Public

Figure 1 Emergency Cockpit Workspace

2.2. First Line Support System

The First Line Support (FLS) system is built to facilitate the FLS team of TIE with a new portal

based solution based on the features of OMELETTE. The context is given by the First Line

Support scenario of D7.1 document.

The First Line Support team of TIE provides the clients with maintenance service and support

for TIE products. The FLS team helps clients with license renewal and also with

troubleshooting of TIE products. This requires regular communication and frequent

information exchange. So this portal solution with facilities like integrated telco services and

real time communication helps support people to effectively communicate and exchange

Fig. 8.11 A screenshot of the Apache Rave mashup environment extended by the
EU FP7 project OMELETTE to import/export OMDL-compliant workspaces [262].

contains a <position> element, which tells where inside the workspace the
widget should be rendered. The <capabilities> element is an optional
element containing quality of service criteria, which may be required to run
the mashup, e.g., in the code above the mashup requires the availability of a
GPS positioning system. Finally, the mashup declares that it is based on a
grid <layout> and it specifies the specific <stylesheet> to be used for
the rendering of the mashup inside the workspace.

Similar to EMML, it is again clear that writing this kind of XML code
is not very e�cient and that a graphical development tool on top could
improve productivity significantly. This is what the OMELETTE Consortium
recognized with its implementation of an OMDL-compliant installation of
Apache Rave, which is able to store, import and export OMDL mashups.
As illustrated in Figure 8.11, given the focus on UI widgets, Rave provides
for a “live” modeling environment, in which the user places widgets into the
workspace and Rave immediately renders them. That is, instead of having
graphical modeling constructs representing UI widgets, Rave directly shows
the real widget. This practice is especially e↵ective for users without specific
modeling knowledge. What is not visible in the figure is that the extended
version of Rave also supports inter-widget communication [277] via a suitable
event bus (to be included among the <capabilities> if needed).

OMDL is still in an early stage of its development. However, as a proof of
concept the OMELETTE Consortium implemented an import/export filter
also for Moodle (https://moodle.org/), the open-source course manage-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.6 Developing Mashup Languages 231Conceptual Design of Sound, Custom Composition Languages 11

Custom composition
language

Custom component
description language

Composition
feature

Feature reference
specification

Generic composition
language meta-model

Generic component
descriptor meta-model

Feature
constraint

supports

Component feature
1..N

has

0..N

1..N

integrates

1..N

supports

implemented as

1..N 1..N

derives from derives from

0..1 0..1

constrains

based on

Control flow feature

Data passing feature

Presentation feature

0..1

Collaboration feature

Fig. 3 Conceptual approach to the development of custom composition languages

detailed in Section 6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal - and machine-readable - language schema
definition, which is then needed for the definition of other artifacts of the system.
In addition, using this constrained modeling language also opens to future exten-
sions of the meta-model by third parties, making them aware of the implications
of each model extension or modification on the resulting language definition (since
deterministic translation rules are defined). Concretely, as defined by the meta-meta-
model depicted in Figure 4, the meta-model may consist of:

• Entities. Represent main constructs of the composition language. They are iden-
tified by a name.

• Attributes. Each entity can have a set of related attributes characterizing it. At-
tributes have a name and a type. The type can be stated through its name or can
be explicitly defined in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute named id, representing a
unique identifier for the instances of the entity used to reference them.

• Associations. Relations among the entities are expressed through associations.
Only two possible types of associations are needed: composition and uni-directional
association. The composition is used to state that an entity is contained in another
one, while the uni-directional association states that an entity simply refers to an-
other entity, but it is not contained in it.

• Cardinalities. Represent associations’ multiplicities. The target cardinality rep-
resents the multiplicity of the association when reading it following the speci-
fied association direction, while the source cardinality represents the multiplicity
when reading the association in the opposite direction.

Fig. 8.12 Conceptual approach to developing custom mashup languages [254].

tation, collaboration. Features come with a set of feature constraints, which
express feature compatibilities, conflicts, and subsumptions. Each feature has
a reference specification, i.e., a pattern of language constructs, which imple-
ments the feature and represents reusable language composition knowledge.
Patterns are based on a generic mashup language model (not a metamodel).
The model does not yet represent an executable language. It syntactically
puts composition constructs and features into relation with each other, but it
also contains constructs and features that may not be compatible with each
other (e.g., control flow and data flow paradigms). The model determines
which features are supported and how they are syntactically integrated; the
sensible design of feature constraints provides for soundness. Hence, given
a set of non-conflicting composition features, the custom composition lan-
guage is represented by the union of the respective reference specifications.
Similarly, a custom component description language can be derived, which
can be used as guide for the implementation of components or component
wrappers and to describe their external interfaces. Both the custom mashup
language and the custom component description language are then mapped
1:1 to XSD, so as to enable the definition of mashups in XML and the auto-
matic checking of the conformance of mashups with the reference language
model.

The approach is therefore to compose mashup languages out of composi-
tion features represented as language patterns. Just like in any other composi-
tion approach, the core problem is therefore the identification and formaliza-
tion of the “components” to work with. Here, these components are language
patterns (e.g., XSD fragments). However, these patterns have a distinctive
feature that makes the problem very di↵erent form generic component-based

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

232 8 Tool-Aided Mashup Development

Control flow

 Component Presentation

Collaboration

Data passing

Id
Name
Type
Reference

Operation
Id
Name
ManualInput
Optional

Input
Parameter

Id
Name

Output
Parameter

Id
Name

Configuration
Parameter

1..N

Name
Mashup

Id
Name

Viewport

Id
Name
URL

Page

Id
Name

User Role

Id
DfConnector

Expression
Language

Condition

Id
Name
Type
DefaultValue

Global Variable

Id
Name
Type
Binding
Endpoint
Class
SupportRefere
ncePassing
Syntax

Component

Id
Join

Id
Split

Id
CfConnector

source

0..1 feeds

 1..N

belongsTo

displays

0..1

1

0..1
1

Id
Name
Value

Constant

0..Ntarget

0..N

Id
Name
Definition

Data Type

has

0..1

feeds

0..N

0..N

0..N

0..1

0..N

0..N

0..N

0..N0..N 0..N

has

0..N

1

0..N

0..N

 0..N

0..N

source

source

target

target

1

1

1

1..N

1..N

1

0..N

target

source0..1 0..N

0..1

0..1
0..N

0..N

0..N
0..1

0..1

0..1

0..N

target

source

0..N

0..N

0..N

0..N

0..N

0..N

has 0..N

1

has

1

0..N

0..N

0..N

1

has

Fig. 8.13 The generic mashup language model bringing together the most common
mashup features [253].

development: unlike, for example, Web services, language patterns are not
independent of each other. That is, the reference specifications of di↵erent
composition features may overlap (e.g., interacting with a SOAP service is
very similar to interacting with a RESTful service), include other features
(e.g., the data flow paradigm generally subsumes the presence of data source
components), or exclude others (e.g., the data flow paradigm does not make
use of variables). This asks for a thorough design of the language patterns
and their mutual interaction points, a task that the authors solve by map-
ping each composition feature into the generic mashup language model (see
Figure 8.13), which (i) integrates all basic language constructs syntactically,
(ii) allows the definition of composition features as language fragments on
top, and (iii) guarantees that fragments are compatible by design.

It is important to note that the model in Figure 8.13 and the language
generation platform are extensible, that is, the proposed approach allows
for the addition of new constructs and features, if these extend the model
without altering the logic of the existing constructs, if each new construct is
accompanied with a reference implementation for the runtime environment,
and if the features are equipped with suitable reference patterns. The model
aims to cover as many features as possible, but it is of course not feasible

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.6 Developing Mashup Languages 233

1

5

6 6

7

8

9

3

2

4

service_component
REST_for_service2

manual_input

data_flow

min_1_operation_per_component
max_1_operation_per_component
request_response

min_1_intput_param_per_operation
max_N_intput_param_per_operation

min_1_output_param_per_operation
max_1_output_param_per_operation

configuration_param

data_component
RSS_for_data
atom_for_data

branch

1

4

3

5

6

7
8
9

Selected language features

Fig. 8.14 Yahoo! Pipes example composition and set of respective language features

to predict all possible domain-specific requirements that may emerge over
time. For instance, if we wanted to compose a mashup language that is able
to equip each component with authentication credentials so that the run-
time environment can automatically authenticate with the components on
behalf of the user (e.g., to implement a single sign-on feature), this would
not be possible without suitable extensions. So far, the approach has been
tailored to and tested with open APIs and services that don’t need this kind
of authentication.

8.6.2 Usage example

As an example of how the conceptual development of mashup languages may
happen in practice, in the following we derive part of the mashup language
underlying Yahoo! Pipes from an example modeled in its graphical editor.
We recall that Pipes is a data mashup tool for the retrieval and processing
of web data feeds. Figure 8.14 shows an example Pipes model, which we use
to analyze Pipes’ language features.

Pipes is based on the data flow paradigm. It supports data component
and service component types to retrieve and process data, respectively.
Specifically, data sources may be RSS for data or atom for data, while
the only supported service component type is REST for service. Each
component in Pipes provides exactly one function, that is, each compo-
nent represents one single operation: max 1 operation per component.
All operations are of type request-response (request response for data
and request response for service). Each operation may have one or
more inputs (max N input param per operation) but one and only one
output (max 1 output param per operation). Manual inputs are used
to fill the values of input fields (manual input), i.e., of configuration pa-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.7 Mashup Platforms 235

Back-end

Front-end

Data store

Mashup repository

Mashup mgmt.
dashbaord

SLAs mgmt.

User mgmt.

Access rights mgmt.

Mashup editor

Mashup runtime environment

Interpreter

Web server

Component registry User/AR registryExecution log

Internet

Developer
community

Authentication and
security module

Mashup metamodel

Design canvas

Code generator

Mashup language

Invocation module

SLA repository

Mashup execution
dashboard

Component runtime
environment

Web server

Comp. containerDebugger Test environment

Instantiation UI/API

Runtime monitor

Mashup lifecycle

mgmt.Help resources

Fig. 8.15 Conceptual reference architecture of a mashup platform articulated into
front-end, back-end and persistent data store.

8.7.1.1 Design

The previous sections reviewed the core concepts driving the development
of mashup editors. We specifically focused on mashup metamodels and
mashup languages, as these both express a wealth of mashup knowledge and
also have a high didactic value. We did not focus much on the user interface
paradigms that can be used by mashup editors to communicate their internal
metamodel/language to the user of the editor. Not all editors directly expose
their plain language or an abstract modeling notation to their users. Most
editors adopt proprietary, domain-specific notations that aim to improve the
intuitiveness of the editor.

For instance: Swashup [186] leverages on traditional, manual coding of
mashups; domain-specific code is then translated into Ruby on Rails. Mash-
light [26] and mashArt [90] propose an own graphical modeling notation for
Web services, RSS/Atom feeds and UI widgets. Kongdenfha et al. [168] pro-
pose the use of spreadsheets for the design of mashups, where functions inside

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

238 8 Tool-Aided Mashup Development

Fig. 8.16 Screen shot of Yahoo! Pipes with the debugging tab open (bottom). The
content of the tab is the output of the Fetch Feed component selected in the canvas.

into one integrated live modeling paradigm, which allows the developer to
immediately experience the e↵ect of modeling actions.

As illustrated in Figure 8.15, debugging and testing does not ask only
for suitable extensions of the mashup editor: also the mashup runtime en-
vironment must come with suitable capabilities that allow the developer (i)
to inspect the state of a mashup during its execution at di↵erent points in
time and/or modeling constructs (for debugging) and (ii) to test mashups
under development in a protected environment. Ideally, this latter feature
allows the developer to run and test the functioning of a mashup under de-
velopment without producing any side-e↵ects in the mashup platform (e.g.,
on the persistent storage of the platform or external services). Such kind of
“sandboxing” of mashup executions is hard to implement, and therefore not
yet fully supported by mashup platforms (to the best of our knowledge).

A concrete example where such a mashup sandbox would be very useful
are, for instance, the telco mashups discussed in Section 7.4. Telco APIs typ-
ically provide access to telco capabilities that require some form of payment,
e.g., a monthly subscription or pay-per-use payments. For development, all
telco operators provide developers with suitable development accounts, which
usually provide limited access to APIs for free. The problem is that each telco
operator has own rules, own payment options, and own authentication mech-
anisms. In order for a developer to be able to seamlessly test and debug a

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

8.7 Mashup Platforms 239

Fig. 8.17 Screen shot of the JackBe Presto developer community website.

telco mashup, the mashup platform’s test environment would need to take
over authentication with each involved API, a complex task that is currently
not supported but that we consider a requirement for future platforms.

8.7.1.3 Help and assistance

Finally, even with specifically tailored abstractions, graphical notations, and
debugging and test support mashup development may be a tricky endeavor.
A good mashup platform therefore provides developers also with suitable
help resources, which allow them to learn how to use the platform and how
to develop mashups with the platform. The most common help resources
are component descriptions, development notation explanations, tutorials,
and example mashups that can be used as reference for the implementation
of new mashups. Yahoo! Pipes facilitates, for example, the reuse of existing
mashups by providing a dedicated mashup cloning functionality, which allows
a developer to copy and paste an existing pipe model for modification and
evolution into a new pipe model.

Practice has however shown that documentation is never enough and com-
plete. This is especially true in the context of software development, which
is an area that is constantly under evolution and change. The best way to

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

240 8 Tool-Aided Mashup Development

address possible lacks in the documentation is the use of developer com-
munities, which allow the developers of a mashup platform to exchange
their experience and to leverage on the whole developer community’s knowl-
edge (e.g., via discussion forums). Figure 8.17 shows, for example, a screen
shot of JackBe Presto’s developer community website, which interconnects
developers with other developers as well as with experts by JackBe itself.
Developer communities are an e↵ective instrument for the bottom-up orga-
nization of development knowledge and can be considered an integral part of
many software development communities.

Other ways to provide assistance are based on recommendation on fre-
quently adopted components and composition patterns, that the tools gener-
ate by mining large repositories of mashup models. Chapter 9 will illustrate
such assistance mechanisms.

8.7.2 Mashup execution and operation

8.7.2.1 Execution

Some details about the internals of mashups, i.e., their internal architecture,
we already discussed in Chapters 6 and 7. The development of runtime en-
vironments for the execution of mashups developed with mashup tools asks
for software architectures that are the result of the joint application of that
knowledge and the knowledge about how to develop parameterized, genera-
tive architectures for architecture-centric, model-driven software development
(AC-MDSD) [256] (see Chapter 4).

In Figure 8.18, we recall the generic architecture for code generation in AC-
MDSD. In the context of mashup platforms, the core of the runtime environ-
ment corresponds to the components marked as generative architecture. The
infrastructure components are, for instance, the various protocol adapters,

Application

Platform

Individual
code

Application
model

Repetitive
code

Code
generator

Generation
templates

Generative architecture

usesConfigura-
tion files

Infrastructure componentsInfrastructure componentsInfrastructure components

Fig. 8.18 Code generation in architecture-centric MDSD. The generative architec-
ture corresponds to the runtime environment in Figure 8.15.

