
 1

Daniel · M
atera

Data-Centric Systems and Applications
Michael J. Carey · Stefano Ceri Series Editors

Florian Daniel · Maristella Matera

Mashups
Concepts, Models and Architectures

Data-Centric Systems and Applications

Mashups
Florian Daniel
Maristella Matera

Computer Science

DCSA

M
ashups Concepts, Models

and Architectures

Mashups have emerged as an innovative soft ware trend that re-interprets existing Web
building blocks and leverages the composition of individual components in novel,
value-adding ways. Additional appeal also derives from their potential to turn non-
programmers into developers.

Daniel and Matera have written the fi rst comprehensive reference work for mashups.
Th ey systematically cover the main concepts and techniques underlying mashup de-
sign and development, the synergies among the models involved at diff erent levels of
abstraction, and the way models materialize into composition paradigms and archi-
tectures of corresponding development tools. Th e book deliberately takes a balanced
approach, combining a scientifi c perspective on the topic with an in-depth view on
relevant technologies. To this end, the fi rst part of the book introduces the theoretical
and technological foundations for designing and developing mashups, as well as for
designing tools that can aid mashup development. Th e second part then focuses more
specifi cally on various aspects of mashups. It discusses a set of core component tech-
nologies, core approaches, and architectural patterns, with a particular emphasis on
tool-aided mashup development exploiting modeldriven architectures. Development
processes for mashups are also discussed, and special attention is paid to composition
paradigms for the end-user development of mashups and quality issues.

Overall, the book is of interest to a wide range of readers. Students, lecturers, and
researchers will fi nd a comprehensive overview of core concepts and technological
foundations for mashup implementation and composition. Even without low-level
coding details, practitioners like soft ware architects will fi nd guidance on key imple-
mentation concepts, architectural patterns, and development tools and approaches. A
related website provides additional teaching material which can be used either as part
of a course or for self study.

This book is timely, provides a through scientific investigation and also has prac-
tical relevance in the general area of composition and mashups. It is of particular
interest to researchers and professionals wishing to learn about relevant concepts
and techniques in service mashups, composition, and end-user programming.
From the Preface by Boualem Benatallah, University of New South Wales, Sydney

9 7 8 3 6 4 2 5 5 0 4 8 5

ISBN 978-3-642-55048-5

Chapter 9
Mashups and End-User
Development

Figures

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

9.3 EUD mashup scenarios 249

develops

Service Mashup tool Mashup

IT Expert

publishes mashes up uses

End User

Description

Data sources

Technologies ...
Layouts

Styles

Architectures

Protocols
Languages

Formats

chooses writes

develops

Service Mashup tool Mashup

IT Expert

publishes selects mashes up uses

End User

Description

Data sources

Technologies ...
Layouts

Styles

Architectures

Protocols
Languages

Formats

chooses writes

Service repository

Service repository

A

B

Fig. 9.1 Two main mashup development scenarios. (a) Expert developers exploit
mashup tools “centrally” to deliver applications quickly. (b) Users exploit such tools
to create mashups in a “distributed” fashion, starting from a set of ready services.

kind of development practices should be supported to empower the end-user,
and how traditional development processes should evolve to cope with the
new paradigm. Some studies on enterprise mashups [162, 207] in fact high-
light the contributions of di↵erent actors and their skill levels. In particular,
two main scenarios emerge, which di↵er in the heterogeneity of services to
be combined, the diversity of user needs, and the sophistication of either the
involved actors or the tools supporting their work.

Figure 9.1(a) shows the first scenario (centralized development), in
which expert developers (such as IT programmers, service providers, or so-
phisticated users) create mashups centrally, exploiting ready-to-use internal
or external resources to deliver applications quickly. End-users are not di-
rectly involved in constructing such mashups, but they benefit from the
shorter turnaround time for new applications.

Figure 9.1(b) shows the second scenario (participatory development),
in which the users create the mashups in a context characterized by multi-
ple stakeholders, each one participating with own skills and competencies.
The users start from a set of ready services, i.e., the mashup components,
that can be developed internally – purposely created according to the end-
users’ needs – or achieved by wrapping public services to adapt them to the
end-users’ need. Expert developers create components as well as the soft-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

252 9 Mashups and End-User Development

Implementation

Testing and
evaluation

Deployment,
maintenance, and

evolution

Requirements
analysis Design Implementation

Usage and
maintenance

Testing and
evaluation Offline prototype

Online Web application

Business requirements

Dismissal

Deployment

Implementation

Deployment,
maintenance, and

evolution

Discovery and
selection

Mashup
composition

Usage and
maintenance Online mashup

application
Dismissal

Mashup idea

Evolution
Evolution Deployment

(a) The life cycle model of current web applications (b) The mashup life cycle model

Fig. 9.2 Life-cycle models of (a) current Web applications and (b) mashups. The
model for the end-user development of mashups presumes the availability of a dedi-
cated mashup platform and toolkit, along with a set of open Web services that provide
functionality and data.

9.4.1 Component discovery and selection

The mashup composer starts with an idea that addresses personal needs and
preferences and then selects services that can provide the necessary data,
application logic, or user interfaces. Discovery and selection is a life-cycle
activity which is peculiar of mashup applications. It precedes mashup com-
position and implicitly incorporates requirements analysis and specification.
The mashup idea itself, which leads the composer to discover components,
can be indeed considered an informal expression of the application require-
ments. The selected mashup components then “specify” these requirements
in terms of the capabilities o↵ered by the selected services, thus proving in a
lightweight manner the idea’s feasibility and providing a draft of the mashup
organization that then, dynamically and iteratively, can be easily evolved into
the final application.

However, it might be complicated for a non-expert composer looking at
a programmatic interface or at a technical documentation to guess how a
component can be used, which of its features can be adopted and which e↵ect
each service may have on the overall composition. Therefore, in a context of
EUD mashup development, specific attention must be paid to the adoption
of adequate service representations. For example, showing the behavior of
services in terms of the data, functionality and UI they are able to o↵er
would help the users understand how the service can be used and integrated
in a mashup. Technical representations, for example highlighting input and
output parameters, that are far from the behavior of the service that can be
observed during the mashup execution, are di�cult to master by the end-
user. This of course entails the adoption of adequate component models, that
can mask the technology heterogeneity of components and expose only the

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

256 9 Mashups and End-User Development

Menu showing the list of
available components. Users
can add components in the
mashups by dragging and
dropping them into the
itneractive workspace

Once a component is added into
the workspace, its UI is
immediatly displayed and its
behaviour synchronizied with
the other components,
according to “default bindings”
based on component
compatibility

The user can enrich the default
synchronization behaviour, and
define further component
couplings by selecting possible
behaviours that the two
components have to show
within the final application

Fig. 9.3 The WYSIWYG composition editor of the PEUDOM platform [58, 183].

selecting a component is the immediate visualization of the component’s UI
populated with an initial data set (corresponding to a default query), which
can be modified by interacting with the component or by defining sensible
connections with other components to synchronize the di↵erent data sets
and visualizations. Service UIs are therefore adopted to represent services
as providers of data, of data visualizations and of functionality to query the
service data set. Of course, these kinds of WYSIWIG paradigms are suitable
for the creation of UI mashups, which however seems to be the types of
mashups that non-programmers are able to master best [199].

PEUDOM also enables the synchronization of components at the UI level.
Internally, the integration logic is based on an event-driven publish-subscribe
paradigm, and the synchronization of the component UIs is achieved by sub-
scribing component operations to other components’ parameters that are
produced by events raised during the user interaction with the components.
Each component therefore is modeled as a provider of events and operations,
two elements that are related to the component-external behavior and are
therefore observable trough the component UI. Proper wrappers add to the
original services the needed event-driven logic to expose sensible events.

Although such a component model already provides a conceptual layer
that abstracts from the constructs really needed for service invocation and
integration, the platform further assists the users in the definition of compo-

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

258 9 Mashups and End-User Development

Runtime environment

Component 1

Component 2
Component 3

<event>
 ...
</event>

Component
descriptors

Component registryDescriptor repository

Wrappers

<smdl>
 ...
</smdl>

State
descriptors

Back End

Front End

Web

Remote Proprietary
Data Sources

Web APIs

Local Proprietary
Sources

Visual Front End

<xpil>
 ...
</xpil>

Mashup
schemas

Status Manager

Recommendation
Manager

Execution Handler

Composition
Handler

Invokes
operations

Intercepts events

Event broker

Fig. 9.4 Internal architecture for WYSIWYG composition in PEUDOM [58, 183].

inside the composition handler which, being a mashup component, can in turn
be easily unplugged and/or replaced.

A similar WYSIWYG approach is also adopted in the EzWeb environment
[179]: within an interactive “dragboard,” dragging and dropping service icons
generates direct representations of the service UIs. In this platform, however,
there is still a distinction between mashup design and execution. The inte-
gration logic is indeed defined through a wiring language which, similarly to
the PEUDOM platform, is based on the definition of an event-driven publish-
subscribe logic. Although direct manipulation of the service front-end is pos-
sible, users are required to design the event flow first, and then execute the
mashup to see how it behaves. This cannot be considered a “pure” WYSI-
WYG composition paradigm. In fact, a WYSIWYG composition paradigm in
a mashup platform is a visual, interactive paradigm characterized by the in-
termixing of design and execution of mashups through which the users define
their composite applications, immediately experience the e↵ect of component
inclusion and component synchronization, and are enabled to iteratively and
interactively refine the resulting applications.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

262 9 Mashups and End-User Development

Fig. 9.5 Model of University of Trento’s internal department evaluation procedure
modeled in ResEval Mashup [155].

(a language that is specifically tailored to the development of the compos-
ite processes that characterize the domain) and a domain-specific syntax (a
syntax that makes use of domain terminology and conveys the semantics of
domain activities) that enable the domain expert to develop own mashups in
an as familiar as possible environment.

This definition of DMT does not necessarily imply specific technical or
technological choices. It rather emphasizes the di↵erence of a DMT from
generic tools, which instead are domain-agnostic and aim to support as many
domains as possibly by not making any assumption about the target domain
of the tool, neither in terms of interesting reusable functionalities nor in
terms of target mashups. Generic tools, therefore, focus more on technologies,
such as SOAP services or W3C widgets, while DMTs rather focus on specific
activities, such as the fetching of data from Google Scholar or the computation
of an h-index (independently of how these are implemented).

The research evaluation process shown in Figure 9.5 is an example of
domain-specific mashup expressed in the domain-specific, graphical modeling
notation (note the terminology used and the three types of components: data
sources, metrics, and charts) of ResEval Mash. The tool does not provide any
generic component, e.g., to fetch data from generic RSS feeds or to invoke
external Web services. Users do not need to specify any data mapping among
components; data mappings are derived automatically by the domain-specific
components, which all comply with a common concept model and a shared
memory structure.

The ingredients to implement a domain-specific mashup platform like Re-
sEval Mash can be summarized as follows [94, 156]:

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

9.5 EUD Dimensions for Mashup Tools 265

Integrated development environments (IDEs) for:
• Implementing software environments

for other stakeholders
• Implementing visual templates

Platform environment for:
• Service selection
• Service registration
• Definition of visual templates

Platform environments for:
• Mashup creation
• Mashup use through

different devices
• Mashup update and

evolution

Professional developers

Domain experts
 in collaboration with
 service experts

End users

Fig. 9.6 A meta-design approach for mashup creation. The bottom layer outlines
the environments for end-users, the middle and the top layers the environments for
experts developers and domain experts who operate customizing the platform [18].

The so-created resources, consisting of data sets retrieved by querying
services and visualization templates, are then made available to a mashup
dashboard where the end-users are enabled to further select the contents of
interest and compose their PIS. The composition in this dashboard adopts
visualizations and interactive features that can be customized with respect to
the characteristics of the target domain, thanks to a separation of the dash-
board presentation layer, guiding the selection and integration of data items
and services, from the mashup execution logic. The definition of a mapping
between elements of the presentation layers and integration constructs is also
defined. In this way, di↵erent front-ends, o↵ering di↵erent notations and com-
position mechanisms, can be provided on top of a same layer managing the
integration logic. The definition of visual templates and their mapping with
the underlying integration logic is an activity tackled by expert developers,
who are also in charge of defining and adapting the execution environments
to manage mashup execution on multiple devices.

The target of the Meta-DMT introduced in Section 8.6 [253], which en-
ables the conceptual development of custom mashup platforms, is actually
the development of domain-specific mashup platforms for EUD. Also this ap-
proach is a meta-design approach that builds on the ingredients introduced in
Section 9.5.2.1. The resulting development methodology and how the Meta-
DMT supports development is illustrated in Figure 9.7. Starting from the
analysis of the domain to support, which produces a domain concept model
and a domain process model, the Meta-DMT allows the developer to easily

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

266 9 Mashups and End-User Development

Domain Analysis

Domain concept model

Domain process model

DMT Design

DMT Implementation

DMT platform

Mashup components

Domain-specific
mashup language

Runtime environment

Mashup editor M
et

a-
D

M
TMashup features

Domain components

Domain syntax U
M

M

Fig. 9.7 Methodology for the development of domain-specific mashup tools with the
Meta-DMT described in [253].

configure the mashup features to support (which corresponds to the design
of the domain-specific mashup model) and an according domain-specific syn-
tax – everything based on the unified mashup model (UMM) of the Meta-
DMT. In this step, the developer also identifies the necessary domain compo-
nents and drafts their design. With this input, in the implementation phase
the Meta-DMT automatically generates then the complete domain-specific
mashup platform consisting of a domain-specific mashup language and an
according runtime and design environment. The developer implements the
domain components (e.g., manually) and registers them with the platform,
mapping them to the domain concept model and making them available to
the end-users.

9.5.3 Assistance capability

Lightweight development processes, WYSIWYG paradigms and domain-
specificity undoubtedly help to abstract and simplify mashup development to
end-users. Yet, end-users are not software developers and are therefore not
familiar with common software development practices, e.g., they don’t know
about components, about the need for mapping data from outputs to inputs,
about Web services and protocols. Abstraction and simplification alone can-
not fill this lack, which raises the need to help end-users in their task. One
way of fulfilling this need is by suitably assisting end-users through mecha-
nisms that can help them “learn” how to take advantage of the mashup tool
and the composition paradigm. Development assistance , in this respect,
refers to the capability of a mashup tool to take the initiative, both by adopt-
ing default settings deriving from elements of a domain-specific model, and
by recommending suitable components or composition patterns.

Mashup development can be therefore assisted or guided in multiple ways,
for instance, by automatically coupling components on behalf of the user
[62]. We already discussed in Section 9.5.1.1 how the PEUDOM design envi-
ronment is able to automatically identify and apply couplings between com-
patible components that the user adds into the design canvas. Also in the
OMELTTE approach for widgets composition, the users are not required

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

9.5 EUD Dimensions for Mashup Tools 269

Component Registry

Quality
Vectors

Association
Rules

Quality Broker

Event Handler

Adding a component

Component
Recommender

Front-end

Component ranking

QC,
added value

Wrappers

Back-end

Composition
Model

Component
Descriptors

������

���
��
��	�����

Web

new component
new listner

Candidate
components

Compat. &
Similarity
Matrices

Fig. 9.8 Modules for quality-aware recommendations in PEUDOM [61].

• The quality annotations specified in its descriptor are used to compute the
quality vector. A quality vector stores the measures achieved by computing
metrics starting from the component quality annotations.

The association rules reflecting community-based composition practices
are also computed o↵-line periodically, starting from the data crawled from
mashup repositories, publicly available (such as programmableWeb.com) or
local to the adopted mashup platform. Based on the data described above, the
recommendation algorithms are executed every time a component is added to
the composition. The event handler module intercepts the component addi-
tion in the front-end visual environment, and triggers corresponding actions
to i) update the composition model, and to ii) activate the component rec-
ommender. The component recommender generates the component ranking.
It analyzes the association rules, to discover the component categories to
recommend for mashup completion, and identifies the components in those
categories that are compatible and similar with the components already in
the composition. It then exploits a quality broker to compute the aggregated
quality and the added value indexes, based on the analysis of the quality
vectors and of the composition model. The result is a ranking of components,
based on the quality and the added-value increment that components can
give to the composition under construction.

All the modules related to the generation of recommendations run on
the server. In particular, the component recommender is implemented as a
REST service. The event handler is instead a client-side AJAX-based module,
which sends requests to the component recommender service. The component
ranking, serialized in JSON, is then sent back to the client AJAX front-end
that finally manages the visualization of the recommendations window.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

9.5 EUD Dimensions for Mashup Tools 271

Modeling editor in client browser

HTML rendering window

Modeling canvas

Event bus

Recommendation
engine

KB access API

KB loader

Co
m

po
ne

nt
 to

ol
 b

ar

Re
co

m
en

da
tio

n
pa

ne
l

Client-side
pattern KB

Partial mashup model

Composition server

Data
transformer

Mashup models

Pattern
extractor

Modeling actions
<object,action>

Modeling
instructions

Selection
events

Modeling actions
<object,action>

Recom-
menda-
tions R

Query

Patterns {cpi}

<mashup>
...
</mashup>

Raw pattern KB

<mashup>
...
</mashup>

Persistent
pattern KB

Co
m

po
sit

io
n

pa
tte

rn
 K

B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

Pattern weaver

Selection
events

Modeling
instruct.

Modeling expert

Object-action-
recommend. mapping

Similarity
metrics

Ranking
algos

Partial
mashup
model pm KB access API

Pa
tte

rn
 c
p i

De
ta

ils

Fig. 9.9 Simplified architecture of the assisted modeling environment with client-
side knowledge base and interactive recommender proposed in [73].

recommendation mapping tells the engine which type of recommendation is
to be retrieved for each modeling action on a given object.

The list of patterns retrieved from the KB (either via regular queries or
by applying dedicated similarity criteria) are then ranked by the engine and
rendered in the recommendation panel, which renders the recommendations
to the developer for inspection. The selection of a recommendation enacts
the pattern weaver, which queries the KB for the complete details of the
pattern (data mappings and value assignments) and generates the necessary
modeling instructions to weave the pattern into the partial mashup model.
Instructions are delivered to the modeling canvas via the internal event bus.

In [74], the authors describe a concrete implementation of this knowledge
recommendation architecture as a plug-in of the data mashup tool Yahoo!
Pipes (http://pipes.yahoo.com/). The tool is called Baya, and Figure
9.10 illustrates a screen shot of the tool in action; a demonstration of the tool
is described in [72]. The user study by De Angeli et al. [17] provides a posi-
tive feedback on a conceptual prototype of the tool, while in [243] the authors
describe a user study of the implemented tool, which demonstrates that in-
teractively recommending composition knowledge (i) significantly lowers de-
velopment times and (ii) decreases the number of user interactions required
to complete a mashup model.

© Copyright 2014 by F. Daniel and M. Matera. Reproduction for classroom use and teaching allowed if source is properly cited.

272 9 Mashups and End-User Development

Yahoo! Pipes
modeling canvas

Newly added component

Baya recommendation panel

Recommended
patterns

Details about
selected pattern

Component
toolbar

Fig. 9.10 Screen shot of the Baya plug-in for Yahoo! Pipes at work [74]: mashup
model patterns are recommended in the panel at the right-hand side and woven into
the model in the canvas by dragging and dropping them onto the canvas.

Other recommendation approaches in the context of mashups typically
work with simpler patterns or scenarios: Carlson et al. [63], for instance, re-
act to a user’s selection of a component with a recommendation for the next
component to be used; the approach is based on semantic annotations of
component descriptors and makes use of WordNet for disambiguation. Green-
shpan et al. [129] propose an auto-completion approach that recommends
components and connectors (so-called glue patterns) in response to the user
providing a set of desired components; the approach computes top-k recom-
mendations out of a graph-structured knowledge base containing components
and glue patterns (the nodes) and their relationships (the arcs). While in this
approach the actual structure (the graph) of the knowledge base is hidden to
the user, Chen et al. [71] allow the user to mash up components by navigating
a graph of components and connectors; the graph is generated in response
to the user’s query in form of descriptive keywords. Riabov et al. [238] also
follow a keyword-based approach to express user goals, which they use to
feed an automated planner that derives candidate mashups; according to the
authors, obtaining a plan may require several seconds. Elmeleegy et al. [109]
propose MashupAdvisor, a system that, starting from a component placed
by the user, recommends a set of related components (based on conditional
co-occurrence probabilities and semantic matching); upon selection of a com-
ponent, MashupAdvisor uses automatic planning to derive how to connect
the selected component with the partial mashup, a process that may also
take more than one minute. Beauche and Poizat [32] apply automatic plan-

