Toward Web Service Dependency Discovery for SOA Management

Sujoy Basu
HP Laboratories
1501 Page Mill Road
Palo Alto, CA 94304, USA
001 650 236 2044
sujoy.basu@hp.com

Fabio Casati
University of Trento
Via Sommarive 14
38050 Povo (TN), Italy
0039 0461 88 2044
casati@dit.unitn.it

Florian Daniel
University of Trento
Via Sommarive 14
38050 Povo (TN), Italy
0039 02 2399 3667
daniel@dit.unitn.it

ABSTRACT

The Service-Oriented Architecture (SOA) has become today’s reference architecture for modern distributed systems. As SOA concepts and technologies become more and more widespread and the number of services in operation within enterprises increases, the problem of managing these services becomes manifest. One of the most pressing needs we hear from customers is the ability to "discover", within a maze of services each offering functionality to (and in turn using functionality offered by) other services, which are the actual dependencies between such services. Understanding dependencies is essential to performing two functions: impact analysis (understanding which other services are affected when a service becomes unavailable) and service-level root-cause analysis (which is the opposite problem: understanding the causes of a service failure by looking at the other services it relies on). Discovering dependencies is essential as the hope that the enterprise maintains documentation that describe these dependencies (on top of a complex maze and evolving implementations) is vane. Hence, we have to look for dependencies by observing and analyzing the interactions among services.

In this paper we identify the importance of the problem of discovering dynamic dependencies among Web services and we propose a solution for the automatic identification of traces of dependent messages, based on the correlation of messages exchanged among services. We also discuss our lessons learned and results from applying the techniques to data related to HP processes and services.

Keywords
SOA Management, Service Dependency, Discovery.

1. INTRODUCTION

Discovery of dependencies among components of large distributed systems is an important technology for management software. In enterprise IT systems, many tools for discovery exist that find the relationships among components, e.g., by looking into configuration files. These tools can discover for example that an application running in a J2EE application server depends on an Oracle server running on another host. It proves very effective when discovering static dependencies among coarse-grained systems.

However, customers are increasingly asking for the capability to discover dynamic dependencies among services. In fact, many business applications today are based on a service-oriented architecture (SOA), which implies that they are composed of loosely-coupled, reusable services. When a service has a failure or performance degradation, all other services that depend directly or indirectly on this service might be impacted. It is important to understand what these dependencies are, so that management tools can display and alert users about the business impact of failures and performance degradations. Furthermore, knowledge of dependencies considerably simplifies service-level root-cause analysis, that is, trying to understand the origin of a failure.

The dependencies can be explored in tools such as HP OpenView SOA Manager, and the performance metrics of all the dependent services are captured. However, currently the dependencies must be explicitly specified in SOA Manager. This works in theory when enterprises enforce change management processes strictly. Any change in dependencies of a SOA business application on the underlying services can then be captured in a database and updated in SOA Manager. In practice, these processes are not always followed. Furthermore, the specification of the dependencies may include some inaccuracies. This is why customers have repeatedly requested to endow SOA Manager with a dependency discovery module, which derives dependencies by looking at message exchanges among services.

In this paper we present a module that automatically analyzes service execution data to discover dynamic dependencies among services. The problem is far from trivial as it requires understanding correlations among message exchanges between services. For example, if we observe that service A invokes service B, and service B invokes service C, in which cases can we say that the second invocation is caused by the first and that there is, therefore, a dependency between A and C? This is already a problem in this simple scenario with three services, and it becomes a much more complex problem when there are multiple services used in different combinations and delivering different kinds of functionality. Hence, the problem is important from a business standpoint and is challenging from a research perspective.

This paper is structured as follows. In Section 2 we describe our reference architecture and formalize the problem addressed in this paper. In Section 3 we position the problem with respect to related work, while in Section 4 we describe our own approach to the discovery of dependencies among Web services, and we discuss the underlying algorithm in more detail. In Section 5 we report on our first experiments and the results obtained so far. Finally, in Section 6 we conclude the work and provide an outlook over ongoing and future work.
Intercepting messages and their responses using either of these two approaches is primarily for the purpose of computing metrics such as response time or request frequencies. However, the intercepted message traces are also stored in a centralized database to enable auditing. Dependencies among services can thus be discovered by analyzing these message traces.

As our study aims to identify dependencies based on real log data and without requiring SOA Manager to provide any additional logging feature, there are a few considerations that need to be taken into account and that constrain the possible solution space:

- We cannot rely on any protocol-specific correlation or addressing information possibly encoded in the body of intercepted messages, as for example provided by WS-Coordination or WS-Addressing. Although such protocol extensions are good practice, they still lack widespread use. The result is that, given any set of messages, we cannot determine in general if two messages belong to the same conversation. Even if WS-Coordination or WS-Addressing are used, the scope of the coordination typically encompasses only the interaction among a few services, and does not follow all dependencies (indeed, it would otherwise violate the very same loose coupling principle on which SOA are based).
- We cannot analyze the body of traced messages, because although the logging mechanism does support the logging of message bodies, this feature is in general disabled by system administrators: the load is often too much unless in trivial lab tests.
- For a given message, in general we only know the destination service/operation and the network address of the node that hosts the source service, unless WS-Addressing is used. If WS–Addressing had widespread support, this would not be a problem. But since this is not yet the case (and it is not clear when this standard will become widely used), the availability of only the IP address of the sending service complicates the problem of inferring dependencies between messages, since multiple services can be located at an individual IP address.
- Finally, we observe that logged data only contains messages sent by or directed to services managed by SOA Manager. Possible service dependencies outside the managed environment cannot be derived.

2.2 Problem Statement

Given the above considerations and an assignment of Web services \(S \in S \) (\(I \subseteq S \) and \(S \) being the set of Web services managed by SOA Manager) to the nodes \(N \in N \) (\(I \subseteq N \) and \(N \) being the set of computing nodes managed by SOA Manager) by means of the a function \(loc:S \rightarrow N \), we can formalize a message \(M \) as tuple \(M=(N,S_d,t) \), where \(N_i \) is the IP address of the source node, \(S_d \) is the destination service, and \(t \) is the time the message is received by \(S_d \).

Being \(L=(M_1, M_2, ..., M_m) \) the chronologically ordered message log with \(t_1 < t_2 < ... < t_m \) and being \(t_{i+1} \) the time corresponding to the last logged message, our problem of discovering dependencies among Web services can be reformulated as the discovery from the log data of all those message traces \(T=(M_1, M_2, ..., M_m) \) with \(t_1 < t_2 < ... < t_k \), \(k \leq m \), and \(S_{i+1} \) located on \(N_{i+1} \) and \(M_{i+1} \) generated by \(S_d \) in response to \(M_i \) for all \(1 \leq k \leq I \). In short, we need to identify traces of messages that are causally (e.g. functionally) dependent.
logic that represents the message trace
different numbers of Web services and, in particular, four services
temporal order of the messages. There are four nodes that host
node B since
entries. In the absence of support for WS-Addressing, when
2 to
S2
prevalently in the area of
There are several works in literature that address similar issues,
Research works.
3.
Itemset mining
Itemset mining, as an instance of sequence mining technique, is
used above all in marketing and CRM applications to identify
repeated patterns in a sequence of (business) transactions. In [5]
the authors describe for example an interesting approach to
sequential pattern mining (GSP) that also leverages user-defined
taxonomies during the mining process and outperforms their
previously proposed AprioriAll algorithm. For an overview of
frequent itemset and association rule mining the reader is referred
to [7].
Unfortunately, itemset mining techniques are not applicable in
our case, as we do not have any notion of confined and identifiable
transactions. We are given a flat, sequential log stemming from a
distributed computing environment where possible correlated
communications, i.e. conversations, are not tagged by a unique
conversation identifier, and their message sequences are typically
interleaved in the log file.
Our problem thus resembles more closely the one addressed by
another sequence mining technique, i.e. string or episode mining.
String mining (see for example [8]) is heavily adopted in
bioinformatics, while episode mining (see for example [4] and
[9]) rather concentrates on large event sequences, e.g. in the
telecommunications domain.
Especially the work presented in [4] could be promising in our
context, but there are two main constraints that differentiate our
problem from the one studied by the authors in [4]: (i) a log entry
(i.e. a message sent from service S1 to service S3) does not
uniquely identify the source service, as we only are given the
source IP address, at which there might be located several
different services possibly generating the message; (ii) we are in
presence of both short-running conversations and long-running
business processes, which makes it difficult to identify suitable
time windows for the mining process and, thus, heavily would
increase computation times.
In [2] the authors concentrate on performance debugging in
distributed systems, a conceptually similar problem to the one
discussed in this paper. They propose two interesting approaches,
which are not based on mining techniques: an algorithm based on
the nesting of request and response messages in RPC-style
communications, and an algorithm based on signal processing for
free-form message-based communications. While the former
algorithm is not applicable to our domain, the latter, again,
presents the problem of sizing a suitable time window a priori in
presence of long-running business processes. In [3] the authors
present their message-linking algorithm, an evolution of the work
presented in [2], which assumes that causal delays between an
incoming and an outgoing message follow an exponential
distribution. If the time difference between an incoming and an
outgoing message exceeds four times the average delay that can
be derived for the two messages from the event log, no causal
dependency is assumed anymore; this corresponds to adopting a
different time window for each pair of incoming and outgoing
messages at each node of the system.
Competitive approaches and products. The main constraint
imposed by our reference scenario is that we cannot run agent
code in all service containers, which would allow us to tag
correlated messages with a unique identifier, and dependent
messages could be identified with certainty on the basis of the
identifier. This is however the approach taken by several vendors
in the SOA management space, such as Actional (Sonic Software)
and IBM. The patented solution by Actional [10], for example, is
based on agents that operate on the application protocol level and
have visibility of both inbound and outbound messages. Agents
tag messages with correlation data (both in input and in output)
and feed a proper Agent Analyzer module with the enriched
message records, which is then able to accurately trace all
dependencies that exist among the running services.
This approach however does not work for Web services that do
not run in containers, as might be the case for legacy applications
to which Web service interfaces have been added. Instead, it is
our goal to also support Web services that run outside service
containers.
4. DEPENDENCY DISCOVERY
We now present our approach to dependency discovery. The
problem of dependency discovery is complex because in many
situations there is a large number of invocations on a fairly large

Figure 2 Example sequence of message exchanges among
managed services. Circles represent computing nodes,
rectangles represent Web services.
number of services. Hence, if we restrict our approach to the
simplistic determination of checking that when service A is
invoked, then service B is invoked shortly afterwards, we would
be out of luck, since both A and B are frequently invoked and it is
not possible to say that two given invocations are dependant. The
more frequent service invocations are, the more complex the
problem becomes, and in general it is impossible to be “certain”
about a dependency. Hence the philosophy we have taken in this
work is to find a set of “suspicions” (rather than evidences) that
two services are dependant. When we have sufficient suspicions
we conclude that a dependency exists.

Specifically, our approach to the discovery of dependencies
among Web services according to the definitions given in Section
2.2 and in consideration of the works discussed above is
composed of four consecutive steps:

1. Inference of a causal dependency within message pairs in the
 log, where the first message is received at the service
 node from which the second message originates. In this
 part we adopt and combine different techniques to detect
 potential dependencies.

2. Construction of a probabilistic dependency graph as
 concatenation of all identified dependencies between pairs
 of messages by taking into account the assignment of
 services to nodes loc:S→N. Edges are labeled with a
 confidence level, which is the probability of the identified
 dependency.

3. Pruning of the dependency graph by applying a user-
 specified threshold Tp to the probabilities associated with
 the edges of the graph, thus simplifying the graph and
 keeping only “relevant” edges.

4. Construction of paths from the pruned graph and mining
 of the audit log to decide which of the paths indeed occur
 with a frequency greater than a given threshold Tp.

Further details on these four phases are given below.

4.1 Inference of Causal Dependencies

Inferring causal dependencies within message pairs is the first and
basic step toward the identification of entire traces (i.e. paths) of
dependent messages. In our current work we investigate three
different dependency identification algorithms that leverage the
following ideas in order to associate a dependency probability to
pairs of messages:

- Occurrence frequency of logged message pairs;
- Distribution of service execution times;
- Histogram of execution time differences.

In this paper we show results based on all three approaches.
However for the second and third approach, we have not yet
automated the selection of dependencies since thresholds need to
be tuned. We are currently performing this tuning using SOA
applications from different domains, and will present the results in
the camera-ready version of the paper.

4.1.1 Occurrence Frequency

The first approach is based on the frequency of the occurrence of
message pairs in the log data, i.e. it is based on the conditional
probability that a message M2 can be found in the log data,
knowing that M1 has been found.

We fix a time window size w (1≤w≤tlast), which corresponds to the
limit on the execution time of a service from the time a message is
received by the service until a dependent message is sent out by
the service. If the conditional probability of message M2 appearing
within the time window whenever message M1 occurs in the
database exceeds some threshold, we infer that message M2 is
dependent on message M1.

The detailed algorithm is described by the following pseudo-code:

Algorithm:

Get conditional message dependency probabilities

Initialize i=1.
Initialize an empty set CM of message counters.
Scan the audit log data L in order of increasing timestamps,
and execute for each message M_{i} \in L, 1 \leq i \leq t_{last}:

Step 1: Initialize the time window W_{i} corresponding
to message M_{i} with W_{i}=(M_{1}, M_{2}, \ldots, M_{k}), W_{i} \subseteq L and M_{j} \in L for t_{j} \leq t_{i}.

Step 2: Initialize an empty set Si of message signatures
and an empty set CP of message counters. A message
signature of a message M consists of a hash function
computed over sender, receiver and invoked operation

Step 3: Start at the earliest message in the time window
if M_{i} is not present in the time window (t_{i} = t_{last}).
Alternately start at the message following the most
recent occurrence of M_{i} in the time window (t_{i}). Execute
for each message P_{i} (ps<\alpha) from the starting point to the
end of the time window:

Step 3a: If there is a potential causal dependency
from P_{i} to M_{i} indicated by the destination service of
P_{i} being located at the same node at which M_{i}

Step 3b: If Si \in Si, set i=i+1 and CP_{i}=CP_{i}+1 and
go to Step 3.

Step 3c: Add signature Si to Si, set CP_{i}=1 and
add the counter CP_{i} to the set CP. Got to Step 3.

Step 4: If CM_{i} \in CM set CM=CM_{i}+1, else set CM_{i}=1 and
add the counter CM_{i} to the set CM.

Step 5: Increment i=i+1 and go to Step 1.

After the scan of the log database is completed, the
conditional probability P(P_{i}M/P_{i}) is easily computed as

\[P(P_{i}M/P_{i})=CP_{i}/CM_{i} \]

4.1.2 Execution Time Distribution

The second approach is based on the statistical distribution of
service execution times from the instant a message is received
until a dependent message is sent out.

We assume that service execution times follow a specific
statistical distribution (e.g. a normal distribution or an exponential
distribution, as suggested in [3]). To verify whether a specific
message pair is indicative of dependency, a distribution test will
be applied to the time differences between the specific incoming
and outgoing messages, which can be derived from the message
log data. We look in particular for normal distributions. Only
those message pairs whose distribution of time differences fits the
statistical distribution with a confidence level exceeding a
predefined threshold will be considered dependent. Several
statistical approaches and tools to find distributions are available.
so our goal is not to create a new approach to discovering distributions here.

Multiple instances of a message pair may be interleaved; hence, identifying an instance of a message pair will involve heuristics like skipping a certain number of occurrences of messages or deriving a suitable maximum time window to consider. The preliminary tests performed on some real service log data (see Section 5) confirmed our initial intuition that in absence of interleaved message pairs, dependent messages yield a normal distribution, while in presence of interleaved message pairs, dependent messages yield an exponential distribution.

4.1.3 Time Difference Histogram

The third approach is based on the computation of a histogram of the time differences for all instances of the message pairs, without assuming any predefined statistical distribution a priori.

The presence of a small number of consecutive buckets of the histogram with counts much higher than the average count across all buckets is a likely indicator of the messages having a dependency. As we will show in the following section, this technique is especially suited to the human user inspecting the service log data and looking for dependencies.

The current weakness of the previous two approaches is that we have not yet performed a thorough data analysis on different datasets to be able to state with precision which thresholds are appropriate. Such a thorough analysis is underway and will need to be completed before these two additional techniques for dependencies are included in the tool. However, data confirms the intuitions described above in terms of distributions and histograms.

4.2 Creating the Dependency Graph

Once causal dependencies within pairs of messages have been identified, a probabilistic dependency graph is created with nodes corresponding to services and edges corresponding to messages. The construction of the dependency graph is based on inferred dependencies among messages, the association of messages to services, and the assignment of services to nodes located in the system. Since all the techniques illustrated in the previous step produce results of probabilistic nature, each edge or message of the graph is labeled with a probability that expresses the confidence level of the inferred dependency and the probability of the message to source service assignment performed during the construction of the dependency graph.

4.3 Pruning the Dependency Graph

The so created probabilistic dependency graph summarizes the associations of probabilities to messages, of messages to services, and of services to nodes that could be derived from the log data. In order to discriminate paths in the dependency graph with low probabilities, we now prune the edges of the graph by applying a predefined threshold T_p. Varying the threshold determines how selective we are about the dependencies that are found. A low threshold only generates dependencies of which the system is more certain. A high threshold implies more dependencies, but of which we can be less confident. Graphically, this translates into a slider that shows dependencies at the changing of the threshold in the slider.

4.4 Identifying Frequent Paths

From the pruned dependency graph created in the previous step, we now identify all possible paths representing traces of dependent message exchanges among the managed services, i.e. web service conversations. The identification of a conversation requires computing the effective support of the paths by inspecting once again the audit log data. The audit database is thus mined to decide which of the listed paths occur with a frequency exceeding a predefined threshold T_p; paths with a high enough support represent likely conversations, paths with a low support are discarded.

At the end of these steps, we obtain the graph of dependencies. Since composite applications built on SOA principles use only some of the services as entry points, we can assume that these services are provided as input to the dependency discovery process. In the previous step, only the frequent paths rooted in these services need to be identified. These frequent paths together form trees rooted in these entry points. These trees are provided as dependencies to SOA Manager. Any alert in a monitored service is then propagated along the edges of the trees, and helps in quickly identifying the service where the root-cause of a problem lies.

5. EXPERIMENTS AND RESULTS

Our first experiments with dependency discovery focus on the derivation of the conditional probabilities as described in Section 4.1.1. We based our analysis on HP-internal data about the execution of business processes invoking various services within HP. In the following we will first describe how we converted this data into a format that is compliant with our algorithm (i.e. compatible with SOA Manager audit log data), then we will present the results of our experiments.

5.1 Data Collection and Preparation

Our data set consists of 2 tables of process execution data, which through some elaborations can be transformed into Web service audit log data. The first table lists all the instances (activities) executed in the workflow graphs. Each entry has a node ID and a descriptive name. Since there are multiple workflows, each entry also has a flow ID representing the workflow to which the node belongs. The second table lists all the instances of the workflows described in the first table, that were executed between 6th and 15th July, 2005. Each entry in this table has the node ID from the first table, a begin and an end timestamp of the activity, a unique node instance ID, and a flow instance ID that correlates all node instances of the same workflow.
To preprocess this data set and generate the message trace that our algorithm can accept as input, we analyzed the first table to identify all workflows. Figure 3 shows the result of this analysis in form of simplified BPMN process specifications. The log data contains data coming from three different workflows, where workflow 1 is further characterized by the presence of two different paths.

We observed by extracting all entries for a flow instance ID (i.e. a workflow) in the second table that the end timestamp of a node was the same as the begin timestamp of the successor node, according to the activity order depicted in Figure 3. This was verified for several flow instance IDs and could thus be expected to be generally true for this dataset since it consists of workflows. We used this peculiarity as the basis for generating message traces.

Each entry in this message database consists of a pair of nodes and the timestamp at which the first completed and the second started. Since the SOA Manager audit database would contain the actual message sent from the first to the second service, we create that field of the entry by taking a hash of the two node names. In the following we characterize a message from a service S1 to a service S2 as a tuple (1,2) of their identifiers (cf. Figure 3 for the identifiers of the activity instances in our experimental data).

5.2 Experimental Results

Using the occurrence frequency approach of section 4.1.1, we were able to identify all the dependencies existing among the messages in the log data prepared in the previous step, i.e. we were able to identify all the dependencies existing among the workflow activities depicted in Figure 3. Table 1 shows the probabilities that could be computed and that represent the confidence level with which an outgoing message is causally dependent on an incoming message.

The dependencies reported in Table 1 match what occurs in the actual implementation (see Figure 3). The technique based on conditional probabilities is therefore able to find dependencies that go beyond the obvious and direct ones.

<table>
<thead>
<tr>
<th>Incoming message</th>
<th>Outgoing message</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6,7)</td>
<td>(7,8)</td>
<td>0.83</td>
</tr>
<tr>
<td>(5,6)</td>
<td>(6,7)</td>
<td>0.89</td>
</tr>
<tr>
<td>(2,3)</td>
<td>(3,4)</td>
<td>0.94</td>
</tr>
<tr>
<td>(0,1)</td>
<td>(1,2)</td>
<td>0.95</td>
</tr>
<tr>
<td>(1,2)</td>
<td>(2,3)</td>
<td>0.95</td>
</tr>
<tr>
<td>(9,10)</td>
<td>(10,11)</td>
<td>1.00</td>
</tr>
<tr>
<td>(10,11)</td>
<td>(11,12)</td>
<td>1.00</td>
</tr>
<tr>
<td>(13,14)</td>
<td>(14,15)</td>
<td>1.00</td>
</tr>
<tr>
<td>(14,15)</td>
<td>(15,16)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

We have mentioned earlier that the techniques in section 4.1.2 and 4.1.3 currently depend on the user’s intuition for the thresholds to be set correctly. We provide two examples in Figure 4 and Figure 5. Figure 4 shows the application of the execution time distribution test from Section 4.1.2 to our test data. As can be seen in the figure, the values of the test for dependent messages are clearly lower than the values of the test for independent messages. This proves that the distribution test is suited for the automated identification of dependencies, yet appropriate thresholds need to be defined. Figure 5 shows the application of the histogram technique from section 4.1.3. We have highlighted dependent messages, namely the transmission of a document to the OCR system as a result of the transmission of its scanned image to the archival system. The exponential shape of this histogram is characteristic of dependent messages with interleaved message pairs. For independent messages, the histogram typically depicts bars of fairly uniform size. We need to train a classifier to determine whether the messages corresponding to a histogram should be classified as dependant or independent.

1 Business Process Modeling Notation
Figure 5 Two screen shots of the execution time distribution test (see Section 4.1.2). The first image shows the values of the test performed on independent messages, the second image shows the results of the test performed on dependent messages. The lower the value of the test, the better the measured time differences follow the chosen reference distribution.

<table>
<thead>
<tr>
<th>Notes</th>
<th>Exponential test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected >> Approve >> Rejected</td>
<td>18122</td>
</tr>
<tr>
<td>Rejected >> Approve >> Second level approve</td>
<td>65323</td>
</tr>
<tr>
<td>Rejected >> Approve >> Approved</td>
<td>51936</td>
</tr>
<tr>
<td>Rejected >> Approve >> New form submitted</td>
<td>60797</td>
</tr>
<tr>
<td>Rejected >> New form submitted >> Rejected</td>
<td>10844</td>
</tr>
<tr>
<td>Rejected >> New form submitted >> Approve</td>
<td>71728</td>
</tr>
<tr>
<td>Rejected >> New form submitted >> Second level approve</td>
<td>52065</td>
</tr>
<tr>
<td>Rejected >> New form submitted >> Approved</td>
<td>52048</td>
</tr>
<tr>
<td>Approve >> Rejected >> Approve</td>
<td>18246</td>
</tr>
<tr>
<td>Approve >> Rejected >> New form submitted</td>
<td>18530</td>
</tr>
<tr>
<td>Approve >> Second level approve >> Approve</td>
<td>116219</td>
</tr>
<tr>
<td>Approve >> Second level approve >> Approved</td>
<td>116219</td>
</tr>
<tr>
<td>Approve >> Second level approve >> New form submitted</td>
<td>116219</td>
</tr>
<tr>
<td>Approve >> Approved >> Approve</td>
<td>160847</td>
</tr>
<tr>
<td>Approve >> Approved >> New form submitted</td>
<td>133789</td>
</tr>
<tr>
<td>Approve >> Approved >> Second level approve</td>
<td>53410</td>
</tr>
<tr>
<td>Approve >> New form submitted >> Rejected</td>
<td>67974</td>
</tr>
<tr>
<td>Approve >> New form submitted >> Approve</td>
<td>283317</td>
</tr>
<tr>
<td>Approve >> New form submitted >> Second level approve</td>
<td>210528</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>Exponential test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive PO >> Compare >> Get Approval</td>
<td>37110</td>
</tr>
<tr>
<td>Transmit to Archive >> Archive >> Transmit to OCR</td>
<td>37036</td>
</tr>
<tr>
<td>Compare >> Get Approval >> Pay</td>
<td>37279</td>
</tr>
<tr>
<td>Receive & Scan >> Transmit to Archive >> Archive</td>
<td>36677</td>
</tr>
<tr>
<td>Archive >> Transmit to OCR >> OCR Import</td>
<td>3662</td>
</tr>
<tr>
<td>Receive PO >> Compare >> Get Approval</td>
<td>1356</td>
</tr>
<tr>
<td>Transmit to Archive >> Archive >> Transmit to OCR</td>
<td>1345</td>
</tr>
<tr>
<td>Compare >> Get Approval >> Pay</td>
<td>1367</td>
</tr>
<tr>
<td>Receive & Scan >> Transmit to Archive >> Archive</td>
<td>1276</td>
</tr>
<tr>
<td>Archive >> Transmit to OCR >> OCR Import</td>
<td>1388</td>
</tr>
</tbody>
</table>

Figure 5 In this time difference histogram (see Section 4.1.3), we have highlighted two dependent messages. In the histogram at the right hand side one can easily identify the exponential distribution.
6. CONCLUSION AND FUTURE WORK
In our research we focus on the (semi)automated discovery of complete Web service coordination protocols from unstructured message logs, a relevant research topic in SOA-based distributed systems. In [1], we describe how we have implemented a tool that discovers the model underlying the interaction between services, in terms of state machines for each individual service, given a set of correlated message traces. The models for the different services can be composed to derive the model describing the overall interaction, i.e. the coordination protocol. The solution proposed in this paper complements and extends the work presented in [1] by deriving the necessary correlated message traces from unstructured service execution log data.

We have shown that understanding and discovering dependencies in SOA-based distributed systems is however a complex task and that it is not easy (if not unfeasible in certain situations) to derive dependencies with certainty. The quality of the probabilistic dependency models that can be derived from audit logs is strictly related to the quality of the logged data. As a consequence, in the absence of uniquely identifiable message exchanges – as discussed in this paper – sometimes we may only be able to infer dependency with high probability rather than absolute certainty. Despite this uncertainty, in this paper we have shown that it can anyway be possible to derive useful correlation data from such kind of audit log data.

Although in this paper we discussed the problem of dependency discovery among Web services in the context of HP SOA Manager, we would like to emphasize that the problem is general in nature. Unfortunately, situations where only very poor message log data is available are the majority, e.g. due to the use of different vendor technologies or incompatible audit logging policies.

Our future work will be experiments for determining thresholds for the distribution and histogram techniques. We also intend to algorithmically combine these two techniques with the occurrence frequency technique to make the dependency discovery more accurate, and free the user from the task of deciding which technique will work best in a new situation.

7. ACKNOWLEDGMENTS
We would like to thank the SOA Manager product R&D team for many useful discussions.

8. REFERENCES