
Enabling End User Development through Mashups:
Requirements, Abstractions and Innovation Toolkits

Cinzia Cappiello1, Florian Daniel2, Maristella Matera1, Matteo Picozzi1 and
Michael Weiss3

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione

P. zza L. da Vinci, 32 - 20134 Milano, Italy
{Cinzia.Cappiello,Maristella.Matera,Matteo.Picozzi}@polimi.it

2 University of Trento

Via Sommarive 14, 38123 Trento, Italy
daniel@disi.unitn.it

3 Carleton University

1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada
weiss@sce.carleton.ca

Abstract. The development of modern Web 2.0 applications is increasingly
characterized by the involvement of end users with typically limited
programming skills. In particular, an emerging practice is the development of
web mashups, i.e., applications based on the composition of contents and
functions that are accessible via the Web. In this article, we try to explain the
ingredients that are needed for end users to become mashup developers, namely
adequate mashup tools and lightweight development processes, leveraging on
the users’ capability to innovate. We also describe our own solution, the
DashMash platform, an example of end-user-oriented mashup platform that
tries to fill the gaps that typically prevent end users from fully exploiting the
mashup potential as innovation instruments. DashMash offers an intelligible,
easy-to-use composition paradigm that enables even inexperienced users to
compose own mashups. As confirmed by a user-centric experiment, its
paradigm is effective and increases the satisfaction of the end users.

Keywords: Web Mashups, End User Development, User-driven Innovation

1 Introduction

The current trend in the development of modern web applications – and in particular
of those applications commonly referred to as Web 2.0 applications – clearly points
toward a high user involvement. One of the emerging “user-intensive” practices today
is the development of online applications starting from contents and functionality that
are available on the Web in form of open APIs or reusable services. A “classical”
example is www.housingmaps.com, which interweaves housing offers taken from the
Craigslist with Google Maps. The phenomenon is commonly known as web mashups,

2 Cinzia Cappiello et al.

and it shows that web users are increasingly also taking part in the development
process of web applications, in addition to taking part in the content creation process
like in social web applications (e.g., Wikipedia).

The use of open services is a unique feature that distinguishes mashup develop-
ment from other (component-oriented or service-based) development paradigms.
Currently, the most popular mashups integrate public programmable APIs (like
Google Maps and the Twitter API), but also RSS/Atom feeds (e.g., stock news),
content wrapped from third party web sites (e.g., product prices), or any kind of
available Web services providing computing support or acting as plain data sources
[26]. However, the vision is that of so-called enterprise mashups [15], a porting of
current mashup approaches to company intranets, enabling enterprise members to
play with a company’s internal services that give access to the enterprise information
assets, and to mash them up in innovative, hopefully value-generating ways, for
example, to automate a recurrent bureaucratic procedure.

Provided that suitable tools and methodologies for mashup composition are
available, through these open services (both public and company-internal services)
even less skilled end users could evolve from passive receivers of innovation to actors
actively involved in the creation of innovation. Aggregated over all users, this speeds
up innovation (as users conduct parallel experiments with the same service), and
covers a wider range of the design space than the service providers could have
achieved on their own, had they not exposed their services to other parties. The effort
that almost all of the big players of today’s Internet economy (e.g., IBM, Intel,
Yahoo!, SAP, etc.) are investing into research on mashups is indeed a clear indicator
that there is something going on, which goes beyond the current “hacking” of
mashups on the Web.

Despite this great potential, there is however a lack of adequate tools and
methodologies that really empower the end user to compose services and innovate. In
this article, we explore the mashup world, its potential as a tool to be offered to end
users to create innovation and its current limits, and propose a new solution through
which end users can easily create mashups. In Section 2, we shortly introduce the
mashup world and explain why end users are interested in doing their own
applications and who else benefits from this practice. Guided by our experience in the
development of mashup tools, and by some experimental results, we then discuss the
mashup development process and derive a set of requirements that mashups should
meet, in order for end users to be able to use them profitably (Section 3). Next, we
describe our tool, DashMash, that has been conceived to enable users to easily
compose mashups supporting analytical processes and, hence, to innovate (Section 4),
and in Section 5 we report on a user evaluation of DashMash. In Section 6 we discuss
related work, and in Section 7 we finally draw our conclusions.

2 Rationale and Background

Web mashups support the “composition” of applications starting from services and
contents oftentimes provided by third parties and made available on the Web.
Mashups were initially conceived in the context of the consumer Web, as a means for
users to create their own applications starting from public programmable APIs, such

Enabling End User Development through Mashups 3

as Google Maps or the Twitter API, or contents taken from Web pages1. However, the
vision is towards the development of more critical applications, for example the so-
called enterprise mashups [15], through which enterprise users can compose by
themselves and in a flexible way their dashboards for process and data analysis, using
the plethora of available corporate services (e.g., for the access to a variety of
enterprise information sources), Web resources and open services. Mashups are
therefore gaining momentum as a technology for the creation of innovative solutions
in any context where flexibility and task variability become a dominant requirement.
A “culture of participation” [10], in which users evolve from passive consumers of
applications to active co-creators of new ideas, knowledge, and products, is indeed
more and more gaining momentum [25].

2.1 User-based innovation and innovation toolkits

There is a specific driver at the heart of the mashup phenomenon and user
participation: user innovation, i.e., the desire and capability of users to develop their
own things, to realize their own ideas, and to express their own creativity. In a
traditional design-build-evaluate cycle, feedback from the user is only collected once
a product prototype has been developed. Thus feedback is collected late, and changes
to the product that reflect an improved understanding of customer requirements are
costly. In a user-driven innovation approach, a service provider offers users an
innovation toolkit through which users can build their own products [23]. This toolkit
provides a constrained interface on the capabilities of the company’s product
platform, but this ensures that the new products are properly constructed, adhering to
a sort of conservative invention [12].

In general, the idea behind an innovation toolkit is that the iterative
experimentation needed to develop a new product can now be entirely carried out by
the user. Many users can work in parallel on the solution to a problem, by focusing on
their own version of the problem. They can create a solution that closely meets their
needs and can more quickly obtain feedback from their development experiments. At
the same time, the toolkit provider does not carry the cost of failed experiments.
Nonetheless, if an experiment turns out to add significant value, the company can
integrate the user innovation back into its core product. On the Web, this is what
happened when developers mashed up Flickr with maps. Subsequently, Flickr has
incorporated a map function into both its platform and public service. Google also
monitors the use of its public APIs (such as Google Maps and Google Search) to fine-
tune the APIs and to learn from the best innovative uses [14].

2.2 End users involvement in the mashup development scenario

The way in which mashups are developed depends on the type of mashup. While
current consumer mashups (for example, all the numerous mashups based on Google
Maps) are mainly the results of some hacking activities by expert developers,
enterprise mashups highlight different potential scenarios that might involve users at

1 The Web site www.porgrammableweb.com manages a repository of consumer mashups.

Fig. 1. The mashup development scenarios

different skill levels [18]. In the enterprise context it is indeed possible to recognize
two main situations:

A) Mashup tools can be used by expert developers (for example implementers of an

IT department or service providers) to deliver applications quickly. End users are
not directly involved in the construction of such mashups but benefit from the
shorter turn-around time for new applications. The resources for developing
mashups are limited to the expert developers in the IT department. Given the
limited resources of an IT department, only frequently requested applications will
be developed.

B) Expert developers create services in a format that can be more easily consumed
and combined into mashups by users who are not themselves developers, for
example requiring simple parameterizations of components; they also provide a
tool where anyone creates their own mashups. This is analogous to how
spreadsheets are used in organizations today: end users (e.g., business analysts)
can create spreadsheets without involvement from an IT department. These
mashups are often created for a single purpose and user (they are indeed also
known as situational applications [1]), thus they potentially address a larger
diversity of user needs.

 Fig. 1 illustrates the previous scenarios. The two (extreme) corresponding

solutions differ in terms of the heterogeneity of the services that can be combined, the
diversity of user needs that can be met, and the level of sophistication of either the

Enabling End User Development through Mashups 5

user or the tools that support their work. A tool for the creation of mashups (scenario
B) will, initially, be the most challenging scenario to implement. However, it also
provides the biggest pay-off. Using the tool, users can combine services and data to
create their own mashups. The tool constrains what users can do and, hence, ensures
the composability of mashup components. In the sense of the earlier discussion on
user innovation [23, 25], such a tool provides a toolkit that enables users to create
their own applications. However, users are not limited in terms of the types of
applications they can build: this scenario, therefore, supports the greatest diversity of
user needs.

Another distinction between the two scenarios is the degree of control over the
quality of mashups being created. In scenario A, the IT department fully controls
what kind of mashup is being developed. Thus, the IT department ensures the quality
of those mashups. However, not all mashups have stringent requirements in terms of
security, performance, or reliability; they may only be used for a specific purpose, and
a complex solution developed by the IT department would also be too costly. In
scenario B, the IT department selects which components can be mashed up and
provides an environment for safely executing those mashups. Users can create
mashups from those components to meet needs unanticipated or not served by the IT
department. Such mashups may subsequently serve as prototypes for hardened
applications developed by the IT department, should there be a need for the mashup to
be exposed to many users within the enterprise, or if the mashup has to be offered to
outside users.

3 The need for lightweight development processes

Based on the previous observations, it derives that the ideal mashup development
process should reflect the innovation potential of mashups: to compose an application,
starting from given contents and functionality responding to personal needs, and to
simply run it, without worrying about what happens behind the scenes. The
prototype-centric and iterative approach that in the last years has characterized the
development of modern Web applications is even more accentuated: the composer,
i.e., the mashup end user, just mashes up some services and runs the result to check
whether it works and responds to his needs. In case of unsatisfactory results, he fixes
the problems and is immediately able to run the mashup again.

The following requirements, which also characterize the EUD domain [7,10],
emerge as fundamental ingredients enabling the end user composition of mashups:
─ Domain-specific focus and terminology: In order to allow users to understand the

possibilities offered by the mashup platform and to make sense of the services and
components that are available for composition, it is important to restrict the
platform to a well-defined domain the user is comfortable with. That is, we need
to be able to develop a tool that speaks the language of the user, both in terms of
functionalities and terminology known to the user. For instance, only unlikely an
average user will understand what a “SOAP web service” is; yet, the user will
immediately grasp the meaning of a “currency conversion service”.

6 Cinzia Cappiello et al.

─ Abstraction from technical details: In order to help users understand the features
provided by the available services and the effect that each service may have on the
overall composition, we need to come up with representations of services as visual
objects that abstract from technical details, e.g., their programmatic interface or
communication protocol. Users should be asked to manipulate, e.g., add, remove,
or modify, visual objects by operating service visualization properties rather than
being required to configure technical details of services and the composition logic.
As also confirmed by our user-centric experiment (see Section 5) this increases
user satisfaction and, in particular, the user-perceived control over the composition
process.

─ Continuous feedback: In order to further enhance the users’ perception of the
effects that individual actions or services have on the final applications and to
allow users to understand the current state and look&feel of the composition, it is
highly desirable to provide immediate visual feedback on any composition action
and to support the immediate execution of the resulting mashup. This requirement
is backed by our observations that show that end users typically have difficulties
in understanding the difference between design time and runtime.

─ Composition support: In order to achieve a tool that speaks the language of the
user, it is also important to aid those users that don’t speak the language of the
tool, that is, those users that do not have sufficient development knowledge.
Composition can be assisted or guided in multiple ways, for instance, by
providing recommendations of compatible services that can also increase the
quality of the final mashup [20], of composition patterns that have been used
successfully in the past [21], or also by pre-compiling or automatically
connecting services on behalf of the user (see the next section).
While there are many mashup tools or platforms available today, none of these

addresses all the above requirements, which we however regard as fundamental
ingredients if we really want to enable users with average skills to develop own
applications.

4 The DashMash Platform for Sentiment Analysis

The development of a mashup environment responding to the needs highlighted in the
previous section is the object of our own research on the agile, lightweight
development of mashups. The environment is called DashMash, it is an evolution of
our prior work on mashup composition [28], and aims at an integration approach
where a variety of different component types and technologies, ranging from simple
RSS feeds to complex SOAP or RESTful Web services and UI components2 can be
combined, thanks to the adoption of some descriptive models for both component
services and mashup composition.

2 UI components are characterized by a presentation level (the User Interface) that is then

reused “as is” within the final integrated mashup. Google Maps is an example of UI
component: beside its application logics related to geo-localization, it also offers a UI for the
map-based visualization of geo-localized data.

Enabling End User Development through Mashups 7

DashMash is a mashup tool, specifically conceived for the construction of
dashboards exploiting both company-internal services extracting data from local data
warehouses, and public APIs and web resources. Recently DashMash has been
specialized for sentiment analysis (the domain), an emerging business intelligence
practice that aims at understanding market trends from the unsolicited feedback
provided by user comments published on the Web through social applications. An
ongoing project funded by the Municipality of Milan focuses on the design of an
engine that is able to automatically extract sentiment indicators summarizing the
opinions contained in user generated contents [2]. In this context, DashMash has been
adopted to allow end users, i.e., analysts and decision makers interested in improving
the quality of services offered by Milan city, to “compose” their analysis flexibly,
playing in variable ways with sentiment indicators, and also complementing such
indicators with interesting external Web resources, for example linking sentiment
indicators to news, events, and opinions that cause trends and behaviors. The
DashMash customization to the sentiment analysis domain has required the
development of some ad-hoc services for the sentiment indicators computation and
visualization, which are offered to the users as basic, still configurable, elements for
their compositions.

As shown in Fig. 2, mashup creation is enabled through a web-based, visual
environment; the visual composition paradigm has been specifically conceived to hide
the complexity of the technical details and the composition languages actually
managing the execution of the mashup (the abstraction). As shown in Fig. 2(a), a
visual menu at the left hand side presents the list of services: data sources that
materialize contents extracted from community sites, several types of filters, a
multiplicity of viewers to visualize data, which are both open APIs, e.g., the Google
APIs for maps and charts, ad-hoc developed services3, and utility open APIs/services,
such as RSS feeds and calendars. Each component is denoted through an icon and a
label that shortly recall the offered functionality. Components can be mashed up by
moving their corresponding icons into the so-called workspaces. As soon as a
component is moved into a workspace, its UI is immediately rendered so that the
users can easily check whether the component choice satisfies their needs.

Each workspace is associated with a data set, which results from the integration of
data sources and filters that the users can select and configure depending on their
needs. Some default rules also assume that in absence of user selections some data
sources are automatically associated with the Workspace. In this way, the creation of
meaningful mashups is preserved. Each workspace visualizes its data set according to
the visualizations offered by selected viewers. For example, Fig. 2(a) shows a mashup
in which the user has selected two data sources, storing contents extracted from two
social applications, Twitter and TripAdvisor, and has filtered them by using a
keyword-based filter, with key = “Milan”. Contents are then presented through a pie
chart viewer, visualizing the percentage of comments related to categories of interest
in the tourism domain (e.g., food, entertainment, art, and other relevant entities), and a
scatter plot visualizing the average value of sentiment for the same set of categories.

3 Several viewers offering graphic visualizations have been developed using the Highcharts JS

library (http://www.highcharts.com/), to offer advanced presentations specific for sentiment
indicators.

8 Cinzia Cappiello et al.

Fig. 2. The DashMash editor for drag-and-drop composition of mashup services and immediate
execution of the resulting mashup. The two screenshots show the mashup of sentiment analysis

dashboards [2, 6].

Fig. 2(b) shows a second mashup defined on top of the same data sources as the
previous one. In this case, the filters select comments from users that are considered
opinion leaders, the so-called influencers, who are visualized through a list viewer
integrated with Google Maps to show the influencers’ location. This is an example of
integration between an internal service (the one providing information about
influencers) and an external, public API, this latter providing an added value to the
overall analysis.

Users can iteratively modify the composition, by adding or dropping components
through some visual actions. Changes are enacted in real time, i.e., the mashup
visualization changes accordingly, so that users can immediately see the effect of their
composition actions in their workspace (the continuous feedback). They can also
access a detailed description of the status of the current composition (see Fig. 2(c)),
summarizing the main elements, their configuration and synchronization behavior,
and easily modify sources, filters, viewers or even configuration properties of single
filters or viewers.

Enabling End User Development through Mashups 9

Once a new component is added, the system automatically binds it to the pre-
included components - if possible (the composition support). The platform can
automatically generate service bindings, based on a service classification and on
corresponding parameter-operation couplings. For example, when a new viewer is
added into a workspace, its visualization logic is automatically mashed up with the
corresponding data sources and filters associated with the workspace. Users can then
introduce further synchronization behaviors. Simple dialog boxes, abstracting from
technical details, allow them to create new service combinations resulting in
synchronized behaviors. For example, starting from the mashup shown in Fig. 2(a),
the dialog box presented in Fig. 2(d) allows the user to set a coupling so that a click
on a pie slice contextualizes the analysis offered by the map viewer to that selected
label. Based on descriptive models of components, the dialog box presents possible
connection points, namely the component events (see next section), exposed by the
components selected by the user, plus a short description of the resulting
synchronization behavior. The system provides suggestions about other candidate
components based on compatibility rules and quality criteria [20].

The rest of this section is devoted to illustrate the architectural elements and the
mechanisms that implement the previous functions and behavior in DashMash.

4.1 DashMash Architecture

The overall organization of the DashMash platform is illustrated in Fig. 3. The
mashup execution is centered on a lightweight paradigm in which the orchestration of
registered services, the so-called components, is handled by an intermediary
framework in charge of managing both the definition of the mashup composition and
the execution of the composition itself. Different from the majority of mashup
platforms, where mashup design is separate from mashup execution, in DashMash the
two phases strictly interweave. The result is that composition actions are
automatically translated into models describing the composition, and these models are
immediately executed. Users are therefore able to interactively and iteratively define
and try their composition, without being forced to manage complicated languages or
even ad-hoc visual notations.

Mashup Execution. DashMash capitalizes on the mashup paradigm defined in [28],
which is based on an event-driven model operating at the presentation level: events
generated from the user interaction with one mashup component (e.g., the selection of
a slice in a pie chart) can be mapped to operations of one or more components
subscribed to such events (e.g., the visualization of details of the selected data in a
scatter plot). The occurrence of events, intercepted by an Event Broker module,
causes a state change in the subscribed components. Each component therefore keeps
running according to its own application logic, within the scope defined by an HTML
<div>. As soon as events occur, the involved components publish them. Based on the
definition of service binding, the so-called listeners, an Execution Handler then
notifies the subscribed components, if any, and triggers the execution of their
corresponding operations.

Fig. 3. Overall organization of the DashMash platform

Listeners are specified in a composition model, expressed by means of the XPIL
(eXtensible Presentation Integration Language) XML-based language [28]. This
composition logic also requires each component to be characterized by a model
expressing the binding with the actual service/API, the events that the component can
generate, and the operations that enable other components to modify its internal state.
This component description, expressed by means of the UISDL (UI Service
Description Language) XML-based language [28], provides a uniform model to
coordinate the mashup composition and execution, which obviates the heterogeneity
of service standards and formats by embedding only the information needed for
synchronizing services at the presentation level. The adoption of such a component
model is an important ingredient toward the provision of an environment where
technical details are hidden to the user.

Component and composition models are stored in dedicated repositories:
─ The Composition Repository maintains the XPIL-based specifications of the

compositions as created by the users, the HTML templates for the mashup

Enabling End User Development through Mashups 11

layout management, and a state model that maintains information about the
configuration of a mashup instance (i.e., values instantiating parameters and
specific configuration of the involved components), to support saving and
restoring functions, history management, and also the easy, “on-the-fly”
modification of the composition (as shown in Fig. 2(c)).

─ The Component Repository stores the component descriptive models plus
wrappers through which the platform invokes service operations. The creation
of component wrappers is the only “technical” activity that is required to
register services into the DashMash platform, and, as such, it is up to the expert
developer, not the end user. However, once the component registration is
performed, the end user can transparently use and integrate any service through
the visual paradigm illustrated above.

Mashup composition and automatic model generation. Due to the intermixing
between mashup composition and execution, in DashMash events captured by the
event broker can be related not only to users and system actions occurring during the
mashup execution (those ones managed by the execution handler, which causes a
change to some other component’s state), but also to the dynamic definition of the
composition (e.g., the drag&drop of a component icon into the composition area). The
Event Broker intercepts events and dispatches them to the modules in charge of their
handling.

The Composition Handler manages composition events. In particular, it
automatically translates the addition of a component into a set of listeners, based on
default couplings between the involved services. Based on such listeners, it creates or
updates (if already existing) the current composition model. It also dispatches the
composition events to the Status Manager in charge of maintaining the description of
the mashup instance status. As soon as the composition and the status update are
complete, the mashup composition is reloaded and immediately rendered through the
visual front-end. The mashup is then executed according to the event-driven, publish-
subscribe logic that characterizes the Execution Handler.

Service binding definition. DashMash supports the definition of default and custom
bindings:

─ Default bindings are automatically defined by the Composition Handler when a
composition action is intercepted and ensure a minimum level of inter-
component synchronization that does not require end users to explicitly define
service coupling. To enable the automatic definition of default bindings, we start
from a classification of components. For example, in order to facilitate the
construction of a dashboard, it is possible to identify four component classes,
namely data services, retrieving data from corporate/relational data sources,
filters, expressing selection conditions over the context defined by a workspace,
viewers, supporting the visualization of result sets also offering data aggregation
and transformation functions, and generic components, i.e., any kind of open
service (local or remote) offering functionality that can make the analysis
process more effective. Service classification is domain-specific, and needs to
be revised for any DashMash customization. Classification changes, however,

12 Cinzia Cappiello et al.

only imply a new configuration of the Composition Handler, while no other
changes are required to other architectural elements.

─ Custom bindings are user-defined. Nevertheless, the Composition Handler
supports the user in the choice of components and component bindings, since it
generates compatibility– and quality– based recommendations. To this aim, it
dispatches the composition events to the Recommendation Manager, an
additional module of the runtime environment that is in charge of evaluating the
quality of the current composition and providing suggestions about the selection
of possible components to add to or of compatible components that can
substitute the existing ones in order to achieve or improve the mashup quality
[5, 20].

5 Validation

In order to validate the composition paradigm of DashMash with respect to user
needs, we conducted a study involving 35 participants. Six of them were real end
users of the DashMash sentiment analysis customization, i.e., analysts and decision
makers that are supposed to actually use DashMash for their analyses, with a medium
technical expertise. Other users were master students of the Computer Engineering
program at Politecnico di Milano, featuring different levels of technical background:
12 of them were already acquainted with concepts related to service composition and
mashups. The others were familiar with Web application development but not with
service composition and mashups.

We observed users completing two tasks through DashMash, which consisted in
the composition of mashups extracting and visualizing data related to two specific
sentiment indicators: the percentage of volume for the positive and negative sentiment
along different brand categories, and the volume distribution in time for the positive
sentiment. In both the mashups, multiple components needed to be synchronized
among each other. Our goal was to assess how easily the users would be able to
develop a composite application. The experiment specifically focused on the
effectiveness and intuitiveness of the composition paradigm, trying to measure such
factors in terms of user performance, ease of use and satisfaction.

We expected all users to be able to complete some experimental tasks, with
however a greater efficiency (e.g., reduced completion task times) and a more positive
attitude (in terms of perceived usefulness, acceptability and confidence with the tool)
by expert users. Their domain knowledge and background could indeed facilitate the
comprehension of the experimental tasks, and improve the perception of the control
over the composition method, and thus, their general satisfaction. However,
surprisingly no significant differences in task completion time were found between
experts and novices. In particular, domain expertise was not discriminating for task 1
(p = .085) and for task 2 (p = .165). Similarly, technology expertise was not
discriminating for task 1 (p = .161) and for task 2 (p = .156). The lack of significant
differences between the two groups does not necessarily mean that expert users
performed badly. However, it indicates that the tool enables even inexperienced users
to complete a task in a limited time and that the expertise needed to properly
understand the necessary concepts and to operate the tool is relatively low.

Enabling End User Development through Mashups 13

Another interesting result is that the difference in completion times for the two
tasks is about half a minute (t = 28.2, p = .017), i.e., a reduction of about 15%. This
result highlights the learnability of the tool [13]: although the second task was more
critical compared to the first one, subjects were able to accomplish it in a shorter time.

The ease of use was confirmed by the data collected through four questions in the
post-questionnaire, asking users to judge whether they found it easy to identify and
include services in the composition, to define service bindings between services, and
to monitor and modify the status of the mashups. On average, users gave the ease of
use a mark of 1.77 (the scale was from 1 - very positive to 7 - very negative). The
distribution ranged from 1 to 4 (mean = 1.77, meanS.E. = .12). We did not found
differences between novice and expert users. This was especially true for the
perceived usefulness (p = .51).

The post-experiment questionnaire also allowed us to assess the user satisfaction
by means of a semantic differential scale requiring users to judge the method on 12
items. We did not find significant differences between experts and novices. Despite
our initial assumption, we therefore found that the ease of use of the tool is perceived
in the same way by novice and expert users, although the latter have greater domain
knowledge. Moreover, the moderate correlation between the satisfaction index and
the ease of use index (ρ = .55, p = .011) also reveals that who perceived the method
as easy also tended to evaluate it as more satisfying. This confirms that ease of use is
perceived.

6 Related Works

So far the research on mashups has focused on enabling technologies and standards,
with little attention on easing the mashup development process - in many cases
mashup creation still involves the manual programming of the service integration.
There is a considerable body of research on mashup tools, the so-called mashup
makers, which provide graphical user interfaces for combining mashup services,
without requiring users to write code. Among the most prominent platforms,
Yahoo!Pipes (http://pipes.yahoo.com) focuses on data integration via RSS or Atom
feeds, and offers a data-flow composition language. JackBe Presto
(http://www.jackbe.com/) also adopts a pipes-like approach for data mashups, and
allows a portal-like aggregation of UI widgets (mashlets). IBM DAMIA [23] offers
support to quickly assemble data feeds from the Internet and a variety of enterprise
data sources. MashArt [8] focuses on the integration of heterogeneous components
(not only data or RSS feeds), offering a mashup design paradigm through which
composers create graph-based models representing the mashup composition.

With respect to manual programming, all the previous platforms certainly alleviate
the mashup composition tasks. However, to some extent they still require the user to
deeply understand the application logic behind services and the integration logic. In
some cases, building a complete Web application also equipped with a user interface
requires the adoption of additional tools or technologies. A recent user-centric study
[9] found that although the most prominent mashup platforms (e.g., Yahoo! Pipes,
Dapper or Intel Mash Maker) simplify the mashup development, they are still difficult
to use by non technical users.

14 Cinzia Cappiello et al.

Marmite [27] is a tool specifically tailored for integrating and accessing
information sources. With respect to other platforms, it offers a more intuitive
composition paradigm, which has been devised by means of a user-centered process:
it allows users to easily program a set of source filtering operators that can then be
connected into a data flow. In line with our approach, Marmite goes in the direction of
easing mashup development, for example ensuring continuous feedback through an
immediate visualization of the included services and the overall resulting mashup.
This works however is still centered on a dataflow paradigm, which in our opinion
does not abstract enough from the technical background, requiring for example the
users to define operator chaining by means of parameter coupling.

Our work tries to overcome the previous limitations, allowing end users to
develop their own mashups through an intelligible paradigm that abstracts from
technical variables. The aim is to maximize some well-known principles that
characterize End User Development [3,4,7,10]. In particular, our approach provides a
composition environment that can facilitate the creation of successful applications
accommodating the diversity of the needs, interests and activities that end users want
to perform through computer systems. DashMash is indeed a general-purpose mashup
environment in which however the risk of becoming too general, thus in some cases
ineffective, is limited by the possibility to be customized through the development of
ad-hoc components and the registration into the platform of out-of-shelf resources that
are of interest to the domain-specific activities that the users need to tackle. In other
words, our platform tries to provide the right trade-off between extremely general
systems and highly specialized, domain-specific applications that on the other hand
cannot be generalized, adapted or evolved [7, 11].

7 Conclusions

In this article, we have proposed our perspective on mashups, mashup tools, and
lightweight mashup development processes, arguing that enabling web users (in the
consumer context) or employees (in the business context) to develop own applications
demands for a high degree of assistance and intelligible concepts. Our proposed
approach is a first attempt towards the realization of this objective. However, some
more efforts are needed on the following ingredients:

− Easy-to-use APIs: Expressive models and description languages for data,
application logic, and user interface components are needed to facilitate the
component integration within mashups. Suitable discovery and selection
facilities (e.g., registries and protocols) are needed as well.

− Design aimed at interoperability: Services and mashups should be
interoperable, meaning that they must feature cross-platform reusability.
Although some proposals exist for mashup-specific standards [19], any
mashup platform keeps using its own models and description languages.

− Dependable mashups: Although the current efforts are mainly devoted to the
improvement of the previous aspects, it is unquestionable that mashups also
need to address issues like reliability, transactions, and security – especially if
used in business contexts.

Enabling End User Development through Mashups 15

DashMash addresses the currently still low ease-of-use of APIs (by definition,
APIs are still oriented toward programmers, not end users) and their generally low
interoperability (e.g., in terms of supported communication protocols or data formats)
by wrapping them and transforming their data into an internal, canonical format that
can be understood by other wrappers. This task, however, requires the intervention of
expert developers, and cannot be accomplished by the users themselves. As for the
dependability of mashups, DashMash does not provide any specific solution, as so far
we support non-critical application scenarios only. We have however planned some
extensions to address these features.

Finally, while lightweight development processes are needed to alleviate the effort
of mashup developers and especially end-users, the development of services to be
integrated into mashups is a demanding activity, to be performed according to
traditional development processes by professional programmers. After all, if on the
one hand the success of a mashup is influenced by the added value that the final
combination of services is able to provide, on the other hand it is self-evident that the
quality of the final combination is strongly influenced by the quality of each single
service. Defining models and techniques for developing “good” services and for
assessing their quality is therefore another promising direction of our current research,
which can give a fundamental contribution towards the development of quality
mashups and to aid user innovation [5].

As future work, we aim at exploring different composition solutions, to address,
for example, the cooperative definition of mashups (a feature that can greatly enhance
team-based cooperation in the enterprise context), as well as an extension of the
recommendations mechanisms based on the emergence of composition patterns from
the community’s mashups [20]. We also aim at investigating mashup interoperability,
for example making DashMash mashups compatible with emergent standards, such as
Enterprise Mashup Markup Language (EMML) [19].

References

1. S. Balasubramaniam, G. A. Lewis, S. Simanta, D. B. Smith. Situated Software: Concepts,
Motivation, Technology, and the Future. IEEE Software, Nov-Dec, 2008, pp. 50-55.

2. D. Barbagallo, C. Cappiello, C. Francalanci, M. Matera. A reputation-based DSS: the
INTEREST approach. Proceedings of ENTER’10.

3. P. Bottoni, M. F. Costabile, S. Levialdi, M. Matera, P. Mussio: Principled Design of
Visual Languages for Interaction. Proceedings of VL 2000, IEEE Computer Society, pp.
145-155.

4. M. Burnett, C. Cook, and G. Rothermel. End-User Software Engineering.
Communications of the ACM, 47 (9), 2004, pp53-58.

5. C. Cappiello, F. Daniel, M. Matera. A Quality Model for Mashup Components.
Proceedings of ICWE'09, Springer LNCS, pp. 235-249.

6. C. Cappiello, M. Matera. M. Picozzi, G. Sprega, D. Barbagallo, C. Francalanci.
DashMash: a Mashup Environment for End User Development. Submitted for
publication, October 2010.

7. M. F. Costabile, P. Mussio, L. P. Provenza, A. Piccinno. Supporting End Users to Be Co-
designers of Their Tools. Proceedings of IS-EUD’09, pp. 70-85.

16 Cinzia Cappiello et al.

8. F. Daniel, F. Casati, B. Benatallah, and M.-C. Shan. Hosted Universal Composition:
Models, Languages and Infrastructure in MashArt. Proceedings of ER 2009, LNCS 5829,
pp 428–443.

9. A. De Angeli, A. Namoun, T. Nestler. End user requirements for the composable web.
Proceedings of ComposableWeb’10, LNCS 6385, Springer Verlag, pp. 396-407, 2010.

10. G. Fischer. End-user Development and Meta-Design: Foundations for Cultures of
Participation. Proceedings of IS-EUD 2009, pp. 3–14, 2009.

11. G. Fischer. Beyond Binary Choices: Understanding and Exploiting Trade-Offs to
Enhance Creativity. First Monday, 11 (2006)

12. T. P. Hughes. The evolution of large technological systems. The social construction of
technology systems: New directions in the sociology and history of technology. W. E.
Bijker, T. P. Hughes and T. J. Pinch, eds. Cambridge, Mass., MIT Press, pp. 51-82, 1987.

13. K. Hornbæk. Current practice in measuring usability: Challenges to usability studies and
research. International Journal of Human-Computer Studies, 64(2):79–102, 2006.

14. B. Iyer and T.H. Davenport. Reverse Engineering Google’s Innovation Machine.
Harvard Busines Review, 86(4), pp. 58-69.

15. A. Jhingran. Enterprise information mashups: integrating information, simply.
Proceedings of VLDB’06, pp. 3-4.

16. M. Maula, T. Keil, J.-P. Salmenkaita. Open Innovation in System Innovation Contexts.
Open Innovation: Researching a New Paradigm, Chapter 12, 2006, pp. 249-257.

17. Z. Obrenovic, D. Gasevic. Mashing Up Oil and Water: Combining Heterogeneous
Service for Diverse Users. IEEE Internet Computing, Nov/Dec, 2009, pp. 56-64.

18. M. Ogrinz. Mashup Patterns: Designs and Examples for the Modern Enterprise.
Addison-Wesley, 2009.

19. OMA. EMML Documentation. Technical report, Open Mashup Alliance, http://www.
openmashup.org/omadocs/v1.0/index.html, December 2010.

20. M. Picozzi, M. Rodolfi, C. Cappiello, M. Matera. Quality-based Recommendations for
Mashup Composition. Proceedings of ComposableWeb’10, LNCS 6385, pp. 360-371,
2010.

21. S. Roy Chowdhury, C. Rodríguez, F. Daniel, F. Casati. Wisdom-Aware Computing: On
the Interactive Recommendation of Composition Knowledge. Proceedings of WESOA
2010, Springer, December 2010.

22. M. Sabbouh, J. Higginson, S. Semy, D. Gagne. Web mashup scripting language.
Proceedings of WWW’07, pp. 1305-1306.

23. D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, and A. Singh. Damia: Data
Mashups for Intranet Applications. Proceedings of SIGMOD 2008, pp. 1171–1182.
ACM.

24. S. Thomke, E. von Hippel. Customers as Innovators: A New Way to Create Value.
Harvard Business Review, 80(4), 2002, pp. 74-81.

25. E. von Hippel. Democratizing Innovation, MIT Press, 2005.
26. M. Weiss, G.R. Gangadharan. Modeling the Mashup Ecosystem: Structure and Growth.

R&D Management, 2009 (accepted for publication).
27. J. Wong, J. I. Hong. Making Mashups with Marmite: towards end-user Programming for

the Web. Proceedings of CHI’07, pp. 1435–1444, 2007.
28. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, M. Matera. A Framework for

Rapid Integration of Presentation Components. Proceedings of WWW’07, pp. 923 - 932.

