
Combining Conceptual Modeling and Active Rules for the
Design of Adaptive Web Applications

Florian Daniel Maristella Matera Giuseppe Pozzi

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano – Italy

{daniel,matera,pozzi}@elet.polimi.it

ABSTRACT
In this paper we propose a framework for the design and
development of adaptive Web applications. The framework
leverages on the integration of two well established approa-
ches: a conceptual model, complemented with a CASE tool
for automatic code generation, and a language for express-
ing ECA rules, supported by an engine for rule execution.
Such integration leads to a versatile and flexible adaptivity
environment, whose advantage is twofold: on one hand, con-
ceptual modeling and automatic code generation support an
efficient development process; on the other hand a detached
rule engine allows us to widen the set of adaptivity require-
ments that can be handled and to overcome some limitations
of current modeling approaches.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering ; H.5.4 [Infor-

mation Interfaces and Presentation]: Hypertext/ Hy-
permedia; H.1 [Information Systems]: Models and Prin-
ciples

General Terms
Design, Languages.

Keywords
Adaptivity, Context-Awareness, Adaptive Web Applications,
Web Application Modeling, Active Rules.

1. INTRODUCTION
More and more Web application users ask for services and
contents highly tailored to their particular contexts of use.
Especially due to the increasing affordability of new and
powerful mobile communication devices, they also appreci-
ate the availability of ubiquitous access, independent from
the device actually in use. Due to such premises, traditional
software design methods will no longer be exhaustive, and

new issues and requirements need to be addressed to support
adaptive access to services and applications. In order to re-
act to this challenge, well-established design methods [9, 10,
1, 13, 4] have been extended to cope with adaptivity and
context awareness. However, often the extensions do not
cover the broad range of events that can trigger adaptivity,
and do not address all the Web application dimensions that
can be affected by adaptivity. Furthermore, in most cases
mechanisms for managing adaptivity are buried within the
application code, thus negatively affecting separation of con-
cerns, and hindering maintenance and evolution.

We propose a framework for the development of adaptive
Web applications. The framework leverages on the inte-
gration of two well-established approaches: the Web Mod-
eling Language (WebML) method, based on a conceptual
model [5] and a CASE tool for automatic code generation [16],
and the Chimera-Exception language for expressing Event-
Condition-Action (ECA) rules, supported by an engine for
rule execution [2]. WebML is used to design Web applica-
tions: its recent extension to adaptivity modeling [3, 4] is
adopted to specify localized adaptivity rules, i.e., rules at-
tached to pages, which are triggered by changes in a “page
context” monitored while pages are accessed. Chimera-Web,
a new version of Chimera-Exception addressing Web events
and Web adaptivity actions, is then used to specify sparse
adaptivity rules, whose execution is completely detached
from the execution of the application itself and whose ef-
fects are not necessarily bound to instances of modeling con-
structs.

Such an integration leads to a framework that keeps the ad-
vantages of conceptual modeling and automatic code gen-
eration, since the two dimensions, application design and
adaptivity design, are handled at a high level of abstraction.
The availability of a detached rule engine widens the set of
events to react to, also comprising events that are indepen-
dent from user actions. The resulting architecture enhances
separation of concerns, and supports flexibility and evolv-
ability: thanks to the availability of a detached rule engine,
the modification or the addition of rules can be managed
even after application deployment through Chimera-Web,
without requiring changes to the application design and the
generation of a new application version.

The paper is organized as follows: Section 2 discusses the
rationale behind our work, and depicts the basic concepts

of WebML and Chimera-Exception. Section 3 introduces
the extensions of the two languages supporting localized and
sparse adaptivity; a case study also exemplifies the new con-
cepts. Section 4 then sketches the architecture of the inte-
grated framework, and also provides some details about its
current implementation. Section 5 finally draws our conclu-
sion and outlines our future work.

2. RATIONALE AND BACKGROUND
Adaptivity is the ability of a system to react to changes in
the user profile, the user device, and any attribute of the us-
age environment demanding for modifications of the offered
contents and services. Web applications can be exposed to a
multitude of adaptive behaviors. Based on the scope of the
rules handling such behaviors, it is possible to distinguish
between localized and sparse adaptivity. Localized adaptiv-
ity is strictly coupled with some hypertext elements (e.g.,
pages, links, etc.), as it happens in the case of an automatic
update of the contents published by a particular page as re-
action to a change in the user profile or in the usage environ-
ment. Sparse adaptivity requirements, on the other hand,
may be bound to several hypertext/application components
or may have no specific binding at all. An adaptation of
the overall application’s presentation properties, for exam-
ple in response to a change in luminosity, represents a sparse
adaptivity action.

Several well-established design methods have been so far
extended to deal with Web application adaptivity. In [9]
the authors extend the Hera methodology with two kinds of
adaptation: adaptability with respect to the user device and
adaptivity based on user profile data. Adaptation rules (and
the Hera schemas) are expressed in RDF(S), attached to
slices and executed by the AHA engine [7]. The UWA Con-
sortium [15] proposes WUML [13] for conceptual hypertext
design. Adaptation requirements are expressed by means
of OCL-based customization rules referring to UML class or
package elements. In [1] the authors explore Aspect-Oriented
Programming [8] techniques for modeling adaptivity in the
context of the UML-based Web Engineering method UWE
[14]. Finally, in [10] the authors enrich the OO-H method
with personalization rules for profile groups: rules are de-
fined in PRML (Personalization Rule Modeling Language)
and attached to links in the OO-H Navigation Access Dia-
gram. The use of a (PRML) rule engine is envisioned in [11],
but its real potential for adaptivity remains unexplored.

This paper capitalizes on the experiences of the previous
works and proposes a solution based on conceptual modeling
and active rules, respectively addressing different adaptiv-
ity requirements. For modeling the application front-end, we
adopt the Web Modeling Language (WebML) [5] along with
its recent extension to specify localized adaptivity rules. We
then revise Chimera-Exception, an active rule definition lan-
guage for specifying expected exceptions in workflow man-
agement systems (WfMSs), for handling sparse adaptivity
rules.

The rest of this section introduces the basic concepts of the
WebML method and the Chimera-Exception language. The
adaptivity extensions of the two languages are described in
Section 3; their integration is then described in Section 4.

2.1 WebML
WebML [5] is a visual language for specifying the content
structure of a Web application and the organization and
presentation of contents in one or more hypertexts.

The design process starts with the specification of a data
schema, expressing the organization of the contents of the
Web application. The WebML data model uses Entity–
Relationship primitives. The WebML hypertext model then
allows one to describe how the content, previously specified
in the data schema, is published in the application hyper-
text. The overall structure of the hypertext is defined in
terms of site views, areas, pages, and content units. A site
view is a hypertext, designed to address a specific set of re-
quirements. Several site views can be defined on top of the
same data schema, to serve the needs of different user com-
munities, or to arrange the composition of pages to meet the
requirements of different access devices such as PDAs, smart
phones, and similar appliances. A site view is composed of
areas, which are the main sections of the hypertext and com-
prise, recursively, other subareas or pages. Pages are the
actual containers of information delivered to the user; they
are made of content units, which are the elementary pieces
of information extracted from the data sources by means of
queries, and published within pages.

Content units and pages are interconnected by links to build
site views. Links can connect units in a variety of configu-
rations, yielding to composite navigation patterns. Besides
representing user navigation, links between units also specify
the transportation of some information used by the destina-
tion unit to select the data instances to be displayed.

Some WebML units also support the specification of content
management operations. They allow one to create, delete
or modify an instance of an entity (through the create,
delete and modify units respectively), or to add or drop
a relationship between two instances (through the connect

and disconnect units, respectively). Recently, WebML has
also been extended to model invocations of Web services; in
this context, application data can be derived from external
data sources as well. For a more complete presentation of
WebML and its visual notation, the reader is referred to [5].

Besides having a visual representation, WebML primitives
are provided with an XML-based textual representation,
which specifies additional detailed properties, not conve-
niently expressible in the graphic notation. Web applica-
tion design based on WebML can be therefore represented
as visual diagrams, as well as XML documents. The XML
representation constitutes the starting point for the auto-
matic generation of the application code to be executed by
means of a proper runtime environment [16].

2.2 The Chimera-Exception Language
Chimera-Exception [2] is derived from Chimera [6], a lan-
guage to describe active rules in database management sys-
tems. Chimera-Exception builds on an object-oriented pro-
cess definition formalism, where classes are typed and rep-
resent records of typed attributes that can be accessed by
means of a simple dot-notation. Classes are either workflow-
independent (e.g. role, agent, task) if they are independent
from the structure of the process, or workflow-dependent

(e.g. workflow-relevant data fields) if instead they depend
on a specific process definition.

The Event-Condition-Action (ECA) constructs specify ac-
tive rules, adhering to the following trigger structure:

define trigger <TriggerName>

[for <ProcessSchema> | global]

events <Event> [(, <Event>)+]

condition [<Cond> [(, <Cond>)+] | none]

actions <Action> [(, <Action>+)]

[order <PriorityValue>]

end

A trigger <TriggerName> has one or more triggering events
(<Event>), a condition possibly comprising several (or none)
conditional statements (<Cond>), and one or more actions
(<Action>) describing the workflow-specific actions to be
performed in case the condition of the triggered rule holds.
Rules have a statically defined priority (<PriorityValue>),
specified as a positive integer, which is used to determine
the order of execution within a set of triggered rules: the
higher the number, the higher the priority.

Rules can be triggered by several types of events. Data
events refer to changes of workflow-relevant data fields or
of the underlying data source containing the process infor-
mation model. Workflow events are related to the start and
the completion of tasks and cases. External events are gener-
ated by (external) applications and require suitable handling
mechanisms Temporal events can be synchronous or asyn-
chronous with respect to the process execution. Conditions
consist of predicates that inspect the content of the database
or of workflow-relevant data fields. Actions comprise as-
signing a task or a case to an agent (assignTask(TaskId),
assignCase(CaseId)), canceling a task or a case (cancel-
Task(TaskId), cancelCase(CaseId)), start a task or a new
case, suspend a task, etc.

If a rule is defined for a particular <ProcessSchema>, the
rule is triggered by events related to instances of that spe-
cific schema, only. If instead the rule is defined as global,
its scope extends to the whole execution environment, and
thus comprises all the available process definitions. A more
detailed description of the language is available in [2, 12].

Chimera-Exception is also complemented with an active rule
engine (FAR) integrated with a commercial WfMS (FORO)
and an active database server [2, 12]. The FAR system
consists of a rule compiler, a time manager, a scheduler and
a runtime interpreter, which together enable the execution
of Chimera-Exception rules.

3. A TWO-LEVEL APPROACH TO
ADAPTIVITY SPECIFICATION

We now show how WebML and Chimera-Exception can be
adapted and combined to support the specification of a two-
level adaptivity, covering localized and sparse adaptivity re-
quirements. In particular:

• The WebML extension to adaptivity [3, 4] is used
for coping with localized adaptivity, which follows the

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object
 Identifier

Context
Cloud

C

Conventional
Page 1

Conventional
Page 2

Figure 1: Specification of adaptivity actions in

WebML.

WebML design and computation logic, centered around
the page concept. WebML has been extended (i) at
data level for modeling user and context meta-data,
and (ii) at hypertext level for specifying localized adap-
tivity actions associated to hypertext pages.

• Chimera-Exception is revised to support the specifi-
cation of sparse adaptivity. In particular, workflow-
related primitives are substituted by Web-specific prim-
itives, especially needed for capturing Web events and
executing the corresponding Web adaptivity actions.
We call the resulting extension Chimera-Web.

3.1 WebML and Localized Adaptivity
In [3, 4], WebML is extended to cover localized adaptiv-
ity requirements. The overall design process for adaptive
Web applications follows the activity flow typically used for
conventional Web applications. However, capturing adap-
tivity implies modeling the user and the context of interac-
tion. Therefore, during data design, the user and context re-
quirements can be translated into three different subschemas
complementing the application data:

• The user sub-schema, which clusters data about users
and their access rights to application data.

• The personalization subschema, which consists of en-
tities from the application data, associated with the
User by means of relationships expressing user prefer-
ences or rights for some entity instances. In general,
relationships defined between the entity User and any
other entity of the application data support the per-
sonalization of the content of the entity with respect
to the identity of the user.

• The context sub-schema, which includes entities that
describe particular properties of the context (such as
Device, Location and Activity). Context entities are
connected to the entity User to associate each user
with her/his (personal) context.

The previous representation of user and of context meta-
data enables the specification at hypertext level of local-
ized adaptivity rules that are attached to pages. Rules are

evaluated on a page context, i.e., a page-specific set of at-
tributes within the data source, which are monitored for
triggering a page’s rule while the page is visited. Pages
provided with rules are tagged with a C-label standing for
“Context-aware”, due to the association of the page with
its page context. As illustrated in Figure 1, the specification
of adaptivity rules is kept outside the page, within the so-
called context-cloud, aimed at highlighting the two different
roles played by pages and adaptivity actions: while pages
act as providers of content and services, the adaptivity ac-
tions act as modifiers of such content and services. As better
discussed in Section 4, while accessing a C-page, the state of
the page context is observed to detect any change demand-
ing for adaptivity. When occurred, such changes generate
the automatic request of the page and the evaluation of the
page’s context cloud.

In WebML rules, events are not explicitly modeled, as they
correspond to modifications of the variables declared in the
page context. Some WebML constructs (i.e., operation units
and links) are instead needed to visually define conditions
and actions. In particular, conditions are modeled by con-
ditional constructs, such as If and Switch units. If the
conditions are satisfied, several actions can be performed:

• Page content adaptivity. Context parameters, acquired
through the user device or through a dedicated sensing
infrastructure, as well as parameters computed during
condition evaluation, can be used for page computa-
tion. The result is a page where contents are filtered
with respect to the current context.

• Navigation adaptivity. In some cases, the effect of
condition evaluation within the context cloud can be
an automatic, context-triggered navigation, causing the
redirection to a different page. Links exiting the con-
text cloud and directed to pages other than the cloud’s
source page represent automatic navigation actions.
Also, some values generated by the evaluation of con-
ditions may imply updating the current page by hiding
or showing navigation links.

• Hypertext structure adaptivity. This allows one to face
coarse-grained adaptivity requirements, as required,
for example, in the case of changes of the user’s de-
vice, role and/or activity within a multi-channel, mo-
bile environment. A new Change Site View construct
allows switching between site views [3, 4].

• Presentation adaptivity. More fine-grained adjustments
of the application’s appearance can be achieved by the
Change Style construct [3, 4], which allows changing
at runtime the page’s CSS (Cascading Style Sheet) file
that codes the page’s presentation properties.

• Back-end operations. Besides the previous actions,
mainly referred to modifications of the application front-
end, WebML rule actions may also specify back-end
operations and invoke external (Web) services.

3.2 Chimera-Web and Sparse Adaptivity
Chimera-Web is the extension of Chimera-Exception to man-
age Web events and Web actions supporting Web applica-

tion adaptivity. Analogously to Chimera-Exception, rules
in Chimera-Web are triggered by four main kinds of events:

• Data events refer to operations on the application data
source, such as create, modify and delete. In adap-
tive Web applications, such events can be monitored
on user, customization and context data, to trigger
adaptivity actions with respect to users and their con-
text of use.

• Web events replace the Workflow events of Chimera-
Exception. Web events refer to general browsing ac-
tivities (e.g., pageAccess(Page), formSubmit(Form),
pageRefresh(Page), download(Href)), or to opera-
tions supported by the application (e.g., operation-
Start(Op), OperationEnd(Op), login, logout).

• External events are recognized by the raise primitive,
providing, as an external event occurs, the name of
the triggering event and, possibly, suitable parame-
ters. External events can be generated both locally or
remotely with respect to the Web application server.

• Temporal events are subdivided into instant, periodic
and interval events. Interval events are particularly
powerful, since they allow binding a time interval to
other events. For example, the expression elapsed(in-

terval 5 minutes) since pageAccess(Page1) repre-
sents a temporal event that is raised after the expira-
tion of 5 minutes from the access to page Page1.

In Chimera-Web, conditions consist of predicates over con-
text data, application data, global session variables and page
parameters. As in WebML, actions in Chimera-Web corre-
spond to modifications of the application front-end, as well
as to the execution of back-end operations. Suitable predi-
cates are introduced for specifying such actions.

3.3 WebML versus Chimera-Web
WebML rules can be expressed through an intuitive visual
language. Their specification is performed in the same en-
vironment where the application is designed, with the same
paradigm adopted for page design. The new visual mod-
eling constructs have been implemented as extensions to
the WebML CASE tool and the WebML runtime environ-
ment [16]. This allows covering the whole (visual) develop-
ment process, from design to automatic code generation and
to the execution of localized adaptivity rules.

Despite the previous advantages, WebML rule specification
has however some drawbacks, which justify the introduction
of Chimera-Web in our integrated framework. In particular:

• WebML adaptivity actions are coupled with pages.

• At a given time, the set of rules the application is able
to react to is limited to the rules attached to the page
the user is currently visiting.

• Given a page, the specification of a complex chain of
rules, possibly acting on different application dimen-
sions (e.g., data, navigation, and presentation), could

not be trivial and might lead to cognitive overloaded
diagrams that negatively impact on the scalability of
the modeling paradigm.

• In order to be taken into account by several pages,
a WebML adaptivity rule must be attached to every
page it applies to. Such redundancy reduces schema
readability and does not support reuse.

• Furthermore, the page context, as originally conceived,
applies only to data stored in the application data
source, thus not considering temporal or external events.

Similar limitations can be found (with different facets) in
most model-driven approaches. We therefore propose Chime-
ra-Web for addressing the previous lacks, also introducing
the following advantages:

• Rules may have a sparse scope, not necessarily limited
to single hypertext pages. This facilitates the defi-
nition of rules spanning several pages and, more in
general, several application components. Reuse and
consistency are thus enhanced.

• The execution of Chimera-Web rules is detached from
the computation of pages. The two logics, page com-
putation and rule evaluation, are kept separate, thus
enhancing separation of concerns even during applica-
tion execution.

• Chimera-Web scales better with respect to the com-
plexity of the rule chains to be attached to individual
pages.

• Chimera-Web offers a broader set of events.

• The detached rule engine also facilitates the dynamic
management of adaptivity rules: rules can be modified,
newly introduced or dropped even during application
execution. On the opposite, changes to WebML rules
require the generation and deployment of a new version
of the application code. Chimera-Web thus supports
the evolution of adaptivity requirements.

3.4 Example
In the context of the Italian research project MAIS1 we have
developed a context-aware Web application, called PoliTour,
supplying information about buildings and roads within our
university campus at Politecnico di Milano. The applica-
tion is accessed by a PDA, equipped with a GPS receiver
for location sensing. User positioning is thus based on geo-
graphical longitude and latitude. As the user moves around
the campus, the application publishes location-aware data,
providing details about roads and buildings.

Figure 2 depicts the application data schema, where the en-
tity User represents the user model and the entity Position,
associated to User, constitutes the context model. The cam-
pus area can be divided into a set of contiguous, rectangular
zones (modeled by means of the entity Location), and roads
and buildings can be mapped onto different contiguous ar-
eas. Therefore, four attributes characterize the boundaries

1http://www.mais-project.it

User
Model

Road

Name
DescriptionLocation

MinLongitude
MaxLongitude
MinLatitude
MaxLatitude
Connectivity

Context Model

User

UserName
Password
EMail

Building

Name
Description
Image

0:1
0:N

0:1

0:1

1:N

1:N

0:N

1:1

1:1

0:N
Position

Longitude
Latitude

1:1

Classroom

Name
Description

Figure 2: Application data of the PoliTour Web ap-

plication.

of a location: min and max longitude, min and max lat-
itude. Also, each location is associated with a measure of
the expected quality of the wireless connection active in each
location (attribute Connectivity).

Figure 3 shows a simplified WebML hypertext schema, where
we only show three pages of the overall application. Page
Buildings publishes a list of buildings (BuildingsIndex).
It also shows details of a selected building (BuildingData)
chosen from the list, together with the building’s classrooms
(ClassroomsIndex). The selection of a classroom leads the
user to a new page (Classroom), which shows some details
about the selected classroom (ClassroomData). Similarly to
page Buildings, page Roads shows data about the campus
roads (RoadsIndex and RoadData) and their nearby build-
ings (Nearby Buildings).

The pages Buildings and Roads are C-pages; the external
unit chain represents their adaptivity rule. In particular,
the unit Get User provides the identifier of the current user
in input to the Get Position unit, which accesses location
data sensed through the client-side GPS module. The Get

Location and Get Building units retrieve the location cor-
responding to the sensed position and the contained build-
ing. If no building is retrieved, the Get Road unit retrieves
the road associated with the current position, and forwards
the user to the Roads page. Alternatively, if a building is
retrieved, page Buildings is displayed. It is worth noticing
that the two C-pages share the same adaptivity actions.

The application has been modeled according to the adap-
tive WebML approach, automatically generated with the
extended WebML code generator and deployed on top of
a J2EE platform, extended for supporting adaptivity. Its
intended use occurs through PDA devices with wireless In-
ternet access, using Pocket Internet Explorer2. The com-
munication with the GPS module is implemented using the
Chaeron GPS Library3.

The visually modeled adaptivity logic in the described con-
text-aware Web application allows achieving localized adap-

2A demo of the PoliTour application is available at http:
//dblambs.elet.polimi.it/politour/.
3http://www.chaeron.com/gps.html

Siteview

Buildings

Building

BuildingData
C

Classroom

Classroom

ClassroomData

ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Get Location

Location
[MinLongitude<Lon<MaxLongitude]

[MinLatitude<Lat<MaxLatitude]

Get Building

Building
[Location2Building]

Get Road

Road
[Area2Road]

Roads

Road

RoadData
C

RoadsIndex

Road L
L

H

IF

Building.OID != null

OK

[result =
false]

[result = true]

Get Position

Position
[User2Position(CurrentUser)]

Get User

CurrentUser

OK

Lon,
Lat

Nearby Buildings

Building
[Road2Building]

Figure 3: WebML hypertext model of the PoliTour application.

tivity effects. Indeed, the adaptivity actions shared by the
two pages Buildings and Roads describe an adaptive be-
havior (i.e., reaction to changes in position data), which is
proper of just these two pages.

3.4.1 Specifying Sparse Adaptivity Rules
As an example of sparse or cross-application adaptivity ex-
pressed by Chimera-Web, we consider the following LowCon-

nectivity trigger. It is defined as global, and therefore
refers to all the pages of the Web application.

define trigger LowConnectivity global

events modify(Position.Latitude),

modify(Position.Longitude)

condition Location(L),

L.MinLatitude < Position.Latitude,

Position.Latitude < L.MaxLatitude,

L.MinLongitude < Position.Longitude,

Position.Longitude < L.MaxLongitude,

L.Connectivity = "Low",

CurrentStyle != "LowConnStyle.css"

actions changeStyle("LowConnStyle.css")

order 1

end

The trigger is evaluated every time a change in the user po-
sition occurs, as indicated by the two (disjunctive) modify

events. The evaluation of the trigger is independent from
the pages currently viewed by users. According to the con-
dition statement, the trigger is executed only if the new
reached position falls inside a location with a “low” connec-
tivity. The location corresponding to the current position is
selected by means of the condition predicates and bound to
the variable L, which joins the single predicates of the condi-
tion statement. As the action of the rule consists in changing
the Cascading Style Sheet (CSS) associated with the page,
a proper session parameter CurrentStyle indicates whether
the action has already been performed or not. The aim of
the new style sheet is that of alerting the user of possible
connectivity problems, by changing the application’s color
composition.

Adaptive
Hypertext
Adaptive

Application
Adaptive
Hypertext

Adaptive
Hypertext

Web Action
Enactor

Adaptive
Hypertext

Adaptive
Hypertext

W
eb

 A
p

p
.

R
u

le
 E

n
g

in
e

D
at

a
S

o
u

rc
e

Adaptive
Hypertext

Rule Meta DataApplication Data

Web Event
Dispatcher

Rule EngineTime Manager External Event
Manager

Data
Events

Temporal
Events

Web
Events

External
Events

HTTP request

HTTP response

Web
Service

Figure 4: Layered system architecture articulated

into Web Application layer, Rule Engine layer and

Data Source layer.

4. THE INTEGRATED FRAMEWORK
ARCHITECTURE

Figure 4 depicts a three-layer architecture for the integration
of WebML and Chimera-Web. With respect to conventional
Web applications and to [3, 4], this architecture also includes
an intermediate Rule Engine layer, which is devoted to the
detached execution of adaptivity rules. The three different
layers aim at the following purposes:

• The Data Source layer contains both the application
data and the meta-data required for rule evaluation
and execution. With respect to conventional Web ap-
plications, the use of ECA rules requires an active
database system, supporting the definition of triggers.

Client Brower

HTML Document

Rule Meta
Data

Application Runtime

Adaptive
Application

Trigger ClientRM Client

Trigger Server

1. User Request

2. Page

3. Action Monitoring

5. Autom. Request Decision
4. Check Rule Meta Data

6. Automatic Request

7. Adapted Page Trigger Server
Web Action

Enactor

Web Event
Dispatcher

RM Server

Rule Engine

Figure 5: Enacting Web actions with client-side adaptivity effects.

• The Rule Engine layer supports event handling and
rule execution. The input to the Rule Engine con-
sists of temporal and external events (managed by the
Time Manager module and the External Event Man-
ager module, respectively), of Web events forwarded
by the Web Event Dispatcher, and of data events cor-
responding to modifications to the data source.
The execution of Chimera-Web rules within the Rule
Engine layer requires their a-priori compilation that
generates suitable meta-data, native trigger definitions
in the adopted DBMS, and configures the Time Man-
ager and the External Event Manager.
Thanks to the modular architecture of the integrated
framework, the rule engine can be switched on or off,
depending on whether the execution of sparse rules is
required or not.

• The Web Application layer is represented by the ex-
tended WebML runtime environment, which manages
the application logic (Adaptive Application module).
The integration with the Chimera-Web engine further
requires the inclusion within the Web Application layer
of the Web Event Dispatcher module, to capture Web
events generated during the execution of the adaptive
application, and of the Web Action Enactor module,
to execute adaptivity actions. Both modules can be
implemented as plug-ins for the extended WebML run-
time environment.

As shown in Figure 4, events possibly triggering adaptivity
are propagated directly (by their handling modules) or in-
directly (via the Rule Engine) toward the rule meta-data.
Such meta-data contain the “runtime” data of Chimera-Web
rules, and are observed by the Rule Engine to evaluate trig-
gered rules. If the condition of a triggered rule is satis-
fied, the engine activates the specified action handler(s) in
the Web Application layer to enact the respective adaptiv-
ity action(s). Activating an action handler may imply a
direct communication with the respective software module
(e.g. by calling a function or method of the action handler)
or the appropriate modification of rule meta-data, in case
the required action handler modules themselves are able to
observe the data source.

With respect to traditional trigger applications, Chimera-
Web rules enable the execution of Web actions, that in some
cases may also affect the Web application front-end. The ex-
ecution of such actions requires some additional mechanisms
to dynamically re-compute the page inspected by the user.
Figure 5 depicts our solution to manage the execution of

adaptivity actions with client-side effects.

The adoption of standard Web technologies prohibits the use
of push mechanisms to communicate adaptations to be ex-
ecuted at the client side. Nevertheless, a client-server com-
ponent added to adaptive pages, the so-called Rule Moni-
tor (RM) allows us to simulate the required active behavior
by means of a background polling solution, leading us to
promote adaptivity rules as “active actors”, operating inde-
pendently from users on the same hypertext the users navi-
gate. The RM Server monitors the rule meta-data, looking
for modifications. Periodically, the RM Client (an active
client-side component added to the HTML markup of adap-
tive pages4) consults the RM Server to identify whether
any modification occurred. In case of modification, the RM
Client generates an automatic page refresh, allowing the
Web Action Enactor to apply the required adaptations when
computing the page.

4.1 Managing Rule Conflicts
In order to avoid possible conflicts among rules triggered at
the two adaptivity levels, a unified logic for rule triggering
is required. Such a unified logic is achieved by referring the
execution of visually defined rules to the Chimera-Web rule
engine. Since the rule engine is based on the monitoring of
rule meta-data, a unified management of rules requires the
introduction of meta-data representing any change on the
page context and the definition of triggers for identifying
such changes. More precisely, each visual definition of a rule
requires the specification of the data attributes in the page
context. Starting from page context data, the automatic
generation of the application code produces a Chimera-Web
trigger that is capable of reacting to data events over the
page context. In case any modification to such attributes
occurs, the trigger sets some rule meta-data to notify the
RM that the rule’s actions are to be performed.

Also, a sensible use of priorities associated to rules (see Sec-
tion 2.2) allows ordering both visual and textual rules, ac-
cording to their priority. Analogously to page context at-
tributes, also the priority of visual rules can be set through
a page parameter within the WebML CASE tool. Conflict
resolution and priority management are thus completely del-
egated to the Rule Engine layer and do not impact on the
runtime environment of the Web application. As for the
Chimera-Exception language, a suitable TAM (Termination
Analysis Machine) is invoked at rule definition time to check
for possible non-termination [2].

4In our current experiments, the RM client is implemented
as Flash object, while the RM Server is a Java servlet.

4.2 Unbundling the ECA Server
For the execution of Chimera-Web rules, we are currently
unbundling and generalizing the active component of Chime-
ra-Exception from its original WfMS. The so obtained ECA
server will then be fully integrated with the extended WebML
runtime environment as described in Figure 4.

In fact, we aim at unbundling the exception handling unit
FAR from FORO. FAR detects data events by means of rules
at the database level, while workflow events are related to
the engine of the WfMS itself and, possibly, are detectable at
the database level. Temporal events, which are set up by an
anchor event or by the absolute (GMT) time, are managed
by a suitable module (TimeManager) interfaced with the
system clock. External events are triggered by external pro-
grams, which must register inside FAR and can then signal
the occurrence of the respective event. Thus, the coupling
between FAR and the WfMS is tight for data and workflow
events, while it is more relaxed for temporal and external
events. Unbundling the ECA server therefore implies elimi-
nating domain-specific events in FAR (i.e., workflow events),
while the integration with the WebML runtime environment
(i.e., the re-bundling of the ECA server), as described in
Figure 4 expects the definition of new domain events (i.e.,
Web events). In order to avoid modifying the compiler unit
to manage Web adaptivity actions, the solution proposed
in this paper is the introduction of the Web Event Enactor
module as an external executor.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have considered a relevant aspect of mod-
ern Web applications, i.e. adaptivity. We have shown how
such issue can be addressed by a two-layered approach that
combines conceptual modeling with active rules and yields
an adequate framework for coping with both localized and
sparse adaptivity requirements.

With respect to our previous results, the integrated frame-
work described in this paper provides a full-fledged support
for any type of events, internal or external to the applica-
tion, dependent or independent from user interactions, and
broadens the scope of adaptivity rules. Although Chimera-
Web has been introduced for managing sparse adaptivity
rules, it can be used as well to specify and execute localized
rules. This aspect further enhances the evolvability of local-
ized rules. Indeed, localized rules can be “dynamically” ex-
tended after the application deployment, without requiring
modifications to the conceptual specification of the applica-
tion, which would require a new code generation and a new
deployment.

The simulations we already completed on a “loosely cou-
pled” architecture proved the feasibility of the outlined in-
tegration. We are now working on implementing the addi-
tional modules the integration is based on, namely the Web
Action Enactor and the Web Event Dispatcher.

6. REFERENCES
[1] H. Baumeister, A. Knapp, N. Koch, and G. Zang.

Modeling Adaptivity with Aspects. In D. Lowe and
M. Gaedke, editors, Proc. of ICWE 2005, Sydney,
Australia., volume 3579 of LNCS, pages 406–416.
Springer-Verlag Berlin Heidelberg, July 2005.

[2] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi.
Specification and Implementation of Exceptions in
Workflow Management Systems. ACM Transactions
on Database Systems, 24(3):405–451, 1999.

[3] S. Ceri, F. Daniel, and M. Matera. Extending WebML
for Modeling Multi-channel Context-aware Web
Applications. In Proc. of WISE’03 Workshops, Rome,
Italy, December 12 -13, 2003, pages 225–233. IEEE
Press, 2003.

[4] S. Ceri, F. Daniel, M. Matera, and F. M. Facca.
Model-driven Development of Context-Aware Web
Applications. ACM Transactions on Internet
Technologies, 7(2), 2007.

[5] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kauffmann, 2002.

[6] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca.
Active Rule Management in Chimera. In Active
Database Systems: Triggers and Rules For Advanced
Database Processing, pages 151–176. Morgan
Kaufmann, 1996.

[7] P. De Bra, A. Aerts, B. Berden, B. de Lange,
B. Rousseau, T. Santic, D. Smits, and N. Stash. AHA!
The Adaptive Hypermedia Architecture. In Proc. of
HYPERTEXT ’03, ACM Press, pages 81–84, 2003.

[8] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit.
Aspect-Oriented Software Development.
Addison-Wesley, 2004.

[9] F. Frasincar and G.-J. Houben. Hypermedia
Presentation Adaptation on the Semantic Web. In
AH, pages 133–142, 2002.

[10] I. Garrigós, S. Casteleyn, and J. Gómez. A Structured
Approach to Personalize Websites Using the OO-H
Personalization Framework. In Web Technologies
Research and Development - APWeb 2005, pages
695–706. Springer-Verlag, 2005.

[11] I. Garrigós, J. Gómez, P. Barna, and G.-J. Houben. A
Reusable Personalization Model in Web Application
Design. In WISM’05, 2005.

[12] P. Grefen, B. Pernici, and G. Sanchez, editors.
Database Support for Workflow Management: The
Wide Project. Kluwer Academic Publishers, Norwell,
MA, USA, 1999.

[13] G. Kappel, B. Pröll, W. Retschitzegger, and
W. Schwinger. Modelling Ubiquitous Web
Applications - The WUML Approach. In ER
(Workshops), pages 183–197, 2001.

[14] N. Koch, A. Kraus, and R. Hennicker. The Authoring
Process of the UML-based Web Engineering
Approach. In D. Schwabe, editor, Proc. of
IWWOST’01, 2001.

[15] UWA Consortium. The UWA Approach to Modeling
Ubiquitous Web Applications. IST Mobile and
Wireless Telecommunications Summit, 2002.

[16] WebModels s.r.l. Webratio Site Development Studio.
http://www.webratio.com, 2005.

