
 59

Chapter III
Context-Aware Applications

for the Web:
A Model-Driven Development Approach

Florian Daniel
University of Trento, Italy

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Adaptivity (the runtime adaptation to user profile data) and context-awareness (the runtime adapta-
tion to generic context data) have been gaining momentum in the field of Web engineering over the
last years, especially in response to the ever growing demand for highly personalized services and ap-
plications coming from end users. Developing context-aware and adaptive Web applications requires
addressing a few design concerns that are proper of such kind of applications and independent of the
chosen modeling paradigm or programming language. In this chapter we characterize the design of
context-aware Web applications, the authors describe a conceptual, model-driven development ap-
proach, and they show how the peculiarities of context-awareness require augmenting the expressive
power of conceptual models in order to be able to express adaptive application behaviors.

IntroductIon

The evolution of the Information Technology in
the last years has seen the World Wide Web trans-
forming from a read-only hypertext media into
a full-fledged, multi-channel and multi-service
application delivery platform. Current advances
in communication and network technologies are
changing the way people interact with Web ap-

plications. They provide users with different types
of mobile devices for accessing – at any time,
from anywhere, and with any media – services
and contents customized to the users’ preferences
and usage environments. More and more users
themselves ask for services and applications highly
tailored to their individual requirements and,
especially due to the increasing affordability of
new and powerful mobile communication devices,

60

Context-Aware Applications for the Web

they also begin to appreciate the availability of
ubiquitous access. In order to cope with the grow-
ing demand for novel, user-centric application
features, such as adaptivity and context-aware-
ness, appropriate development methods for Web
applications are required.

Adaptivity is increasingly gaining momen-
tum in the context of modern software systems.
Runtime adaptivity provides highly flexible
and responsive means for the customization of
contents and services with respect to the user’s
identity. Varying device characteristics in mobile
and multi-channel computing environments can
be adequately taken into account and leveraged
by means of adaptive software designs, whose
development is facilitated by the availability
of standardized communication protocols (e.g.
HTTP) and markup languages (e.g. HTML or
WML), supported by most of today’s mobile
devices. Multi-channel deployment does no lon-
ger require completely different, parallel design
approaches and rather represents a presentation
issue on top of unified engineering solutions.

But adaptivity may also enable an application
to take into account a wider range of properties
describing the interaction between the user and
the application, thus paving the way for context-
awareness. Context-awareness (Dey & Abowd,
2000; Schilit & Theimer, 1994) is often seen as
recently emerged research field in information
technology and in particular in the domain of the
Web. From the perspective of application front-
end development it can however be interpreted
as natural evolution of personalization and adap-
tivity, addressing not only the user’s identity and
preferences, but also his/her usage environment.
Personalization has already demonstrated its
benefits for both users and content providers and
has been commonly recognized as fundamental
factor for augmenting the efficacy of the overall
communication of contents. Context-awareness
goes one step further in the same direction, aim-
ing at enhancing the application’s usefulness

and efficacy by combining personalization and
adaptivity based on an application-specific set
of properties (the context) that may affect the
execution of the application.

In this chapter, we focus on the development
of context-aware applications for the Web and, in
particular, we describe a model-driven develop-
ment method that allows developers to approach
the problem at a level of abstraction that enables
him/her to focus on the real design challenges
of such class of applications, leaving low-level
implementation concerns to supporting CASE
(Computer-Aided Software Engineering) tools.
Considering that software systems are con-
tinuously getting more complex and difficult to
maintain – partly due to the previously described
requirements –, we believe that efficient abstrac-
tion mechanisms and design processes, such as
those provided by visual, model-driven design
methods, are becoming crucial. The focus on
essential design issues and the ease of reuse in
model-driven design methods may significantly
accelerate the overall design process. As we will
show in this chapter, starting from application
models, code generation techniques may then
provide for the automatic generation of application
code or templates, thus assuring the fast production
of consistent and high quality implementations.

MotIvAtIng exAMples

Active application features, such as context-
aware or adaptive behaviors, may augment the
effectiveness of interactions and the efficiency
of resource consumption in all those situations
where services and contents offered by an appli-
cation strongly depend on environmental situa-
tions, users’ abilities or disabilities, or the state or
health of a software system. For example, typical
applications demanding for active features and
adaptivity are:

 61

Context-Aware Applications for the Web

• Adaptive personalization. User profile at-
tributes for personalization purposes may
present different levels of variability in time.
Profile properties may be static in nature (e.g.
the name of a user), slowly changing (e.g.
profile data derived from a user’s brows-
ing behavior) or even fast changing (e.g.
the pulse frequency of a patient). Adaptive
personalization mechanisms that take into
account such profile peculiarities could al-
low systems to go beyond the common and
static tailoring or services and contents.

• Interaction-enabling functionalities. Con-
text could as well consider handicaps or
physical disabilities of users, such as vision
problems, blindness or paralysis, to adapt
the application accordingly and to provide
alternative and better suited interaction
mechanisms and modalities. Adaptivity
could thus provide functionalities enabling
handicapped users to properly interact with
applications, thus fostering the accessibility
of applications.

• Effective content delivery. In general, what-
ever context data may be leveraged to provide
appropriate contents and program features
at the right time, priority, and emphasis. For
example, specifically targeted special offers
could be advertised and directed more ef-
fectively, presentation properties could be
adapted to varying luminosity conditions
for better readability, etc. Adaptive or con-
text-aware extensions could thus enhance
the overall effectiveness of applications by
adapting individual application elements to
varying users or usages of the application.

• Delivery of context as content. Applications
may depend intrinsically and in a structural
manner from context data. Location-aware
applications, such as city map services or
navigation systems, treat position data as
core contents of the application and adapt
to them, supported by proper localization
mechanisms. To such kind of applications,

the use of context data represents a func-
tional requirement, rather than an optional
feature.

• Exception handling. Critical events during
the execution of a software system may raise
exceptions and require prompt reactions be-
ing performed. Process-based or workflow-
driven applications, for example, represent a
typical class of applications that constantly
have to cope with exceptional situations in
order to guarantee the consistent termina-
tion of a running process. Here, adaptive or
context-aware mechanisms could be lever-
aged to capture respective application events
and to enact the pieces of application logic
that are necessary to handle the exceptional
situation.

• Production and control systems. Critical
production or control systems may require,
for example, highly specific sensing and
alerting mechanisms to prevent produc-
tion losses or product quality degradations.
Context-awareness could facilitate the
timeliness of reactions and the efficient
handling of dangerous situations, but also
proactive maintenance approaches, such as
those adopted in a steadily growing num-
ber of hardware/software systems, may be
achieved.

• Self-healing software systems. Autonomic
or self-healing software systems elevate
the idea of proactive maintenance from
hardware to software systems and aim at the
creation of computing systems that are able to
configure, tune, and even repair themselves.
Proactive and adaptive capabilities in this
context are an essential feature.

reference scenArIo

To exemplify the concepts introduced in this
chapter and to better convey the underlying ideas,
step by step we will show how we developed one

62

Context-Aware Applications for the Web

of our demonstration prototypes, the PoliTour
application. The application runs on a PDA with
wireless Internet access and enables visitors to
Politecnico di Milano, Italy, to obtain location-
aware campus details (i.e. information about roads
and buildings) while walking through the campus.
If a user is about to leave the WiFi-covered area
of the campus, an alert message is shown.

context-AwAreness And web
ApplIcAtIons

Due to a lack of appropriate technologies and
concepts, for a long time context-awareness
has not been considered suited to the domain of
the Web. Web technologies (both hardware and
software) are however continuously evolving and
the attitude toward reactive and context-aware
behaviors in Web applications is changing. As a
matter of fact, support for a multitude of non-func-
tional requirements, whose inadequate coverage
prevented the adoption of Web technologies for
the implementation of reactive applications, has
now been developed. Just to mention a few:

• The reliability of data communications has
been considerably enhanced along both
the software and the hardware dimension.
The introduction of reliable messaging
techniques (e.g. digital certificates or the
WS-Reliability specification) provides for
trustworthy communications on top of
standard Web protocols, such as HTTP or
SOAP. The success of fiber optics – as an
example of hardware evolution – has allowed
the Ethernet protocol (typically used in the
Web) even to enter industrial production en-
vironments, where the high electromagnetic
interferences that exist in the presence of
high-voltage machineries practically pro-
hibited the use of conventional, unreliable
network technologies.

• The pervasiveness and availability of Web
applications is continuously growing due
to the introduction of novel networking
technologies, such as ADSL (Asynchronous
Digital Subscriber Line) or fiber optics for
home and office users and WiFi and 3rd
generation mobile telephony technologies
(e.g. UMTS, GPRS, EDGE) for mobile us-
ers.

• Web applications have proved a high scal-
ability (it suffices to think about certain
portal applications that serve millions of
users every day), facilitated maintainability
and high cost efficiency.

Provided that technological advances enable
and facilitate the development of adaptive Web
applications, it is important to recognize that
context-awareness, rather than being a mere
technological concern, represents a true design
issue. In the following, we will thus focus on the
typical design concerns in the development of
context-aware Web applications.

enabling context-Awareness
in the web

Developing context-aware applications for the
Web demands some characteristic architectural
components, in order to support adaptations to
context. Figure 1 proposes a possible functional
architecture that extends the traditional architec-
ture of Web applications with components aimed
at supporting the acquisition, storage, and use of
context data.

The typical context-aware application’s data
source includes both the application data (i.e.
the business objects that characterize the ap-
plication domain and the user) and the context
model, which offers at any moment an up-to-date
representation of the context state. The context
model captures all the context-characterizing
properties and enables the system to adapt to

 63

Context-Aware Applications for the Web

changes thereof, assuming that such changes may
demand for proper reactions by the application.
An application typically consists of adaptive (i.e.
context-aware) and non-adaptive parts; we call
the former adaptive hypertext. The pages of the
adaptive hypertext present some form of adaptive
behavior, i.e. they are able to react to changes
in the context, while pages of the non-adaptive
hypertext do not present any adaptive behavior.
To decide which adaptation is required – if any –,
the adaptive hypertext makes use of context data
during the rendering of hypertext pages. Context
data needs to be sensed (e.g. by means of suitable
instruments, such as GPS positioning systems,
thermometers, or similar) and communicated to
the Web server that hosts the application, in order
to be processed.

The above architecture allows for three main
communication mechanisms to pass context data
from the sensing devices to the application: (i) as
parameters sensed at the client side and sent to the
application (e.g. GPS position data); (ii) as server-
side parameters (i.e. HTTP session variables)

provided by a centralized sensing infrastructure
(e.g. system usage data); and (iii) by means of
direct updates of the context model. Typically,
client-side parameters are generated by client-side
sensing solutions, server-side parameters are filled
by centralized sensing solutions, and database
updates may be performed by both.

Context-awareness in Web applications there-
fore requires addressing the following issues:

• Context data modeling. Context properties
that are relevant for the provisioning of the
context-aware behaviors of the application
must be identified and represented in an
application-accessible format. The result
of this task is the context model that can be
queried for adaptation purposes.

• Modeling of adaptive application behaviors.
Starting from the context model, adaptation
operations need to be defined in order to react
to situations demanding for adaptation. That
is, detected changes to the context data are
translated into visible effects or operations
that aim at augmenting the effectiveness
and usability of the application.

• Context model management. The context
model only captures the static aspect of
context data, i.e. their structure; in order to
also capture the dynamics of context data,
and hence to be able to trigger adaptive
behaviors, we also need to:

◦ Acquire context data by means of measures
of real-world, physical properties, corre-
sponding to the properties of the context
model. The so acquired data are then fed
into the context model, so as to keep the
context model up to date.

◦ Monitor context data to detect those varia-
tions in context data that trigger adaptivity.
Relevant variations are used to enact the
adaptation operations in the adaptive hy-
pertext, thus causing an automatic, adaptive
behavior of the Web application.

Figure 1. Context data in context-aware Web
applications. Gray shaded boxes correspond to
conventional, non-adaptive parts, white boxes
correspond to extensions required to support
context-awareness.

Context Model

Adaptive
Hypertext
Adaptive
Hypertext

Application Data

Centralized
SensingHypertext

Web Browser

Client-side
parameters

Server-side
parameters

Client-side
Sensing

64

Context-Aware Applications for the Web

While the definition of the context model
and the monitoring of context data can easily
be assisted by proper context modeling methods
and a proper runtime framework providing basic
monitoring functions, it is not as easy to assist
designers in the development of suitable context
acquisition (i.e. sensing) infrastructures. In fact,
the former two activities can be generalized be-
yond the needs of individual applications, while the
design of sensing infrastructures remains tightly
coupled with individual application requirements
and technological choices. The exact development
of sensing infrastructures is thus out of the scope
of this chapter.

context-Aware behaviors in web
Applications

But what exactly does it mean to adapt a Web
application or to react to context? Starting from
the work by Brusilovsky (1996) on adaptive
hypermedia systems, in context-aware Web ap-
plications, adaptive behaviors may affect:

• Contents and services delivered by the ac-
cessed pages: the application may autono-
mously chose contents or services based on
changing context data.

• The navigation: the application may perform
automatic navigation actions on behalf of
the user toward pages that better suit the
current context conditions.

• The whole hypertext structure: the applica-
tion may choose to apply coarse-grained
adaptations (e.g. to the layout of the appli-
cation), for example to react to changes of
the user’s device, role, or activity within a
multi-channel, mobile environment.

• Presentation properties: the application
may apply more fine-grained adjustments
to the application’s appearance (e.g. to style
properties or fonts in use).

• Generic operations: the application may
decide to enact generic operations in the

background, e.g. to log specific application
events or to interact with external applica-
tions.

In this chapter, we will describe how these
behaviors have been realized in the model-driven
design method WebML and how the resulting
extended version of the method can be leveraged
for the development of context-aware applications.
Before proceeding with the discussion, it is thus
appropriate to shortly introduce the WebML de-
velopment method, which will serve as reference
throughout this chapter.

the web Modeling language
(webMl)

WebML is a visual language for specifying the
content structure of Web applications and the
organization and presentation of contents into
one or more hypertexts (Ceri et al., 2002).

WebML application design starts with the
specification of a data schema, expressing the
organization of the application contents by
means of well established data models, such as
the Entity-Relationship model or the UML class
diagram. On top of such data schema, WebML
design then proceeds with the specification of a
so-called hypertext model, which describes how
contents, previously specified in the data schema,
are published into the application hypertext. The
overall structure of the hypertext is defined in
terms of site views, areas, pages, and content units.
A site view is a hypertext, designed to address a
specific set of requirements. Several site views
can be defined on top of the same data schema,
for serving the needs of different user communi-
ties, or for arranging the composition of pages to
meet the requirements of different access devices
like PDAs, smart phones, and similar appliances.
A site view is composed of areas, which are the
main sections of the hypertext, and comprise
recursively other sub-areas or pages. Pages are
the actual containers of information delivered to

 65

Context-Aware Applications for the Web

the user; they are made of content units, which
are the elementary pieces of information extracted
from the data sources by means of queries, and
published within pages. In particular, content units
denote alternative ways for displaying one or more
entity instances. Unit specification requires the
definition of a source and a selector: the source is
the name of the entity from which the unit’s content
is extracted; the selector is a condition, used for
retrieving the actual objects of the source entity
that contribute to the unit’s content. Content units
and pages are interconnected by links to constitute
site views. Besides representing user navigation,
links between units also specify the transportation
of parameters that can be used by the destination
unit in its selector condition. Some WebML units
also support the specification of content manage-
ment operations. Standard operations are creating,
deleting or modifying an instance of an entity or
adding or dropping a relationship between two
instances; custom units may be defined. Finally,
WebML also allows the management of session
parameters; parameters can be set and consumed
through proper units.

In addition to the visual representation,
WebML also comes with an XML-based, textual
representation, which allows one to specify ad-
ditional detailed properties, not conveniently ex-
pressible in the graphic notation. The availability
of the XML specification enables the automatic
generation of the application code (Web Models,
2008), comprising rendering formats like HTML
(which is the standard choice for deployment) or
WML. For a detailed description of WebML,
the interested reader is referred to (Ceri et al.,
2002).

ModelIng dAtA for context-
AwAre web ApplIcAtIons

Context data can derive from several sources
integrating sensed, user-supplied, and derived
information (Henricksen, 2004; Henricksen,

2002). While user-supplied data are generally
reliable and tend to be static, sensed data are
typically highly dynamic and can be unreliable
due to noise or sensor errors. The problem of
unreliability has been addressed in literature for
example by associating context information with
quality data (Lei, 2002). Although we recognize
the importance of reliable context data, in this
work we rather concentrate on the exploitation
of context in the design of Web applications.
For simplicity, throughout this chapter we thus
consider sensed data as trustworthy.

characterizing context data

The main goal of context modeling is the formal-
ization and abstraction of the context properties
that affect the application. In this regard, a first
characteristic distinguishing context properties is
the distinction between physical and logical con-
text. We call physical context those properties that
are immediate representations of sensed, physical
quantities (e.g. the values of an analog/digital
converter), and logical context those properties
that enrich physical context with semantics and
additional abstractions of the raw sensed data (e.g.
the city corresponding to physical longitude and
latitude values).

A second characteristic affecting the structure
of the context model is the persistence of context
properties in the system, i.e. the property that
expresses whether individual context properties
represent persistent data or volatile data. Persistent
data need to be stored in the application’s data
source and therefore require proper data entities
being modeled as part of the context model, while
volatile data do not need any storage and can thus
be omitted from the context model. The context
model therefore only captures persistent context
data (indeed, in WebML the context-model is part
of the database underlying the application).

Starting from these two characteristics and
from the reference architecture introduced in
Figure 1, Figure 2 summarizes the resulting

66

Context-Aware Applications for the Web

characterization of context data:

• Volatile physical context. Context data com-
municated via client-side parameters or via
server-side session parameters represent
volatile data. They are immediately avail-
able during the execution of the application,
independently of the underlying context
model. Volatile context data are not enclosed
in the context model; they might however
be used during page computation to adapt
the application.

• Persistent physical context. Context data
sharing (e.g. between members of a same
group) or tracking (e.g. to derive differential
context properties or to keep a context his-
tory) typically require the persistent storage
of data. Persistent physical context data
are thus included in the context model and
updated according to their dynamics.

• Persistent logical context. Logical context
data is stored as data in the context model,
so as to enable the data-driven transforma-
tion of physical context into logical context.
Logical context data are typically static, as
they provide abstractions of physical context;
dynamic updates and/or extensions can,
however, be supported as well.

Physical and logical context data therefore
coexist in the application’s data source. This co-
existence typically requires a transformation or
mapping between raw data and information that
can directly be used when specifying hypertext
schemas. Consistently with the data-driven ap-
proach that characterizes WebML, we propose a
formalization of such transformation at the data
level by means of suitable associations between
data entities representing physical and logical
context data, respectively. Although technically
legal, we do not expect the use of volatile logical
context, as volatile context data typically repre-
sents sensed raw context data.

It is worth noting that even though there are
several properties commonly regarded as context
attributes (e.g. position, time, or device charac-
teristics), there exists no universal context model
that applies to all kinds of applications. For this
reason, also in this chapter we do not prescribe any
precise, rigid context model for WebML applica-
tions; we rather introduce some WebML-specific
modeling guidelines that enable the designer to
provide context-aware applications with suitable
context meta-data.

example data schema for
Adaptation in webMl

Let’s consider the PoliTour application shortly
discussed in the introduction. Figure 3 illustrates
a possible Entity-Relationship diagram with basic
user profile data and context data, grouped in the
figure into so-called sub-schemas:

• User profile sub-schema. Users, groups,
and site views are represented as “first-class
citizens” in the application data source, as
required by the WebML design process. The
entity User provides a basic profile of the
application’s users, the entity Group associ-
ates access rights to users (i.e. a role), and the

Figure 2. Persistence of physical and logical
context data.

Logical
Context

Physical
Context

/

volatile persistent
persistency

context
Abstraction

Logical context
stored as data in
the context model

Physical context
for one-time

consumption only

Physical context
stored for context
sharing or tracking

purposes

 67

Context-Aware Applications for the Web

entity Site View contains the site views that
may be accessed by the members of a group.
The relationship Membership expresses that
users may belong to multiple groups, which
in turn cluster multiple users. The relation-
ship DefaultGroup connects a user to his/her
default role and, when logging into the ap-
plication, the relationship DefaultSV allows
the application to forward the user to his/her
default group’s default site view. The rela-
tionship Access expresses which site views
a specific group is allowed to access; this
relationship is required as varying context
conditions may require different interaction
and navigation structures for a same group.
In this way, depending on the context state,
the application is able to determine the most
appropriate site view and to forward the user
accordingly.

• Context model sub-schema. The context
model of the application is represented by
the entities Area, Building, and Road, which
all provide logical context data. The actual

GPS position data used for delivering the
location-aware guide through the Politecnico
campus (i.e. longitude and latitude) and the
signal strength of the WiFi connection are not
part of the context model in the application’s
data source; in developing the PoliTour ap-
plication, we will handle such as volatile
context data. Starting from the physically
sensed data, the entity Area allows the ap-
plication to identify a geographical area
inside the campus; an area is then associated
either with a Building or a Road, meaning
that starting from the user’s position we can
identify whether he/she is located close to a
building or rather walking through one of
the roads in the campus.

• Application data. The remaining entity
Classroom represents application data that
are not part of the context model. This means
that from a building it is possible to access
the list of classrooms of the building, but
there are no adaptive behaviors associated
with the entity Classroom.

Figure 3. Adaptation-triggering data in WebML applications, partitioned into basic user sub-schema,
personalization sub-schema and context sub-schema.

basic user sub-schema

Area
MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

context Model sub-schema

0:1

0:1

1:N

1:N Road
Name
Description

Building
Name
Description
Image

Classroom
Name
Description

0:N 1:1

1:N 1:N
Access

1:1 1:N
DefaultSV

Group
GroupName

SiteView
SiteViewID

User
UserName
Password
EMail

1:1
0:N

1:N 1:N

DefaultGroup

Membership

68

Context-Aware Applications for the Web

ModelIng context-AwAre
Hypertexts

While the first step of the WebML design method,
i.e. data modeling, does not require any exten-
sion of the modeling primitives for capturing
context data (the standard Entity-Relationship
primitives suffice), WebML hypertext modeling
does require a few model extensions to express
adaptivity concerns. Next we therefore introduce
the new concepts and primitives that have been
developed to express adaptive behaviors, and we
clarify how different adaptivity policies can be
used to enact adaptations.

context-Aware pages and
containers

Our basic assumption in the modeling of con-
text-aware hypertexts is that context-awareness
or adaptivity is a property to be associated only
to some pages of an application (the adaptive
hypertext), not necessarily to the application as a

whole. Location-aware applications, for example,
adapt core contents to the position of a user, and
so-called “access pages” (e.g. containing cat-
egories or lists) typically are not affected by the
context of use.

As can be seen in Figure 4, we tag context-
aware pages with a C-label (standing for context-
aware) to distinguish them from conventional
pages. The label indicates that an adaptivity rule
(stylized as a cloud) is associated with the page
and that during the execution of the applica-
tion this logic must be taken into account when
computing the page. Specifically, Figure 4 states
that pages Buildings and Roads are context-aware,
while the page Classrooms does not present any
adaptive behavior.

There might also be the need for adaptivity
rules with effects that spread over multiple pages.
For this purpose, we exploit the hierarchical
structure of hypertexts; that is, we allow the
definition of context-aware containers (i.e. site
views and areas, in terms of WebML). This al-
lows the designer to insulate and to specify only

Figure 4. WebML hypertext schema with one context-aware site view and two context-aware pages.
The parameter P exemplifies the propagation of reusable context data by hierarchically passing context
parameters from an outer area to an inner page.

PoliTour

Buildings

P:
Context
Parameter

P

OID:
Object
Identifier

c
c

Classrooms

Roads
P

OID:
Object
Identifier

c

 69

Context-Aware Applications for the Web

once adaptivity rules that are common to multiple
C-pages inside a container and thus to reduce
the redundancy of the schema. Adaptivity rules
associated to containers and pages are evaluated
recursively, starting from the outermost container
and ending with the actual pages. The site view
PoliTour in Figure 4 is context-aware; we will see
later on why.

localized and sparse Adaptivity
rules

The adaptivity rules attached to the context-aware
pages and containers in Figure 4 represent the
actual adaptivity logic (i.e. the set of adaptivity
actions to be performed). The adaptivity logic is
external to the page or container, and the chain of
adaptivity actions it clusters is kept separate from
the page or container specification. The aim is to
highlight the two different logics deriving from
the role played by pages/containers and adaptivity
operations: while the former act as providers of
contents and services, the latter act as modifiers
of such contents and services.

Adaptivity actions attached to a C-page typi-
cally present effects that are visible in the page
they are attached to. The notion of context-aware
page and adaptation logic therefore defines what
we call a localized adaptivity rule: the scope of a
localized adaptivity rule is strictly coupled with
a fixed set of hypertext pages, where “scope” re-
fers to those (adaptive) pages to which the page’s
adaptivity actions are associated.

The notion of context-aware container allows
us to define sparse adaptivity rules: we talk about
sparse adaptivity rules in those cases, where
adaptivity actions are associated to containers
that contain multiple pages; the scope of such
actions spans a set of pages, more precisely, all
context-aware pages in the container. Coming
back to the PoliTour application sketched in Figure
4, we can thus associate the logic to interpret the
signal strength of the WiFi connection to the

pages Buildings and Roads by applying the logic
to the site view as a whole.

parameter passing

Adaptivity logic is associated to a page by means
of a directed arrow, i.e. a link exiting the C-label.
This link ensures the communication between the
page logic and the adaptivity logic: it may transport
parameters deriving from page contents, which
may be used to compute the specified actions; in
turn, a link from the adaptivity logic to the page
may transport context parameters or generic
values that might be required to perform the final
adaptation during page computation.

But Figure 4 also illustrates the possibility of
hierarchically passing parameters from an outer
container to an inner one. More precisely, if the
evaluation of outer adaptivity logic produces
results to be reused at an inner level, as it might
happen in the case of context parameters, it passes
such values back to the C-label that activated
the computation of the logic. Subsequently, such
parameters can then be “consumed” by adaptivity
logics of the inner levels. As for context-aware
pages, parameter passing from a container to its
adaptivity logic occurs through the logic-activat-
ing link. Links exiting the last evaluated logic,
i.e. at the end of the last adaptivity action, might
carry parameter values for the computation of
units inside a page.

Typical actions to be specified at the container
level are the acquisition of fresh context data
and the updating of the context model, e.g. if the
data are to be shared among multiple users or if
a history of context data is to be tracked. Hence,
especially if persistent context data are adopted,
we propose two levels for adaptivity actions:

• Actions for context model management,
addressing operations for context data
acquisition and context model updating,
should be associated with outer containers

70

Context-Aware Applications for the Web

(site views or areas) and are inherited by
inner containers (areas or pages). These
adaptivity actions need to be executed prior
to the execution of any other action possibly
specified in an inner context cloud, as such
“internal” actions could depend on context
data acquired and stored in the context model
through “external” actions.

• Actions for hypertext adaptivity, defining the
rules for page and navigation adaptation (and
possibly depending on persistent context
data), should be associated with C-pages.

specifying Adaptivity logics

The main novelties for modeling context-aware
pages reside in the specification of adaptivity
rules by means of WebML constructs. In the

following, we introduce the new WebML mod-
eling concepts that ensure full coverage for the
specification of context model management and
hypertext adaptation logics. The new primitives
allow designers to visually specify actions for
acquiring and updating context data and to define
adaptivity actions.

Managing Context Data

In order to support adaptivity with respect con-
text, the application must be able to acquire and
manage context data according to the mechanisms
illustrated in Figure 1. For this purpose, some new
WebML operations have been defined, which,
together with the already available operations,
provide the necessary primitives for:

Figure 5. WebML units that have been defined for the specification of adaptivity actions.

Parameter
Get ClientPar

Client Parameter

@

visual notation description

Input: no input

source parameter: parameters generated at the
client side

output: parameter value

{Entity.Attribute}Parameters
Get Data

Entity
[Selector(Parameters)]

Input: parameters for selector condition evaluation

source entity: database entity from which to
extract the data rows to be filtered by the selector
condition

output: (set of) parameters or attributes retrieved

Parameters
KO

Change SV Input: identifiers of target site view and target page,
last user selections, global parameters, context
parameters

output (ko-link): no output

ChangeStyle

A A
Parameters OK

KO

Input: filename of CSS file to be associated to
current site view

output: no output

 71

Context-Aware Applications for the Web

• Specifying the acquisition of fresh context
data through client-side parameters. A
new Get ClientParameter unit (see Figure 5)
has been defined to support the retrieval of
parameters generated at the client side and
communicated back to the application via
client-side parameters (e.g. parameter-value
pairs attached to the page request query
string).

• Specifying the acquisition of fresh context
data through server-side parameters. Con-
text data directly made available as HTTP
session parameters can be accessed by means
of conventional WebML Get units (Ceri et
al., 2002).

• Specifying the acquisition of context data
from the context model. The execution of
adaptivity actions may require the retrieval
and evaluation of context meta-data, for
example, in situations where certain data
are just needed to evaluate condition ex-
pressions. For this purpose, a so-called Get
Data unit (see Figure 5) has been introduced,
enabling the retrieval of values (both scalars
and sets) from the data source according
to a selector condition. The semantics of
the Get Data unit is similar to the one of
content publishing units (Ceri et al., 2002),
with the only difference that data retrieved
from the data source are not published in
hypertexts, but just used as input for units
or operations.

• Updating the context model. Once fresh
context parameters have been retrieved, they
can be used to update the context model at
data level. This action consists in modifying
values previously stored in the data source.
In WebML, this is already facilitated by
operation units (Ceri et al., 2002) provid-
ing support for the most common database
management operations (e.g., modify, insert,
delete).

Evaluating Conditions

The execution of adaptivity actions may be subject
to the evaluation of some conditions, refining
the triggering logic for context clouds. The most
recurrent pattern consists in evaluating whether
context changes demand for adaptation. The
evaluation of conditions is specified by means
of two control structures, represented by the
If and Switch operation units, which have been
introduced for workflow modeling in WebML
(Brambilla et al., 2003).

Executing Adaptivity Actions

Once the current context state has been deter-
mined, and possible conditions have been evalu-
ated, adaptivity actions can be performed to adapt
the page contents, the navigation, the current site
view structure, and/or presentation style proper-
ties. These actions are specified as follows:

• Adapting Page Contents. Page contents are
adapted by means of proper data selectors,
whose definition is based on context param-
eters retrieved from the context model or
newly computed within the page’s context
logic. The use of parameterized selectors al-
lows for both filtering data items with respect
to the current context state and conditionally
including/excluding (i.e. showing/hiding)
individual content units.

• Adapting Navigation. In some cases, the
effect of condition evaluation within the
context cloud can be an automatic, i.e.
context-triggered, navigation action, caus-
ing the redirection of the user to a different
page. The specification of context-triggered
navigations just requires connecting one of
the links exiting the adaptivity logic of the
page to an arbitrary destination page of the
hypertext. Therefore, links exiting the con-

72

Context-Aware Applications for the Web

text cloud and directed to other pages than
the adaptivity logic’s source page represent
automatic navigation actions.

• Adapting the Site View. In some cases, a
context-triggered switch toward a different
site view may be required. Changes in the
interaction context may in fact ask for a
coarse-grained restructuring of the whole
hypertext, for example because the user de-
vice has changed, or because the user shifted
to a different activity. To switch between
different site views, we have introduced a
Change Site View unit (see Figure 5), which
takes in input the identifiers of the target site
view and the target page, to be visualized in
case a switch toward the specified site view
is required. In order to support “contextual”
switching, the input link also transports
parameters characterizing the current state
of interaction, i.e.:

1. The input parameters of the source page,
which represent the last selections operated
by the user;

2. Global parameters, representing session data
(e.g. user identifier and group identifier), as
well as past user selections that have been
used for the computation of the current
page;

3. Client-side and server-side context param-
eters retrieved during the latest performed
data acquisition cycle and characterizing
the current context state.

• Adapting Presentation Style. Some-
times context changes may require only
fine-grained adaptations of presentation
properties (e.g. due to varying luminosity
conditions), not a complete restructuring
of the overall hypertext. We have defined a
Change Style unit for dynamically assigning
presentation style properties (see Figure
5). Style properties are collected in proper
.css (Cascaded Style Sheet) files, and the

unit enables the application to change its
associated style sheet at runtime.

• Enacting generic operations. The context-
triggered invocation of generic operations
or, for instance, external Web services can
easily be specified by placing the respec-
tive WebML operation unit into the page’s
adaptivity logic and by providing the unit
with the necessary input parameters.

triggering Adaptivity rules

But when do we enact an adaptivity rule? In this
regard, it is possible to define two different adap-
tivity policies for context-aware pages, assigning
different priorities to users and context:

• Deferred Adaptivity: the user is granted the
highest priority. Therefore, after the user
has entered the page and the page has been
rendered according to the user’s selections,
the page’s adaptivity logic is evaluated at
periodic time intervals, enabling the applica-
tion to possibly adapt the already rendered
page. Periodically evaluating the adaptivity
logic means periodically refreshing the page
visualized in the browser.

• Immediate Adaptivity: context is granted the
highest priority. The page’s adaptivity logic
is evaluated each time the page is accessed,
being the access due to the user or to the
periodic refresh of the page. This means
that the page is subject to adaptation each
time it is rendered, even at the first time the
page is accessed by the user.

Consider for example our PoliTour guide that
shows contents about the buildings and roads
in the Politecnico campus. At a given point, the
user might want to get information about a spe-
cific building located in a road that is not related
to his/her current position; such a preference is
typically expressed by selecting a link to that
building from a list. With a deferred policy, the

 73

Context-Aware Applications for the Web

requested page shows the building information as
requested by the user, without taking into account
the user’s current location. Only after expiration
of the refresh interval, the page becomes subject
to adaptivity and the contents are adapted to the
user’s location. With an immediate policy, context
is granted higher priority with respect to the user
and, thus, the user’s request for the building would
be overwritten by the context and the application
would show the building or road associated to
the user’s current location, discarding the user’s
selection.

Note that in addition to these adaptivity poli-
cies, we recognize that there may be situations that
demand for an explicit control of the adaptation
dynamics through the user. Therefore, should for
example a user temporarily not be interested in
having the contents adapted to his/her location,
he/she can simply disable/enable adaptivity at will.
In WebML, the adaptivity policy for context-aware
pages and containers is declared by means of the
Adaptivity_Policy property of context-aware pages
and containers.

Adaptivity policies can also be associated
to context-aware containers. When a C-page is
requested, also the possible context clouds of its
containers are evaluated recursively (from the
outermost one to the innermost one), according to
the adaptivity policy associated to each container.
In general, a container’s adaptivity policy is in-
dependent of the policy of inner containers and
pages (if not, this must be taken into account by
designers when associating policies to containers
and pages). Therefore, it may happen that the ac-
tions in a container’s context cloud are evaluated
immediately, even if the actions associated to inner
containers or pages adopt a deferred evaluation, or
vice-versa. If, for example, the adaptivity actions
associated to the container serve for tracking a
context history, they could require an immediate
policy, while inner adaptivity actions keep their
deferred policy for front-end adaptations. The
hierarchical definition of context clouds may

therefore also be considered a facility to achieve
different “layers” of adaptivity actions.

In our approach, we assume deferred adaptiv-
ity as default policy. This choice aims at minimiz-
ing application behaviors that might be perceived
as invasive or annoying by users and has been
experienced as the most natural for modeling
adaptation. However, the immediate policy could
be needed for handling exceptional situations, as in
such cases the timely reaction to context changes
could be more important than following the user’s
indications. We therefore, in general, recommend
the selection of the adaptivity policy that is ap-
propriate to the application requirements and that
is able to minimize the application behaviors that
could be perceived as invasive or annoying by
the users. In order to choose the right adaptivity
policy for an adaptive page, a developer therefore
needs to predict what kind of adaptive behavior a
user will expect when accessing that page.

example Hypertext Model

Figure 6 shows the adaptive WebML hypertext
model of the PoliTour application. The figure pro-
vides a refinement of the coarse hypertext model
introduced in Figure 4 and details the internals
of pages and adaptivity logics.

The pages Buildings and Roads share the same
adaptivity logic providing location-awareness
to the displayed contents. The logic starts with
two Get ClientParameter units accessing the user’s
longitude and latitude, which are then used by
the Get Area unit to associate a logical area to the
user’s position. A further Get Data unit (the Get
Building unit) then tries to retrieve a building for
the identified area. If a building could be retrieved,
the If unit sends the user to the Buildings page,
providing updated page parameters. If instead
no building could be retrieved (e.g. because the
user is located in the center of a road or not close
enough to a building), the If unit forwards the Area
identifier to the Get Road unit, which retrieves the
road associated to the current position.

74

Context-Aware Applications for the Web

Therefore, if the user views the page Buildings
while walking around the campus, the application
automatically updates the contents published each
time a new building can be found. If only the
road can be identified, the application performs
an automatic navigation action toward the Roads
page, where the described adaptive behavior
starts again, possibly causing the adaptation of
contents or automatic navigation actions. Only if
the user navigates to page Classroom, no adapta-
tions are performed, as this page is not tagged as
context-aware.

The adaptivity actions associated to the sur-
rounding site view specify how to alert users
who are about to leave the WiFi-covered area.
The Get RSSI unit accesses the volatile RSSI

parameter sensed at the client side, and the If unit
compares the retrieved value with a predefined
level (alertLevel), below of which the connectivity
is considered low. In case of low connectivity,
the style sheet warning is adopted; otherwise, the
default style sheet is adopted. We therefore model
the alert of low connectivity conditions by means
of a Change Style unit: under low connectivity
conditions the application is rendered with a red
background, under normal conditions the applica-
tion is rendered with a gray background.

We recall that actions associated to containers
are evaluated before any action at the page level is
started. Hence, in Figure 6 the actions associated
to the site view are executed before the actions
associated to the pages Buildings and Roads.

Figure 6. Hypertext model of the PoliTour application leveraging volatile context data.

Buildings

Building

BuildingData

c

Classroom

Classroom

ClassroomData

Get Longitude

Lon

@

Get Latitude

Lat

@

ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Get Area

Area
[MinLongitude<Lon<MaxLongitude]

[MinLatitude<Lat<MaxLatitude]

Get Building

Building
[Area2Building]

Get Road

Road
[Area2Road]

Roads

Road

RoadData

c

Nearby Buildings

Building
[Road2Building]

RoadsIndex

Road

l

l

H

OK

[result = false]

[result = true]

c

Get RSSI

RSSI

@

ChangeStyle

A A
IF

RSSI<alertLevel

[result = true]

[result = false]
css = default

css = warning

OK

OK

OK

Lon

Lat

Area
AreaBuilding,

Area

PoliTour

Building != null

IF

Building

 75

Context-Aware Applications for the Web

runtIMe context Model
MAnAgeMent

In order to manifest context-aware behaviors,
the application must be equipped with the capa-
bility to monitor the context state and to trigger
adaptivity actions, if required. The standard
HTTP protocol underlying most of today’s Web
applications implements a strict pull paradigm, in
which computations can only occur in response to
client-side generated page requests. Therefore, in
the classical Web architecture, lacking proper push
mechanisms, context monitoring can occur only
when a page is computed, i.e. when a respective
page request reaches the Web server. Three main
solutions can be adopted to trigger the evaluation
of adaptivity rules: (i) context evaluation on user-
generated page requests, (ii) periodical, automatic
refreshes of viewed pages to enable context evalu-
ation, and (iii) active context evaluation to trigger
adaptivity in real time. The first solution is not
able to cope with the dynamic nature of context.
The periodic refresh of context-aware pages
provides a way to ensure the update of the page
even in absence of explicit user actions enabling
the re-computation of the page. In the following,
we will show an active mechanism for triggering
adaptivity, which operates independently of the
user in the background and comes close to the
real-time triggering solution.

In absence of dedicated server-side push
mechanisms for delivering updated pages, the
HTML http-equiv META-option or JavaScript,
JavaApplets, and Flash scripts, provide valuable
client-side mechanisms to approximate the re-
quired active behavior. The approximation is based
on periodic HTTP requests toward the application
server, which are operated in the background and
may serve a twofold purpose:

• On the one hand, they provide the necessary
polling mechanism to query the context
model and trigger the adaptivity rule at-
tached to the page.

• On the other hand, generating page requests
allows the client to transmit client-side
sensed data, thus enabling the communi-
cation of context data to the application
server.

Context-aware pages are therefore also
characterized by an individual refresh interval,
which can be specified as property (Refresh_In-
terval) of the page in the XML representation of
the WebML model. Differently from C-pages, a
container does not require the specification of any
polling interval, which is instead derived from
the interval associated to the currently viewed
C-page of the container.

context Monitoring

Context monitoring in the background (i.e. with-
out the user observing any unwanted rendering
activity) enables the application to limit the use
of the refresh to those situations that really ask
for adaptation and to perform context monitoring
without any visual effect for users.

Figure 7 shows a functional architecture for
adaptive Web applications that extends the de-
scribed architecture of WebML applications (see
Figure 1) with a new client-server module, called
Context Monitor (CM), providing the necessary
context monitoring logic. As further depicted by
the figure, in case of client-side context sensing,
the CM module also enables the communication
of client-side sensed context parameters, which
could be required at the server side to evaluate
context changes and/or conditions over context
parameters.

The CM consists of two separate modules,
one on the client side and one on the server side.
The CM Client module is a piece of business
logic embedded into the page’s HTML code and
executed at the client side (e.g. a JavaScript func-
tion, a Java applet, or a Flash object), while the
CM Server module works in parallel to the Web
application on the same Web server. The CM Client

76

Context-Aware Applications for the Web

is in charge of periodically monitoring the context
state and deciding whether possibly occurring
context variations demand for the adaptation of
the currently viewed page.

In order to be able to take a decision about
whether adaptivity actions are to be triggered or
not, the CM Client is assisted by the CM Server,
which has full access to the context model of
the application maintained at the server side. In
response to the polling executed by the CM Cli-
ent, the CM Server queries the context model and
provides the CM Client with an updated picture
of the effective context state. By comparing the
state of the (server-side) context model acquired
by the current polling with the one acquired by
the last polling (or the state at page computation
time), the CM Client knows whether the state
has changed. If the state has changed, the CM
Client asks the Web application for a refresh of
the currently viewed page, i.e. the adaptation; if
the state has not changed the CM Client proceeds
with the monitoring of the context state.

page context

In general, the state of the context is expressed by
the values of all the persistent parameters stored in

the context model and of the volatile parameters
sensed at the client or server side. However, an
individual page’s adaptive behavior is typically
influenced by only a subset of the overall context
data or, more specifically, by a function expressed
over context data. The subset of context data
corresponds to a page-specific view over the
application’s context data, narrowing the focus
of the context monitoring activity. This observa-
tion leads to the definition of a new concept, i.e.
page context, which can be leveraged to enhance
the efficiency of the context monitoring activ-
ity: the page context of a page corresponds to a
page-specific view over the application’s context
data, capturing all (and only) those context char-
acteristics that effectively determine the adaptive
behavior of the page.

Instead of monitoring the whole state of the
application’s context data, the definition of a
page context for each adaptive page enables the
context monitoring activity to focus its observa-
tion of the context state to the only page context.
This implies, that during hypertext specification
each adaptivity rule can be related to a subset of
context parameters to be controlled, so that rule
conditions do not need to check the state of the
whole context model.

Figure 7. Functional architecture for background context monitoring.

Client Brower

HTML Document Application
Data

Context
Model

Web Server

Trigger ClientCM Client

Trigger ServerCM Server

Client-side
Sensing Module

Centralized
Sensing Module

Adaptive
Web Application

Adaptive
Web Application

 77

Context-Aware Applications for the Web

page context parameters

In line with the idea of page context, the CM
focuses its attention only to the subset of context
data in the context model that really determines
the adaptive behavior of the viewed page. This
implies explicit knowledge of the pages’ page
context, which can be achieved by defining proper
page context parameters for each context-aware
page: page context parameters define the view
over the context model that captures all the static
and dynamic properties of a page’s page context
by means of suitable queries over the context
model.

This definition implies that each change to a
page context parameter effectively corresponds
to a need to adapt the page. The granularity
of the values of page context parameters must
thus be chosen in a way that each change of a
parameter value translates into the triggering of
the page’s adaptivity rule. Each C-labeled page
in the adaptive hypertext model is thus associ-
ated with an individual page context by means
of proper page context parameters stored in the
textual representation of the WebML schema, as
they are not conveniently expressible in a visual
manner. Page context parameters are expressed
by means of parametric queries over the context
data, where the parameters correspond to client-
or server-side context parameters.

context digest

In order for the CM to be able to decide whether
adaptivity is required, changes to the page con-
text (i.e. the page context parameters) must be
communicated from the CM Server to the CM
Client. In order to enhance the efficiency of the
overall context monitoring activity, the state of
the page context is not communicated from the
CM Server to the CM Client in form of the set of
page context parameters, but instead it suffices to
transmit and compare a numeric digest computed
over the respective page context parameters, as

each change to the values of the page context
parameters also results in a change of the numeric
digest. We call such a numeric digest context
digest: the context digest corresponding to the
page context of a page is the numeric checksum
computed over the ordered list of page context
parameters.

The context digest is the basis for the decisions
to be taken by the CM Client: its values identify
variations in the page context, which correspond
to the need to adapt the page. The decision is
based on the comparison of the current context
digest with the last context digest; the first context
digest, i.e. when the user accesses the page, is
initialized with the context digest valid during
page computation.

Figure 8 details the resulting flow of activities
enabling the active behavior of the application
and shows how the single modules cooperate in
order to determine whether adaptivity is required
or not. The diagram has one start node (Gener-
ate user request), which corresponds to the user’s
navigation to a C-page, and no end node, since
the cycle in the lower part of the diagram is only
interrupted by an explicit user navigation leading
the user to another C-page (which corresponds to
starting again from the start node of the diagram
and monitoring the Page context of the new page)
or to a conventional page (which does not cause
any context monitoring activity).

Note that the described mechanism assumes
that connectivity is available during the viewing
of a C-page in order for the CM client to be able
to communicate with the CM server. In case of
intermittent connectivity, which is a very frequent
situation in mobile environments, the CM client
keeps working by periodically polling the CM
Server, despite the absence of connectivity. The
CM Client is however programmed to manage
possible lacks of connectivity and therefore does
not generate errors, with the only side effect that
adaptivity is suspended until the connectivity is
restored.

78

Context-Aware Applications for the Web

ApplIcAtIon IMpleMentAtIon

The extensions that have been introduced into the
WebML development method to cope with the
new requirements posed by context-awareness
and adaptivity in Web applications have been
implemented as prototype extension of the We-
bRatio CASE tool, the official WebML modeling
tool, equipped with a powerful automatic code
generator. Due to implementation restrictions
imposed by the modeling tool, the implementa-
tion of the adaptivity logic slightly differs from
the models described in this paper (e.g. it was not
possible to implement context-aware containers

or to place all the adaptivity operations outside
pages). Nevertheless, the described expressive
power for the specification of adaptivity rules
could be preserved.

Figure 9 shows a screenshot of the WebRatio
tool at work. The figure shows the WebML hy-
pertext model of the Buildings page of the PoliTour
application, along with its adaptivity logic: two Get
ClientParameter units access the GPS coordinates
and pass them to the C-label, which forwards them
to the outer adaptivity logic (cf. Figure 6). Starting
from the shown hypertext model, the PoliTour
application has been automatically generated on
top of a J2EE platform. The configuration of the

Figure 8. Background context monitoring for active context-awareness (with client-side context sensing):
communicating context data and triggering adaptivity.

client browser client sensing Mod.cM client cM server web Application

Generate
user request

Compute page

Render page Instantiate
CM Client

Sense new
context data

Ask for
Context Digest

Compute
Context Digest

Generate
autom. request

Wait context
polling interval

Compute
adapted page

new digest <>
old digest

new digest =
old digest

client-side sensing

no
client-side

sensing

 79

Context-Aware Applications for the Web

Context Monitor has been performed manually.
To access GPS position data, we leverage a cli-
ent-side Bluetooth GPS device, interfaced via
the Chaeron GPS Library (http://www.chaeron.
com/gps.html) and wrapped by means of Flash
(to exchange position data between the CM Client
and the GPS library). The WiFi RSSI indicator is
acquired in the PDA using Place Lab (http://www.
placelab.org).

relAted works

Several other well-established, conceptual design
methods have been so far extended to deal with
Web application adaptations. Frasincar & Houben
(2002), for example, extend the Hera methodology
with two kinds of adaptation: adaptability with
respect to the user device and adaptivity based on
user profile data. Adaptation rules (and the Hera

schemas) are expressed in RDF(S) (Resource
Description Framework/RDF Schema), attached
to slices and executed by the AHA engine (De
Bra et al., 2003). The UWA Consortium proposes
WUML (Kappel et al., 2001) for conceptual
hypertext design. Adaptation requirements are
expressed by means of OCL-based customization
rules, referring to UML class or package elements.
Casteleyn et al. (2003) present an extension of
WSDM (De Troyer & Leune, 1998) to cover the
specification of adaptive behaviors. In particular,
an event-based Adaptive Specification Language
(ASL) is defined, which allows designers to express
adaptations on the structure and the navigation of
the Web site. Such adaptations consist in trans-
formations of the navigation model that can be
applied to nodes (deleting/adding nodes), infor-
mation chunks (connecting/disconnecting chunks
to/from a node), and links (adding/deleting links).
Baumeister et al. (2005) explore Aspect-Oriented

Figure 9. The WebRatio CASE tool showing the hypertext model of the buildings page with respective
adaptivity actions and the generated PoliTour application running on a PDA.

80

Context-Aware Applications for the Web

Programming techniques to model adaptivity in
the context of the UML-based Web engineering
method UWE. Recently, WebML (Ceri et al.,
2002) has been extended to cover adaptivity and
context-awareness (Ceri et al., 2007). New visual
primitives cover the specification of adaptivity
rules to evaluate conditions and to trigger some
actions for adapting page contents, navigation,
hypertext structure, and presentation. Also, the
data model has been enriched to represent meta-
data supporting adaptivity.

Recently, active rules, based on the ECA
(Event-Condition-Action) paradigm, have been
proposed as a way to solve the previous prob-
lem. Initially exploited especially in fields such
as content evolution and reactive Web (Alferes
et al., 2005; Bailey et al., 2002; Bonifati et al.,
2002), ECA rules have been adopted to support
adaptivity in Web applications. In particular, the
specification of decoupled adaptivity rules pro-
vides a way to design adaptive behaviors along
an orthogonal dimension. Among the most recent
and notable proposals, the work described in
(Garrigos et al., 2005a) enriches the OO-H model
with personalization rules for profile groups:
rules are defined in PRML (Personalization
Rule Modeling Language) and are attached to
links in the OO-H Navigation Access Diagram.
The use of a PRML rule engine is envisioned in
(Garrigos et al., 2005b), but its real potential for
adaptivity management also at runtime remains
unexplored.

The previous works benefit from the adoption
of conceptual models, which provide designers
with powerful means to reason at a high-level
of abstraction, independently of implementa-
tion details. There are however also co-called
transcoding solutions, which adopt active rules
for adapting Web pages. Most of them focus on
the presentation layer and provide mechanisms
to transform HTML pages according to (possibly
limited) device capabilities (Hori et al., 2000) or
users’ visual disabilities (Yesilada et al., 2004).
Moreover, they typically support only adaptability

and modify Web pages in relation to a static set
of user or device parameters. Fiala and Houben
(2005) adopt the transcoding paradigm for the
development of the Generic Adaptation Com-
ponent (GAC). GAC provides a broad range of
adaptation behaviors, especially supporting run
time adaptivity. An RDF-based rule language
is used for specifying both content adaptation
and context data update rules. A collection of
operations implementing these rules is provided.
A notable feature, promoting portability, is that
GAC can be integrated as a stand-alone module
into any Web site architecture.

conclusIon And future
trends

In this chapter, we have proposed a model-driven
approach to the development of context-aware
Web applications, an increasingly relevant kind
of applications on the Web. We have shown that
context-awareness is a first-class design concern
that can considerably be aided by model-driven
development techniques. But we have also shown
that properly dealing with context-awareness
and adaptivity at the conceptual level requires
extending the expressive power of the adopted
conceptual application model, so as to provide
developers with suitable modeling constructs and
implementation abstractions, proper of such new
class of application features. In this chapter, such
extensions have been introduced into the already
well-established WebML modeling language,
but in a similar way we could have also opted
for another modeling language, as the ideas and
concepts introduced in this chapter are general
enough in nature to be applied to other conceptual
models as well.

For the future, we believe that a decoupled
runtime management of adaptivity features will
represent a next step in the area of adaptive Web
applications. The development of Web applica-
tions is more and more based on fast and incre-

 81

Context-Aware Applications for the Web

mental deployments with multiple development
cycles. The same consideration also holds for
context-aware and adaptive Web applications and
their adaptivity requirements. In (Daniel et al.,
2008) we describe our first results obtained with a
decoupled environment for the execution and the
administration of adaptivity rules. The described
approach allows us to abstract adaptive behaviors,
to extract them from the main application logic,
and to provide a decoupled management support,
finally enhancing the maintainability and evolv-
ability of the overall application.

In line with the current hype of so-called
Web 2.0 applications, we are also working on the
mash-up of context-aware Web applications, in
the context of our component-based development
method for Web applications called Mixup (Yu et
al., 2007). The final goal of the work is to enable
even end users to mash up their own context-aware
applications, starting from a set of so-called con-
text components and other components equipped
with own user interface (which is used to build
up the user interface of the mash-up application).
Mash-up development is assisted by an easy-to-use
and intuitive graphical development environment
that supports a drag-and-drop development and
by a light-weight runtime environment that is
able to interpret and run the mashup, both fully
running in the client browser and based on AJAX
technology.

references

Alferes, J. J., Amador, R., & May, W. (2005). A
General Language for Evolution and Reactivity
in the Semantic Web. In PPSWR’05 (pp. 101–115).
Dagstuhl, Germany: Springer.

Bailey, J., Poulovassilis, A., & Wood, P. T. (2002).
An Event-condition-action Language for XML.
In WWW’02 (pp. 486–495). Honolulu, Hawaii:
ACM.

Baumeister, H., Knapp, A., Koch, N., & Zhang,
G. (2005). Modelling Adaptivity with Aspects.
In ICWE’05 (pp. 406-416). Sydney, Australia:
Springer.

Bonifati, A., Braga, D., Campi, A., & Ceri, S.
(2002). Active XQuery. In ICDE’02 (pp. 403-412).
San Jose, California: IEEE.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P.,
& Manolescu, I. (2003). Specification and Design
of Workflow-Driven Hypertexts. Journal of Web
Engineering, 1(2), 163-182.

Brusilovsky, P. (1996). Methods and Techniques
of Adaptive Hypermedia. User Modeling and
User-Adapted Interaction, 6(2-3), 87-129.

Casteleyn, S., De Troyer, O., & Brockmans, S.
(2003). Design Time Support for Adaptive Be-
havior in Web Sites. In SAC’03 (pp. 1222-1228).
Melbourne, Florida: ACM.

Ceri, S., Fraternali, P., Bongio, A., Brambilla,
M., Comai, S., & Matera, M. (2002). Designing
Data-Intensive Web Applications. San Francisco,
CA: Morgan Kauffmann.

Ceri. S., Daniel, F., Matera, M., & Facca, F. M.
(2007). Model-driven Development of Context-
aware Web Applications. ACM Transactions on
Internet Technologies, 7(1), article no. 2.

Daniel, F., Matera, M., & Pozzi, G. (2008).
Managing Runtime Adaptivity through Active
Rules: the Bellerofonte Framework. Journal of
Web Engineering, 7(3), 179-199.

De Bra, P., Aerts, A. T. M., Berden, B., de Lange,
B., Rousseau, B., Santic, T., Smits, D., & Stash,
N. (2003). AHA! The Adaptive Hypermedia
Architecture. In Hypertext’03 (pp 81-84). Not-
tingham, UK: ACM.

De Troyer, O., & Leune, C. J. (1998). WSDM:
A User Centered Design Method for Web Sites.
Computer Networks, 30(1-7), 85-94.

82

Context-Aware Applications for the Web

Dey, A. K., & Abowd, G.D. (2000). Towards a
Better Understanding of Context and Context-
Awareness. In CHI’00 Workshop Proceedings,
The Hague, The Netherlands.

Fiala, Z., & Houben, G.-J. (2005). A generic
transcoding tool for making web applications
adaptive. In CAiSE’05 Short Paper Proceedings,
volume 161 of CEUR Workshop Proceedings.
CEUR-WS.org.

Frasincar, F., & Houben, G.-J. (2002). Hypermedia
Presentation Adaptation on the Semantic Web. In
AH’02 (pp. 133-142). Málaga, Spain: Springer.

Garrigós, I., Casteleyn, S., & Gómez, J. (2005a).
A Structured Approach to Personalize Websites
Using the OO-H Personalization Framework.
In APWeb’05 (pp. 695-706). Shanghai, China:
Springer.

Garrigós, I., Gómez, J., Barna, P., & Houben,
G.-J. (2005b). A Reusable Personalization Model
in Web Application Design. In WISM’05 (pp.
40-49). Sydney, Australia.

Henricksen, K., & Indulska, J. (2004). Modelling
and Using Imperfect Context Information. In
PERCOMW’04 (pp. 33-37). Washington, United
States: IEEE.

Henricksen, K., Indulska, J., & Rakotonirainy,
A. (2002). Modeling Context Information in
Pervasive Computing Systems. In Pervasive’02
(pp. 167-180). London, UK: Springer.

Hori, M., Kondoh, G., Ono, K., Hirose, S., &
Singhal, S. K. (2000). Annotation based Web
Content Transcoding. Computer Networks, 33(1-
6), 197-211.

Kappel, G., Pröll, B., Retschitzegger, W., &
Schwinger, W. (2001). Modelling Ubiquitous
Web Applications - TheWUML Approach. In
ER’01 Workshops (pp. 183-197). Yokohama,
Japan: Springer.

Lei, H., Sow, D. M., Davis, J. S. II, Banavar, G.,
& Ebling, M. R. (2002). The design and applica-
tions of a context service. SIGMOBILE Mobile
Computing and Communications Review, 6(4),
45-55.

Schilit, B.N., & Theimer, M.M. (1994). Dissemi-
nating Active Map Information to Mobile Hosts.
IEEE Network, 8(5), 22-32.

Web Models s.r.l. (2008). WebRatio Site Devel-
opment Studio. Retrieved January, 2008, from
http://www.webratio.com.

Yesilada, Y., Harper, S., Goble. C. A., & Stevens,
R. (2004). Screen readers cannot see: Ontology
based semantic annotation for visually impaired
web travellers. In ICWE’04 (pp. 445-458). Mu-
nich, Germany: Springer.

Yu, J., Benatallah, B., Saint-Paul, R., Casati, F.,
Daniel, F., & Matera, M. (2007). A Framework for
Rapid Integration of Presentation Components. In
WWW’07 (pp. 923-932). Banff, Canada: ACM.

