
 �

Chapter XII
Web Service Orchestration

and Choreography:
Enabling Business Processes on the Web

Florian Daniel
Politecnico deo Milano, Italy

Barbara Pernici
Politecnico deo Milano, Italy

Copyright © 2008, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

INTRODUCTION

When analyzing the current literature on Web
services and the main problems the authors focus
on, it is possible to identify one main trend toward

the adoption of novel and emerging Web service
technologies as basis for the next generation of
(Web) applications and composite Web services. In
this context, especially the need for flexible solu-
tions for composing Web services into composite

ABSTRACT

The Web service domain is a fast growing and fast changing environment. From a business perspective,
the trend over the last few years in the Web services area firmly points toward seamless business logic
integration and inter-enterprise collaboration. However, in order to accomplish such goals, both tech-
nological and conceptual advances are required. Some already have proven their viability, others still
have to be made. Among them, Web service orchestration and choreography are of crucial importance,
but still lack a widely agreed on development framework comprising both technological and conceptual
aspects. In this chapter, we try to provide a critical snapshot of current standards for Web service devel-
opment and particularly we focus on Web service orchestration and choreography. We discuss problems
and solutions from a conceptual point of view, exemplify the illustrated ideas by means of real-world
technologies and standards, and highlight the mutual dependencies that exist among orchestration and
choreography of Web services.1

�

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

applications or services is manifest. Composite ap-
plications or services leverage the functionalities
provided by their individual component services
by combining them in a value adding manner.

Web services are driven by the paradigm
of the so-called service-oriented architecture
(SOA), which describes the relationships that
exist among service providers, service consum-
ers, and service brokers and thereby provides an
abstract execution environment for Web services.
The research area of service-oriented computing
(SOC) endorses the SOA paradigm and aims at
producing technologies and solutions that address
the efficient development, flexible composition,
and execution of (composite) Web services. From
their first appearance, SOA and SOC have emerged
as key factors for the success of the world of Web
services.

Just as the advent of object-oriented program-
ming (OOP) was based on the notion of objects as
means to modularize programming functionality,
SOC could be defined as a paradigm that looks
at services as basic functional modules that can
be composed or newly defined. OOP per se did
not suddenly provide revolutionary new program-
ming capabilities with respect to conventional
procedural techniques, it rather proved to be
an efficient means for abstraction and isolation
and thus fostered reuse, robustness, and scal-
ability. These factors encouraged the emergence
of higher-level concepts like object brokers, Java
Beans, object containers, which finally enhanced
interoperability.

Analogously, current specification proposals
for Web services can be interpreted as a transi-
tion toward a robust SOC framework. Several
Web service standardization bodies are currently
addressing issues that can be interpreted as defini-
tion of a proper new programming framework.
For example, even if we are already speaking
about service composition and seamless inter-
enterprise integration, there is still discussion
over standardization of other system aspects
(e.g., reliable messaging or transaction support)

that have already been solved or are under study
in other research areas. Past experiences taught
us, however, that as long as there are no robust
and commonly agreed on standards, real inter-
operation, and composition problems cannot be
addressed adequately.

In this chapter, we will introduce the reader
to the orchestration and choreography of Web
services, which are becoming the cornerstones for
the execution of business processes on the Web,
and we will discuss the state of current research
and open issues. More precisely, we will first
try to clarify the main terminology in use, and
then we will give an explanation for the actual
need for coordination protocols and composition
technologies. We will exemplify such a discus-
sion by means of a possible protocol stack for
Web service composition, and we also discuss
some advanced issues. Finally, we will provide
on outlook over expected future trends and draw
our conclusions.

USING THE RIGHT TERMINOLOGY

Specifications and technologies for Web service
composition in many cases still have to reach stable
definitions and usage scenarios. Accordingly, also
authors writing about service composition are far
from using a commonly agreed on terminology.
Peltz (2003) defines orchestration as executable
business process that interacts with both internal
and external Web services, and choreography
“…tracks the message sequences among multiple
parties and sources--typically the public message
exchanges that occur between Web services--
rather than a specific business process that a single
party executes…” (Peltz, 2003).

Alonso, Casati, Kuno, and Machiraju (2004)
prefer the terms coordination (protocol) and
composition rather than choreography and or-
chestration. Literally, they clarify “…we will use
the term conversation to refer to the sequences
of operations (i.e., message exchanges) that could

 �

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

occur between a client and a service as part of the
invocation of a Web service. We will use the term
coordination protocol to refer to the specification
of the set of correct and accepted conversations…”
And “…we refer to a service implemented by
combining the functionality provided by other
Web services as a composite service, and the
process of developing a composite Web service
as service composition…”

The W3C’s Web services choreography work-
ing group defines choreography as the definition
of the sequences and conditions under which
multiple cooperating independent agents exchange
messages in order to perform a task to achieve a
goal state. Web services choreography concerns
the interactions of services with their users. Any
user of a Web service, automated or otherwise, is
a client of that service. These users may, in turn,
be other Web services, applications, or human
beings. An orchestration defines the sequence
and conditions in which one Web service invokes
other Web services in order to realize some useful
function (i.e., an orchestration is the pattern of
interactions that a Web service agent must follow
in order to achieve its goal) (W3C, n.d.).

This terminological comparison shows that
different authors prefer different names and
thereby emphasize different aspects even within

the same Web service domain. Figure 1 attempts
to characterize and aggregate the currently used
terminology through contextualizing the most
commonly used terms. For this purpose, we dis-
tinguish two main dimensions: the perspective of
the observer and the kind of observer along with
its observation time. According to a common
approach, the perspective is divided into public
and private, with respect to the observer’s view,
whereas Figure 1 also represents the dimension
actor, which allows the distinction between
composition designers and execution engines. An
execution engine executes a composite service
(runtime orchestration: the engine is already
provided with the set of component services, the
orchestra) that has previously been defined by a
composite service designer (design time composi-
tion: the orchestra is composed by selecting the
right services). A service designer thus composes
a new service driven by a final goal and by tak-
ing into account the restrictions imposed by the
coordination protocols of the component services
and by specifying the composition rules for the
selected services and the coordination rules which
constrain possible interactions with the services.
At runtime, externally visible coordination effects
can be interpreted as choreography with respect
to the orchestra of compound services.

Figure 1. A contextualized view on currently used terminology; the two main nomenclatures concerning
respectively public and private perspective on Web services can further be specialized by designer and
execution time (Daniel & Pernici, 2006).

private
Perspective

OrchestrationChoreography

Coordination Composition

public

Execution Engine
(runtime)

Composition
Designer

(design time)

A
ct

or

�

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

The taxonomy described in Figure 1 should
provide the reader with a coarse contextualiza-
tion of the most used terms and serves merely
orientation purposes; it should not be considered
a widely acknowledged categorization.

THE NEED FOR COORDINATION
PROTOCOLS

According to the previous characterization, coor-
dination and choreography describe the external
message exchanges that occur between a Web
service and its client or among several collaborat-
ing Web services. The main concerns that have
to be addressed within the coordination layer
are Can messages be sent and received in any
order? Which rules govern message sequences?
Is there a relationship among incoming and out-

going messages? Is it possible to undo (parts of)
already executed sequences? In the following, we
will try to provide answers and details to some
of these questions by discussing the conceptual
backgrounds and core ideas of the most represen-
tative coordination approaches.

Conversation Between Service and
Client

WSDL, the Web service description language
(W3C, 2001), in its function of interface descrip-
tion language already provides a limited set of
constructs that aim at specifying how to correctly
interact with a particular Web service. Several
extensions have been investigated that tried to
extend the basic WSDL description with concepts
for better describing conversation-related aspects.
Figure 2, for example, graphically depicts the

Figure 2. Ordered message exchange between a Web service and its client

WS Client

1

2

3

Figure 3. Interaction involving multiple Web services; messages depend semantically and chronologi-
cally from one another.

WS1 WS2

WS3

1

2

3

4

5

6

 �

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

problem of ordering messages exchanged between
a Web service and its client.

WSDL extensions such as WSCL (Web ser-
vices conversation language; Hewlett-Packard
Company, 2002) only had limited success, most
likely due to the fact that its underlying client-
server conversation model does not really fit into
the service-oriented architecture of Web services.
Graphically, the functionality of WSCL could
best be described by a state machine model,
whose expressive power allows the description
of conditions and ordered messages, but does not
distinguish between involved actors.

Multi-Service Conversations

Figure 3 depicts a slightly more complex con-
versation scenario that, for example, cannot be
adequately described by means of a client-server
protocol. The main novelty with respect to Figure
2 here is, that now support for an arbitrary number
of interacting services is required. Each of them
plays a different role within the overall conversa-
tion, and only the strict adherence to such roles
leads to the fulfillment of the common (business)
goal. Roles are usually labeled with names like
supplier, purchaser, or broker.

As a first representative choreography proto-
cols, WSCI (Web services choreography inter-
face; Arkin et al., 2002) goes one step further
in its support for long lasting, choreographed,
and stateful message exchanges with respect to
WSCL. In particular, it supports order, rules, and
boundaries of messages, correlation, transactions
and compensation as well as exception handling.
Through its concept of interface, it goes beyond
simple client-server interface descriptions and
supports interaction contexts with different ex-
ternal services, despite lacking an overall global
view of the conversations a service is involved
in. A WSCI interface in fact only describes one
partner’s participation in a message exchange and,
therefore, a WSCI choreography must include
a set of WSCI interfaces, one for each partner

constituting an interaction. The sample scenario
in Figure 3 would thus require three different
WSCI interface descriptions.

WS-CDL (Web services choreography defini-
tion language; Kavantzas et al., 2005; Ross-Tal-
bot & Fletcher, 2006), the latest choreography
protocol proposal, finally provides a global view
over multiparty coordination through the explicit
modeling of all the involved roles. Its purpose
can be considered as twofold: on the one hand,
it provides syntactical primitives for describ-
ing involved roles and the messages exchanged
during interaction; on the other hand, it can be
interpreted as well as binding interaction agree-
ment between business partners that are intended
to start a cooperation and require a language for
formalizing their cooperation.

Advanced Protocols and
Specifications

As opposed to the previous coordination protocols,
which all can be considered domain-independent,
there also exists a set of proprietary, domain-
specific vertical protocols such as RosettaNet
(RosettaNet, 2006), or xCBL (XML Common
Business Library; xCBL.org, 2006), which pro-
vide conversation description mechanisms for
specific domains. RosettaNet, for example, aims at
facilitating dynamic and flexible trading relation-
ships between business partners in the context of
IT supply chains. xCBL, in the context of order
management, combines an XML version of EDI
(electronic data interchange) with predefined
business protocols.

Along a somewhat orthogonal dimension of
the composition problem, there further exists
specifications such as WS-coordination or WS-
transactions that can be considered as meta-
specifications that provide a framework for the
definition of proper coordination protocols with
particular characteristics. For example, WS-
coordination proposes some solutions for the
problem of message correlation within conver-

�

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

sations involving several different partners. For
this purpose, it defines a reference data-structure
called coordination context, to be added to the
exchanged SOAP headers, that serves the purpose
of passing a unique identifier between interacting
Web services.

Vinoski (2004)—in a quite critical way and
without the claim for completeness—discusses
an impressive list of WS-* specifications, each
concerned with the support for particular func-
tionalities: WS-Addressing, WS-Agreement,
WS-Attachments, WS-BusinessActivity, WS-
Coordination, WS-Discovery, WS-Enumeration,
WS-Eventing, WS-Federation, WS-Inspection,
WS-Manageability, WS-MetadataExchange,
WS-Notification, WS-PolicyFramework, WS-Pro-
visioning, WS-ReliableMessaging, WS-Resource,
WS-Security, WS-Topics, WS-Transactions, and
WS-Transfer.

The careful reader might have derived from
the names of the single specifications how all
WS-* efforts together are laying the foundation
for a distributed computing platform on top of
standard Web technologies. Comparable to the
number of APIs available to .Net or Java/J2EE
developers, the amount of WS-* specifications is
continuously growing, in order to provide suitable
APIs and wire protocols for satisfying emerging
novel interoperability requirements. The first
steps towards a commonly agreed on, proper
programming environment for the envisioned
SOP infrastructure are thus being made.

Coordination Middleware

Before going on and discussing the composition
of Web services, it is worth noting that the coor-
dination protocol specifications described so far
are all so-called description languages. They are
not executable languages to actively coordinate
conversations among different Web services.
The necessary runtime logic that adheres to the
described protocol must be implemented either by

the services themselves or by higher-level process
management languages.

Alonso et al. (2004), in order to actively sup-
port service coordination, suggest an additional
middleware layer on top of the coordination layer,
containing so-called conversation controllers
with message routing and protocol compliance
verification capabilities. Such conversation con-
trollers could, for example, address the message
dispatching problem arising when it comes to one
Web service being engaged in several concurrent
conversations. For this purpose, the coordination
context as pushed forward by WS-coordination
could be exploited for message correlation pur-
poses.

FROM COORDINATION TO
COMPOSITION

We have noted that coordination protocols are
characterized by an intrinsic passive behavior
with respect to the execution of a coordinated
interaction. However, despite such a passive be-
havior, coordination protocols have proven to have
enough expressive power in the context of service
coordination, which indeed does not require any
executable logic. Yet, when it comes to orches-
tration, things change and active support for the
execution of explicitly provided process or flow
definitions is required. Process execution implies
the need for dedicated execution environments,
so-called execution or process engines, able to
interpret process definitions and to control the
flow of data and service invocations.

There are several different interpretations
of what orchestration actually should be. Some
authors refer to it as proper programming lan-
guages, others tend to prefer a more general and
evolutionary interpretation: “…these systems are
often labeled the second generation workflow
management systems (WfMSs) because they
provide much richer integration capabilities than

 �

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

traditional WfMSs…” (BPMI.org, n.d.). This
second interpretation is probably too simplistic
and puts too much emphasis on the business
perspective of the problem.

Nevertheless, current orchestration approaches
definitely inherit their core modeling concepts
from research in the field of WfMSs. To orchestrate
Web services, their composition rules have to be
specified at design time. Various structured pro-
cess models have been proposed using traditional
workflow constructs at their basis. A classification
of typical workflow constructs that originate from
a structured programming language approach
to workflow definition and also can be found
in today’s service composition languages has
been proposed by Van der Aalst, ter Hofstede,
Kiepuszewski, and Barros (2003).

In the following subsections, we will provide
insights into the most prominent composition
approaches and issues in the context of Web
services.

Model-Based Composition

Model-based service composition approaches
concentrate on the explicit definition of the pos-
sible process flow that governs a composite Web
service or application. Such process definitions
are fed into a process or execution engine that
manages the overall execution of the compound
activities and thus actively orchestrates the com-
posite service. Commercial composition tools
usually provide intuitive high-level visual model-
ing tools that aid designers in the predominantly
explicit definition of processes, such as Microsoft’s
BizTalk orchestration designer (Microsoft Cor-
poration, n.d.) or Oracle’s BPEL process editor
(Kennedy, 2005). Internally, these models are
then translated into low-level process models for
execution purposes.

Several approaches for internal process models
and structures have been proposed in literature.
In the following, we provide a brief overview,
without going too deep into detail.

State Charts and Petri Nets

State charts and Petri nets (or extensions of them)
are classical and well-known formalisms within
computer science. They have already proven
their viability in the context of workflow model-
ing, and are mentioned here merely for the sake
of completeness; further details can be found in
(Alonso et al., 2004). Within the Web service do-
main, IBM’s WSFL, for example, internally uses
Petri net models for expressing the process logic.
Benatallah, Sheng, and Dumas (2003) ground
their declarative service composition approach
Self-Serv on state charts.

Pi-Calculus

Less intuitive and without graphical representation
are process specifications based on Pi-Calculus
(Alonso et al., 2004). Pi-Calculus is a process
algebra and an attempt at developing a formal
theory for process models. As happens with Petri
nets, the main advantage is represented by the
fact that a precise and well-studied formalism can
provide the basis for the verification of process
properties and correctness analyses. Microsoft’s
XLANG specification, for example, is inspired
by Pi-Calculus theory.

Rule-Based Orchestration

Another textual technique for specifying or-
chestration schemas is provided by rule-based
orchestration languages, which provide constructs
for the specification of processes by means of sets
of rules (Alonso et al., 2004). Usually, such rules
are based on the so-called event-condition-action
(ECA) paradigm known from active database
management systems. This technique is less
structured with respect to the previous models
and is mainly suited to model orchestrations that
have only few constraints among activities.

�

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

Two Representatives of Structured
Process Models: BPEL(�WS) vs. BPML

BPEL (business process execution language;
Weerawarana & Curbera, 2002) is an XML-
based Web service composition language that
has its roots in both Microsoft’s XLANG and
IBM’s WSFL. In BPEL, a composite service is
named a process; processes export and import
functionality by using Web service interfaces
exclusively. Two main kinds of processes are
distinguished: abstract processes describe busi-
ness protocols, specifying the mutually exchanged
messages and their invocation order by each of the
parties involved, executable processes bind the
specified behavior to concrete services. Accord-
ing to this twofold applicability, BPEL presents
both coordination as well as composition char-
acteristics. Services participating in a process
are called partners, and message exchanges or
intermediate result transformations are called
activities. BPEL distinguishes between basic and
structured activities. Basic activities represent
synchronous and asynchronous calls (<invoke>,
<invoke>…<receive>), structured activities man-
age the overall process flow (<flow> to denote
parallelism, <switch> for alternatives, etc.).

BPEL is primarily designed as a composi-
tion language, but developers can use the same
formalism for both service composition and
conversation definition. As for the definition of
conversations, it however lacks some necessary
and, from a discovery and binding perspective,
particularly useful properties that would be re-
quired for defining conversations (e.g., for service
activation). As for the composition of services,
the structure of BPEL is flat (i.e., sub-processes
cannot be defined).

BPML (business process management lan-
guage; BPMI.org, 2002) provides similar model-
ing capabilities as BPEL, but also supports some
additional constructs making it more flexible in
general, such as sub-processes, etc. In particular,
the BPML specification provides an abstract model

and an XML syntax for expressing executable
business processes. Nevertheless, BPML itself
does not define any application semantics, it
rather defines an abstract model and grammar
for expressing generic processes. This allows
BPML to be used for a variety of purposes that
include, but are not limited to, the definition
of enterprise business processes, the definition
of complex Web services and the definition of
multi-party collaborations. BPML is conceived
as block-structured programming language, i.e.,
recursive block structures play a significant role
in scoping issues that are relevant for declarations,
definitions and process execution.

Both BPEL and BPML provide support for
long-running business transactions and robust
exception handling facilities. BPML does not
provide constructs for the definition of message
coordination protocols as BPEL does, but develop-
ers easily can use WSCI for this purpose, which
shares the same underlying process execution
model. This apparent shortcoming of BPML,
on the other hand, allows for a more flexible use
of BPML and WSCI when it comes to defining
conversations, due to the good separation of
concerns. Yet, there is still less industry support
for BPML in comparison to BPEL, which is re-
flected by the higher availability of commercial
tools for process definition and execution based
on the BPEL specification.

Semantics-Based Composition

Model-based service compositions are explicit
process modeling approaches in that the desired
process flow needs to be explicitly provided
(i.e., modeled) by composite application/service
designers. The semantic Web and Web service
ontologies offer alternative ways for the com-
position and execution of compound services,
which do not rely on explicit definitions of the
flow or process logic. Such approaches typically
aim at providing suitable frameworks for the se-
mantic description and the automatic discovery

 �

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

and selection of Web services and the automatic
derivation and execution of composite services
defined in an implicit manner by means of goals
and pre- and post-conditions over service inputs
and outputs.

The recent W3C effort for the definition of
semantic annotations for WSDL (SAWSDL) (Far-
rel & Lausen, 2006) aims at standardizing the
first three of the previous concerns (i.e., semantic
description, automatic discovery, and selection.
SAWSDL does not prescribe any formalism for
the specification of the semantics of a Web service,
it rather concentrates on how to flexibly annotate
a WSDL description with pointers to external
semantic descriptions to disambiguate Web
service descriptors during automatic discovery
and composition. To enable semantic annota-
tion of WSDL components, SAWSDL defines
three new extensibility attributes to WSDL 2.0
elements, while remaining completely agnostic
to the language used for the external semantic
representation.

Concerning the semantics-based, automatic
composition of Web services, Arpinar, Aleman-
Meza, Zhang, and Maduko (2004) for example
propose an ontology-driven Web services com-
position platform where the requirements of the
desired composite services are specified by the
user in form of provided inputs and expected
outputs. The described approach allows the au-
tomatic generation and execution of a composite
service that produces the expected outputs by
combining existing individual services based on
their semantic descriptions. A human-assisted
and an automatic composition mechanism are
outlined.

Two Emerging Standards:
OWL-S vs. WSMO

OWL-S (ontology Web language for Web ser-
vices; Martin, 2003) allows providers of Web
services to describe properties, capabilities, and
behaviors of their services by means of ontolo-

gies and provides proper language primitives for
their semantic description. Final goal of OWL-S
is to provide a machine-interpretable descrip-
tion of Web services, in addition to the human-
understandable descriptions already provided by
WSDL, and thus to support automatic discovery,
execution and composition. The core of OWL-S,
the ontology-driven description approach, builds
on the ontology Web language (OWL), which
provides the necessary constructs for explicitly
representing knowledge, the meaning of terms
and the relationships that exist among those terms
within a specific domain. OWL and OWL-S are
evolutions of DAML+OIL, a semantic markup
language for Web resources.

OWL-S ontologies are structured into three
main parts: A service profile serves the pur-
pose of advertising and discovering services
published by service providers and contains a
semantically enriched and machine-interpretable
service description. A process model describes
how a service operates (by means of proper con-
trol constructs and conversation descriptions)
and comprises inputs, outputs, preconditions,
results, and effects of the service. According to
their complexity, atomic, simple, and composite
processes are distinguished, being the latter the
most complex process. The third part, the service
grounding, provides the necessary details to ac-
cess a specific service (i.e., protocols and message
formats). Whereas profile and model provide rather
abstract representations, the grounding refers to
the concrete specification. The semantics- and
ontology-based approach adopted by OWL-S
is particularly suited for advanced service and
conversation description.

WSMO (Web service modeling ontology;
Roman, Lausen, & Keller, 2004) as well aims at
describing relevant aspects of Web services in a
semantically rich fashion. Within the Web service
modeling framework (WSMF), WSMO provides
an open, semantics-based formalism for goal-
driven service composition through extensive use
of ontologies, semantic service descriptions and

�0

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

pre- and post-conditions for service descriptions.
Besides ontologies, goals and service descrip-
tions, so-called mediators allow the bypassing
of interoperability problems among different
services. Efficient interoperability is one of the
main issues that WSMO tries to solve, differen-
tiating it from OWL-S.

Just as for OWL-S, also in WSMO ontologies
are adopted to provide the formal semantics that
allows the automatic processing of information
and the human- and computer-understandable
goal definition. A goal specification expresses
the final objective that a client may have when
interacting with a service and consists primarily
of constrains over post-conditions after service
execution. Mediators provide the necessary sup-
port for integrating heterogeneous elements when
combining several component services, i.e., they
define mappings and transformations between
connected elements. Four types of mediators
exist, according to the elements they link: goal-
goal mediators, ontology-ontology mediators,
service-goal mediators, and service-service
mediators. Finally, Web services are described
by means of their non-functional properties, the
mediators they use, their capabilities, interfaces,
and groundings.

In Roman and Scicluna (2006) the authors
describe how choreography requirements of Web
services can be specified in WSMO, so to express
an individual service’s communication behavior
exposed to its clients. The description of the
behavior is based on the abstract state machine
model and defined in terms of one or more WSMO
ontologies and a set of transition rules, leading to
the notion of evolving ontology for the representa-
tion of the state of the choreography.

For the execution of WSMO-based Web ser-
vices, DERI has developed the so-called Web ser-
vices modeling execution environment (WSMX)
(Haller, Cimpian, Mocan, Oren, & Bussler,
2005), a comprehensive execution environment
for semantic Web services and DERI’s reference
implementation of WSMO. WSMX is designed

to allow the dynamic discovery, invocation, and
composition of Web services. It offers a complete
support for interacting with semantic Web services
and also supports the interaction with non-WSMO
services. WSMX is made available as Web service
that requires in input a formal description of the
requester’s goal and the data the requester wants
to use for the invocation. Starting from these data
and the single services’ choreography require-
ments, WSMX takes care of all other computa-
tions, such as dynamic discovery, selection, and
composition of the Web services that fulfill the
requester’s requirements.

Quality of Service-Based
Approaches

Orthogonally to semantics-based approaches,
which provide open and domain-independent
means for service description, there are ap-
proaches that particularly focus their attention on
quality of service (QoS) parameters for service
selection and composition. Once the functional
compatibility between candidate services is
ascertained, service selection in QoS-based
approaches is driven by quality properties like
response time, accuracy (of results), completeness
(of covered data), price, availability, reputation,
or similar. Representations of QoS parameters
in literature range from simple parameter-value
pairs to complex QoS ontologies.

In Meteor-S, process composition is annotated
with information for selecting services according
to quality of service characteristics (Sivashanmu-
gam, Miller, Sheth, & Verma, 2003). Optimiza-
tion of service selection has been considered and
evaluation functions discussed. The approach is
mainly oriented to design, giving the possibility
of transforming the process representation into
BPML or BPEL process specifications.

In MAIS, services are selected at runtime
according to constraints on functionalities and
quality of service expressed at design time and
the current context for process execution (De An-

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

tonellis et al., 2006; Maurino, Modafferi, Mussi,
& Pernici, 2004). Service substitution can be per-
formed to guarantee QoS constraints at runtime
in a variable execution environment.

With QoSOnt (Dobson, Lock, & Sommer-
ville, 2005) the authors aim to provide a common
QoS conceptualization to be used by all actors
involved in a QoS-based service selection (i.e.,
clients, providers, and third party intermediary
systems). The QoS ontology QoSOnt is formalized
in OWL and describes non-functional aspects of
Web services, which may be used by clients to
judge the services’ quality. QoSOnt allows the
specification of QoS attributes (e.g., reliability or
performance), the metrics that are used to measure
the values of attributes and possible conversions
between different measuring units. The ontology
is modular and extensible.

Other Composition Approaches

Several further (academic) research works go
one step further in service composition and also
investigate the potential of additional aspects of
the composition problem, such personalization
or context. We only cite two representatives of
such work; the discussion of other valuable work
would be out of scope for this chapter.

Maamar, Mostefaoui, and Yahyaoui (2005),
for instance, extend their state-chart-based ser-
vice composition model with an agent-based and
context-oriented approach to composite service
execution. The term context reflects the point of
view of services rather than the one of users. At
runtime, agents are engaged in conversations with
their peers on behalf of the user to agree on the
actual Web services to participate in the process,
according to the runtime context conditions and
the global composition model.

Baïna, Benali, and Godart (2003) finally
provide a valuable approach to Web service
composition within the initially mentioned
workflow domain and with special focus on en-
terprise workflow interconnection. The process

interconnection model presented by the authors
builds on Web service-based workflow integra-
tion and allows the coexistence of heterogeneous
workflow systems in a so-called “workflow of
workflows.” The main contribution of the work
consists in the introduction of a certain level of
dynamism, proper of the Web services area, into
workflow definitions; more precisely, the authors
postpone the selection of nested sub-processes
from build-time to runtime, by introducing proper
discovery, negotiation, and wrapping mechanisms
for so-called process services.

In all the mentioned approaches, traditional
composition patterns are enriched with additional
features that allow flexible process specifications
and executions. The principal trends are toward
providing a precise definition of context and of
local and global constraints and dynamic service
selection and invocation. No new composition
constructs are defined; however, new composi-
tion mechanisms and optimisation of composed
services are discussed in the literature.

In choreography specifications, typically there
is less attention to such quality related aspects,
except from temporal constraints on the conversa-
tions. However, in this chapter we do not discuss in
depth these issues since they are only marginally
relevant in the comparison of coordination and
composition approaches.

A POSSIBLE PROTOCOL STACK

The previous sections have shown that research
on service coordination and composition has led
to a variety of different approaches and protocol
or language specifications. Figure 4 describes a
possible protocol stack as it could be adopted for
the development of composite applications or ser-
vices, starting from a set of individual component
services. The protocol stack is horizontally split
according to two dimensions (i.e., the perspec-
tive of the observer and the conceptual approach
underlying the described specification). The per-

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

spective is divided into public and private, where
the public perspective refers to choreography, and
the private perspective refers to orchestration. The
conceptual approaches are divided into coordina-
tion-based, execution-based, semantics-based,
and quality-based approaches.

Interaction among services is based on tradi-
tional transport protocols such as HTTP, SMTP,
or IIOP. The widely acknowledged basic message
protocol is SOAP (nevertheless, other protocols
could be used), and Web service description is
primarily achieved by means of WSDL. But as
can be seen in Figure 4 by moving along the
vertical axis, when it comes to more advanced
features, such as coordination and composition,
the number of possible solutions grows, and the
agreement becomes less.

In the following, we position the previously
discussed approaches and technologies in the
overall protocol stack and complete the resulting
stack with some further specification, so as to

provide an overview as complete as possible of the
technologies that are at the basis of each approach.
The proposed stack is not intended as exact picture
of each single approach (some approaches indeed
do not cover all aspects addressed in Figure 4),
but rather represents reasonable configurations,
as they could be adopted in a working system.

Coordination-Based Approaches:

• ebXML (electronic business using exten-
sible markup language): (UN/CEFACT,
OASIS; Eisenberg & Nickull, 2001). ebXML
is a (vertical) suite of specifications of how
electronic commerce exchanges should be
specified, documented, and conducted,
and can be subdivided into three different
protocols:

• CPP (collaboration protocol profile): A
CPP is similar to a UDDI registry entry and
includes interface and message descriptions

Figure 4. Web service composition-oriented protocol stack of vendor-specific and standardized protocols
and languages. Within the composition layer, we propose BPML in on top of WSCI as they share a com-
mon process model. However, other executable BPM languages could be adopted as well.

 WSDLebXML
CPP

ebXML
BPSS

SOAP

WS-BPELWSCIWS-CDL

HTTP, SMTP, IIOP,...Transport

Message

Description

Coordination

Composition

Semantics
OWL-S WSMO

BPML WS-BPEL
MAIS-PL

OWL
Reas.

BPEL

MAIS SDL

Coordination-based Execution-based Semantics-based

OASIS W�C W�C OASIS W�C
DAML DERI MAIS

UDDIebXML
Rep.Repository

IRS-III
Reasoner

OWL-S/
SAWSDL

IRS-III URBE

Public perspective Private perspective

Quality-based

WSDL/
OWL-S

QoSOnt

UDDI

QoSOnt

WS
MX

WSMO
WSDL

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

as well as business data and data exchange
capabilities of a particular trading partner.

• BPSS (business process specification sche­
ma): The BPSS protocol can define both the
choreography and communications between
services. The definition of a proper business
process execution language is explicitly
outside the scope of ebXML.

• Repository/Registry: The ebXML Regis-
try is similar to UDDI in that it allows the
discovery and binding of businesses, the
definition of agreements between trading-
partners, the exchange of XML messages in
support of business operations. The goal is
to allow all these activities to be performed
automatically, without human intervention,
over the Internet.

• CPA (collaboration protocol agreement,
not shown in Figure 4): A CPA contains
the business agreement among cooperating
partners. It is derived from the intersection
of the CPPs of the cooperating trading
partners.

• WS­CDL (Web services choreography
definition language): (W3C Working Draft;
Kavantzas et al., 2005; Ross-Talbot et al.,
2006). WS-CDL is an XML-based language
that describes peer-to-peer collaborations
of parties by defining, from a global view-
point, their common and complementary
observable behavior, where ordered message
exchanges aim at accomplishing a common
business goal. It is neither an executable
business process description language nor
an implementation language.

Execution-Based Approaches:

• WSCI (Web services choreography in-
terface): (Initially Sun, SAP, BEA, and
Intalio; now W3C Note; Arkin et al., 2002).
It is an XML-based interface description
language that describes the flow of messages
exchanged by a Web service participating

in choreographed interactions with other
services. WSCI is a coordination protocol,
in that it does not address the definition and
the implementation of the internal processes
that actually drive the message exchange.

•	 BPML (business process management
language): (Business Process Management
Initiative (BPMI.org, 2002). BPML is a lan-
guage for the modeling of business processes
and was designed to support processes that
a business process management system
could execute. BPML and WSCI share the
same underlying process execution model;
therefore developers can use WSCI to de-
scribe public interactions among business
processes and reserve, for example, BPML
for developing private implementations.
However, other coordination protocols than
WSCI can be adopted as well.

• BPEL: (also BPEL4WS, business process
execution language for Web services or
WS-BPEL; initially Microsoft, IBM, Siebel
Systems, BEA, and SAP; now OASIS; Web
services business process execution lan-
guage; Weerawarana et al., 2002). It provides
an XML-based grammar to describe the
control logic required to coordinate Web
services participating in a process flow.
BPEL can act both as coordination protocol
and proper composition language. BPEL
orchestration engines can execute this gram-
mar, coordinate activities and compensate
activities when errors occur.

Semantics-Based Approaches:

• OWL-S (ontology Web language for Web
services): DAML.org; Martin, 2003). OWL-
S is an ontology-based description language
that supplies Web service providers with a
set of markup language constructs for de-
scribing the properties and capabilities of
their Web services at a semantic level and
in an unambiguous, computer-interpretable

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

form. It allows the definition of semantic
descriptions as well as coordination rules.
Previous releases of the language were built
upon DAML+OIL and known as DAML-
S. Theoretically, OWL-S is not limited
to one specific grounding, but its current
version provides a predefined grounding
for WSDL that maps OWL-S elements to a
WSDL interface (Polleres & Lara, 2005);
alternatively, service descriptions could
also leverage SAWSDL. On top of OWL-S,
proper reasoners allow automatic service
composition and execution.

• WSMO (Web service modeling ontol-
ogy): (DERI; Roman et al., 2004). Based
on the conceptual basis provided by the
WSMF (Web service modeling framework)
(Fensel & Bussler, 2002), WSMO serves
the purpose of describing various aspects
of semantic Web services, ranging from
coordination constraints over semantics
to composition issues, and aims at solving
existing integration problems. The vision of
WSMO is that of an automated, goal-driven
service composition that builds on pre- and
post-conditions associated to component
services. In its current version, WSMO is
grounded on WSDL, but DERI is planning
to allow multiple groundings for their service
descriptions.

• IRS (Internet reasoning service): (Confa-
lonieri, Domingue, & Motta, 2004). IRS is
KMi’s semantic Web services framework for
semantically describing and executing Web
services. The IRS supports the provision
of semantic reasoning services within the
context of the semantic Web. The primary
goal is to support the discovery and retrieval
of knowledge components (i.e., services)
from libraries over the Internet and to semi-
automatically compose them according to
specified goals. It is based on problem solving
methods, using task descriptions in terms
of input roles, output roles, pre-conditions,

assumptions, and goals and ontologies. With
the current version of IRS3, it is possible to
execute WSMO services, but the binding of
services occurs still at design time (Haller
et al., 2005).

• WSMX (Web service modeling execution
environment): (Haller et al., 2005). WSMX
is the reference implementation of the
WSMO execution environment developed
by DERI International and allows the run-
time discovery, selection, and composition
of WSMO-based Web services. Discovery
and selection are performed over a WSMO
service repository, which is part of the
WSMX implementation. WSMX internally
adopts the WSML (Web service modelling
language) for execution purposes.

Quality of Service-Based
Approaches:

• MAIS (multichannel adaptive informa-
tion systems): (Bianchini, De Antonel-
lis, Pernici, & Plebani, 2006; Cappiello,
Missier, Pernici, Plebani, & Batini, 2004;
Maurino et al., 2004). The Italian MAIS
research project proposes a quality-based
approach to service description, selection,
and composition. Web services, described
with a MAIS-SDL (service description lan-
guage) based on WSDL and annotated with
quality properties defined in WSOL (Tosic,
Pagurek, Patel, Esfandiari, & Ma, 2003),
are dynamically composed in context vari-
able process executions. Web services are
selected from URBE, a UDDI-compatible
registry with a service ontology and service
quality information (Bianchini et al., 2006).
Flexible process descriptions are specified
in MAIS-PL (MAIS process language) and
formulated associating to BPEL local and
global quality constraints on the basis of
information available in the current context
of execution.

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

• QoSOnt: (Dobson et al., 2005) provides
means for semantically rich, QoS-based
descriptions of Web services in OWL.
The proposed approach adopts a standard
UDDI registry for the discovery of service
descriptions, which may be provided in
either WSDL or OWL-S. QoSOnt is best
used in combination with OWL-S; if service
descriptions are provided in WSDL, OWL-
S concepts cannot be referenced anymore,
which slightly restricts the expressiveness
of QoSOnt.

Based on Figure 4, one could say that com-

posite service designers are confronted with a
huge amount of partly mutually exclusive, partly
dependent specifications in their composition
task. Fortunately, they are not supposed to know

and master all the above specifications together
with their peculiarities. In fact, once they have
chosen the composition or coordination approach
that best matches their individual requirements,
they only need to focus on those technologies
and specifications that are necessary. Undoubt-
edly, the choice of the right approach is of crucial
importance.

Besides due to real, functional needs, the high
number of candidate standards is mainly due
to two reasons: firstly, vendor-related political
and strategic aspects (each one wants his own
specification to become a common standard);
secondly, the relatively young age of the overall
Web service technologies themselves. Unavoid-
ably, this results in a proliferation of proprietary
(or not) specifications and a lack of stability when
it comes to choose reference specifications.

Figure 5. Emergence and evolution of today’s principal standards and languages concerning WS composi-
tion. The figure tries to reflect the official release or publication dates of the specifications (at the best of the
authors’ knowledge), first appearance of or discussions about them could differ from the proposed dates.

BPML

SOAP 1.1

WSDL

UDDI

WSFL
BPEL

WSCI

XLANG

2000 2001 2002 2003 2004 2005

WS-CDL

WSMO

MAIS
IRS-III

2006

QoSOnt

WSMX

OWL-S

2007

SAWSDL

M
es

sa
gi

ng
D

es
cr

ip
tio

n
D

is
co

ve
ry

C
oo

rd
in

at
io

n
C

om
po

si
tio

n
Se

m
an

tic
s

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

Figure 5 graphically depicts the temporal
emergence of the previously listed standards and/
or specifications. Along the diagram’s diagonal,
a trend toward high-level and semantically rich
specifications can be derived (i.e., a trend toward
enabling designers to comfortably specify or to
automatically derive executable service compo-
sitions).

ADVANCED COMPOSITION
PROBLEMS

The previous sections introduced some Web
service coordination and composition solutions
and characterized them by positioning them with
respect to their driving conceptual approaches.
Independently from the approach a developers
chooses for his composite service or application,
there are however a few typical, crosscutting
composition problems that need to be addressed
and which we did not yet cover. In this section we
discuss a few of the most prominent ones of such
problems (i.e., service selection, message correla-
tion, transactions, and exception handling).

Service Selection

In one of the previous sections, we described
two research efforts by Maamar et al. (2005) and
Baïna et al. (2003). As the careful reader may
have noticed, one of the main novelties introduced
by these two research efforts (but also by some
of the quality- or semantics-driven composition
approaches) consists in the dynamic selection of
the services to be composed, in addition to the
dynamic service composition itself.

The purpose of dynamic service selection is
mostly that of guaranteeing the availability and
robustness of a composite service or application,
being the Web a highly variable and fast changing
environment. The question is whether component
services are to be selected at process definition

time or at runtime, during process execution; some
authors distinguish between service selection at
design time and deployment time. Service selection
is probably the point where Web service orches-
tration approaches could learn from, but also add
flexibility to traditional WfMSs, which typically
include a (centralized) resource manager that,
at runtime, decides to which resource instance,
respecting a precise role definition, a specific task
should be assigned (WfMC, n.d.).

Currently, static (i.e., hard-coded within the
process definition) selection approaches prevail
over dynamic ones (Alonso et al., 2004). The URIs
for locating the necessary services are typically
defined at design time, and each process instance
refers to the same set of services. Instead of hard-
coding the URIs within the process definition,
they may be assigned to process variables and
thus determined for example as result of a runtime
operation call; this kind of service selection is
known as dynamic by reference. A further degree
of flexibility is provided by so-called dynamic by
lookup binding mechanisms that support, for each
activity, the definition of a query to be executed
on some service directory and thus also require
a certain level of middleware support.

Selection decisions are not only influenced
by the selection time, but—and even at a higher
degree—by the selection algorithm itself. As the
ontology-driven approach shows, semantics- and
goal-driven considerations could drive the selec-
tion algorithm (Arpinar et al., 2004), as well as
context-based or QoS-driven ones. Also, syntacti-
cal similarities or abstract services as represen-
tatives for a specific class of equivalent services
could constitute the decision domain.

UDDI provides basic functionalities to retrieve
services according to their classification, providers
and/or tModels. Recent proposals have emerged
to support WSMO and OWL-S service selection
using IRS (Confalonieri et al., 2004), using the
IRS discovery and retrieval mechanisms, mapping
semantic service descriptions provided by those

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

two approaches to the knowledge representation
language OCML (Hakimpour, Domingue, Motta,
Cabral, & Lei, 2004).

In the URBE registry developed for MAIS,
services are selected from the registry accord-
ing to their functional characteristics, organized
according to a service model), their quality
characteristics, the invocation context, and ap-
plication or user requirements (Bianchini et al.,
2006). Similarity functions are provided to assess
the functional suitability of a service, according
to given functional and non-functional require-
ments, in conjunction with a lightweight ontology
model. MAIS flexible process descriptions allow
dynamic, context-aware selection, and binding
at runtime.

Message Correlation

The next step after service selection is message
correlation. For instance, there may be several
concurrent instances of an individual service
running in a specific execution environment
(e.g., a service container) and engaged in differ-
ent conversations with other services. Message
correlation deals with the unique identification
of such instances and the conversations they are
involved in with external Web services in order
to guarantee the overall, correct execution of the
separate processes that are running.

As already seen earlier, WS-coordination
proposes identifiers (the coordination context)
carried by SOAP headers for uniquely associating
messages to conversations. When using WSCI,
designers can identify certain data items within
exchanged messages that act as unique identifiers
of the conversation. A possible process specifi-
cation on top of these protocols must explicitly
provide the necessary logic that implements the
described mechanisms.

On the other hand, BPEL already proposes a
solution at process level, namely so-called cor-
relation sets that—similar to WSCI—allow the
definition of sets of data items as unique identi-

fiers. By assigning the same correlation set to
multiple messages, the composition designer can
specify that messages—whenever the respective
data items have the same values—belong to the
same process instance or conversation.

Transactions and Exception
Handling

Composite Web services and applications aim
to support collaborations between business
partners; such collaborations typically require
robust transaction support. The classical ACID
properties of relational databases have proven
being too strict in a service-oriented environment
involving several autonomous business partners.
Thus, in the context of Web services, some of
the ACID properties need to be slightly relaxed.
Furthermore, proper compensation mechanisms
need be taken into consideration, as already done
for WfMSs (Grefen, Pernici, & Sanchez, 1999).

In August 2002, IBM, Microsoft, and BEA
proposed WS-Transaction, a standard protocol
for long-running business transactions that builds
on the framework provided by WS-coordination.
Transactions are one way to handle exceptions,
but due to their compensation mechanism not in
every exceptional situation transactions provide
the right functionality. Several exception handling
approaches are known, the most important ones
are try-catch-throw mechanisms as provided (e.g.,
by Java and currently implemented in BPEL), or
flow-based mechanisms that consist in explicitly
modeling the error checking logic within the
proper process description. Also, rule-based ap-
proaches exist, which are particularly suited for
handling temporal exceptions.

HOW ORCHESTRATION DEPENDS
ON CHOREOGRAPHY

Choreography and orchestration represent two
different conceptual interpretations of the col-

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

laboration problem, but the two ideas are far from
being independent the one from the other. In this
section, we therefore briefly highlight to what
extent orchestration depends on choreography by
concentrating three main dimensions (i.e., struc-
tural, functional, and resource dependencies).

Structural Dependencies

Structural dependencies drive the overall struc-
ture and organization of a process definition and
thus concern activities, conditions and routing
decisions in the process specification.

Alonso et al. (2004) well explain the depen-
dencies between coordination protocols and
composition schemas by stepwise refining the
portion of a process definition relative to only
one of the services participating in a coordinated
conversation. Starting from an overall activity
diagram of the process, the authors first extract
the role-specific view of the process (the one of
the chosen service) and then refine it in order to
reach a granularity level where the single activi-
ties of the remaining diagram reflect the single
service invocations required for achieving the
role-specific functionality. This so-called process
skeleton on the one hand describes the role-specific
view of the process; on the other hand, it provides
a proper protocol description of that participant’s
public interactions. In this way, the authors show
how the definition of the executable process in-
trinsically must match the constraints imposed
by the underlying coordination protocol.

Functional Dependencies

Functionalities or capabilities like transaction sup-
port, security, reliability, correlation, etc. may lead
to functional dependencies among orchestration
languages and coordination protocols, like those
provided by the wealth of WS-* specifications.
Dependencies arise, whenever the functionalities
they provide are used at the process specification
level, and the composition language “delegates”

the relative competencies to the underlying co-
ordination protocols.

As already exemplified earlier, coordination
can for example be achieved either explicitly at
process level or implicitly at coordination level.
For example, once the choice of adopting the WS-
coordination framework has been made, the pro-
cess definition does not anymore require explicit
coordination constructs. The same considerations
also hold in case of transaction support, reliable
messaging, or the like.

Resource Dependencies

Most of the process definition languages have
inherited their modeling approaches from the field
of workflow management. At process or composi-
tion design time, however, service composition
presents some methodological differences that
are rooted in the dependencies that exist between
coordination and composition.

WfMSs allow for a straightforward top-down
structure of the process model, describing, for
example, an administrative workflow. Resources
executing a specific work item are provided with
the exact amount of data that is required for the
correct execution of that task. To execute one
task, there is no need to know about possible other
tasks before or after that specific task within the
same process flow. Possible task constellations
are subject only to the constraints imposed by
the final goal of the underlying business process.
Involved resources do not have a task-surviving
behavior with constraints affecting the overall
process definition. Rearranging tasks (i.e., put-
ting some in parallel), when specifying process
definitions, is common practice to improve process
efficiency.

When defining the logic that constitutes a com-
posite Web service, a strict top-down approach
does not guarantee anymore that the resulting
process definition is always executable. In fact,
a Web service may by subject to individual con-
versation rules in order to be executed correctly.

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

For example, before accepting a user’s credit card
number for payment, a service typically must be
provided with the appropriate list of goods the
user wants to buy. This externally visible behavior
of Web services distinguishes the resource Web
service from those we have in WfMSs. Single
tasks cannot anymore be rearranged arbitrarily
without loosing functionality.

Composite service designers must know about
the coordination requirements of the services they
use in order to take them into account when de-
fining composite services. Thus, starting from an
initial process idea (top-down), designers select the
services providing the right functionality, and then
refine their initial idea (by rearranging initially
presumed invocations or adding new ones) in order
to conform with the coordination requirements
imposed by the selected services (bottom-up).
Therefore, the resulting process definition com-
bines a coarse-grained top-down approach with
a fine-grained bottom-up approach.

FUTURE TRENDS

In light of the developments and the evolutions
achieved so far in the Web services area, one is
inclined to ask what will happen next to orches-
tration and choreography of Web services and,
thus, to processes on the Web. In the following,
we provide our personal ideas about some of the
most interesting questions.

Coordination or Composition?

In the previous sections, we argued that coordina-
tion protocols are public documents focusing on
external interactions, and composition schemas
are private documents that describe the internal
implementation of composite Web services. In
our view, both perspectives will be needed also in
the future, and more research work should focus
on formally relating the two approaches, also in
order to be able to prove formal properties, which

are published against formal properties of private
process descriptions.

The difference between coordination and
composition in fact cannot just boil down to mere
technical considerations; legal aspects also play
an important role while orchestrated interactions
have one central entity in charge of guaranteeing
the correctness of the interaction, choreographed
interactions do not. In the former case, there is one
partner who has a higher responsibility concerning
the success of the cooperation, while in the latter
case each partner has the same responsibility.

Trends in Private Process
Descriptions

As hinted at in the introduction when comparing
SOC with OOP where really valuable and novel
concepts primarily emerged as result of the object-
oriented paradigm and less because of the avail-
ability of object-oriented languages, also in the
context of Web services the real potential resides
in what will be build on top of the languages and
specifications developed in the context of SOC,
rather than in the languages or specifications
themselves. Just as today’s enterprise application
servers run so-called object containers as execu-
tion environment for business logic and offering
various services to its components, similar con-
cepts are being investigated also for Web services
and probably will substantially enhance current
composition capabilities.

Benatallah et al. (2003), in their Self-Serv re-
search project, are concentrating on a middleware
infrastructure for the composition of Web services
that allows multi-attribute dynamic service selec-
tions within a composite service and peer-to-peer
orchestrations. Furthermore, they build on the
concept of service container, aggregating several
substitutable services.

A similar approach is followed by the MAIS
project (MAIS, n.d.) that—among others—aims
at the definition of a platform for dynamic service
selection and provision on the basis of context

�0

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

and QoS information. Compatible services are
grouped into so-called abstract services and al-
low dynamically selecting and when necessary
substituting (concrete) services at runtime ac-
cording to the current context and the result of a
negotiation over QoS parameters.

In general the trend is towards providing a
middleware (environments supporting WS-*)
to support dynamic process execution and more
integration with programming environments,
both in the Semantic Web service line, which is
strictly related to logic programming, and in the
composition line, such as for instance in BPEL
extensions allowing Java code to be included in
the process specification.

Trends in Public Process
Description

In this area, the trend is to define constraints
on messages being exchanged among several
partners, without enforcing coordination through
execution engines. Some support can be provided
to verify, at runtime, whether a given coordina-
tion specification has been violated (such as, for
instance, in Maamar et al., 2005).

Open or Closed Worlds?

Slightly different approaches are emerging from
the recent trend toward Semantic Web services
and still have to be profoundly investigated. Most
of the efforts in this context, like OWL-S and
WSMO, are covered by research and academic
communities and still have to prove their com-
mercial viability. Nevertheless, especially for
dynamic service selection the potential seems to
be promising.

However, in this research area much effort
is devoted to the capability of handling multiple
ontologies, such as in OWL-S, or in providing
mediators between them, such as in WSMO.

The ability of combining logics and providing
general reasoning mechanisms is limited, so the
trend could be a greater focus on closed world
or communities of service providers and users
such as defined in Marchetti, Pernici, and Plebani
(2004).

From Web Services to Grid Services

Recently, also researchers from the field of grid
computing have started to investigate the potential
of orchestration and composition technologies,
stemming from the world of Web services, for
the distributed execution and management of
complex processes on the grid. Grid computing
is an emerging computing model that leverages
a multitude of networked computers to model
a virtual computer architecture that is able to
distribute process executions across a parallel
infrastructure. Especially in the context of large-
scale scientific computations, such as genetic
analyses, geological investigations or weather
predictions, grid computing already provides
promising results.

In Emmerich, Butchart, Chen, Wassermann,
and Price (2006), the authors concentrate for
example on grid services, that is, Web services
that are deployed and executed in service-oriented
grid computing infrastructures. By means of a real
world scientific workflow problem, the authors
show how BPEL can successfully be adopted
to orchestrate complex, scientific workflows in
grid systems, despite the typically huge number
of activities that compose a scientific process
(e.g., several thousands of work items!). Also in
Fox and Gannon (2006), workflows of tens of
thousands of participating entities or activities are
described, and especially the role of robust excep-
tion handling mechanisms (as for example the
one provided by BPEL) is highlighted. Scalability
and robustness of orchestration and composition
solutions are key ingredients for the success of
Web services in grid computing.

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

CONCLUDING REMARKS

The time being seems of crucial importance
for the success of Web services. Decisions have
to be made about future standards, which will
heavily influence the potential for success. In
his critical article on the practice of standardiza-
tion, WS-nonexistent standards (Vinoski, 2004),
Vinoski not only complains about the numerous
proposed standards, but also about the way they
are proposed. As a charter member of the World
Wide Web Consortium’s Web services architec-
ture working group, he asks for more consensus
in the standardization processes. Today, he says,
traditional standardization procedures are often
bypassed by powerful vendors, which develop
their own specifications and only afterwards
submit them to an official standards body with
the hope of fast acceptance and minimal changes.
In this short-circuited standardization effort he
identifies both a disadvantage for users and a
threat for the overall success of the technologies
to be standardized.

Therefore, let us hope in shared and agreed
on standards as basis for the next generation ap-
plications and services, because “…a standard
that is not generally agreed on is a standard on
paper only” (Vinoski, 2004).

ACKNOWLEDGMENT

This work has been partially supported by the
European FET-STREP project WS-Diamond and
the Italian PRIN 2005 project Quadrantis.

REFERENCES

Aissi, S., & Malu, P., & Srinivasan, K. (2002).
E-business process modeling: The next big step.
IEEE Computer, 35(5), 55-62.

Alonso, G., Casati, F., Kuno, H., & Machiraju, V.
(2004). Web services—Concepts, architectures,
and applications. Berlin Heidelberg: Springer-
Verlag.

Arkin, A., Askary, S., Fordin, S., Jekeli, W.,
Kawaguchi, K., Orchard, D., Pogliani, S., Riemer,
K., Struble, S., Takacsi-Nagy, P., Trickovic, I.,
& Zimek, S. (2002). Web service choreography
interface (WSCI) 1.0. W3C Note, August 2002.
Retrieved January, 2005, from http://www.
w3.org/TR/wsci

Arpinar, B., Aleman-Meza, B., Zhang, R., &
Maduko, A. (2004). Ontology-driven Web ser-
vices composition platform. Proceedings of the
IEEE International Conference on E-Commerce
Technology, IEEE.

Baïna, K., Benali, K., & Godart, C. (2003). Dy-
namic interconnection of heterogeneous workflow
processes through services. The 11th International
Conference on Cooperative Information Systems
(CoopIS’03), In Confederated International Con-
ferences (DOA/CoopIS/ODBASE’03), (LNCS)
2888, Catania, Sicily, Italy, November 3-7, 2003.
Springer-Verlag.

Benatallah, B., Casati, F., & Toumani, F. (2004).
Web service conversation modeling: A corner-
stone for e-business automation. IEEE Internet
Computing, 8(1), 46-54.

Benatallah, B., Sheng, Q. Z., & Dumas, M. (2003).
The self-serv environment for Web services com-
position. IEEE Internet Computing, 7(1), 40-48.

Bianchini, D., De Antonellis, V., Pernici, B., &
Plebani, P. (2006). Ontology-based methodology
for e-service discovery. Information Systems,
31(4-5), 361-380.

Bieber, G., & Carpenter, J. (2001). Introduc-
tion to service-oriented programming (Rev
2.1). Retrieved January 2005, from http://www.
openwings.org/download/specs/ServiceOriente-
dIntroduction.pdf

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

BPMI.org. (2002). BPML/BPEL4WS—A conver-
gence path toward a standard BPM stack. BPMI.
org Position Paper. Retrieved January 2005, from
http://www.bpmi.org/

BPMI.org, Business Process Management Ini-
tiative. (n.d.). Retrieved January, 2005, from
http://www.bpmi.org/

Cappiello, C., Missier, P., Pernici, B., Plebani, P.,
& Batini, C. (2004). QoS in multichannel IS: The
MAIS approach. Proceedings of the International
Workshop on Web Quality (WQ’04) in conjunction
with the ICWE 2004, Munich, Germany.

Cardoso, J., Bostrom, R. P., & Sheth, A. (2004).
Workflow management systems and ERP systems:
Difference, commonalities, and applications.
Information Technology and Management, 5,
319-338, Kluwer Academic Publishers.

Chappell, D. (2004). Understanding BPM serv-
ers. Chappell & Associates. Retrieved December
2004, from http://www.microsoft.com/biztalk/te-
chinfo/default.asp

Confalonieri, R., Domingue, J., & Motta, E.
(2004). Orchestration of semantic Web services
in IRS-III. In Proceedings of the 1st AKT Work-
shop on Semantic Web Services (AKT-SWS04)
KMi, The Open University, Milton Keynes, UK,
December 8, 2004.

Daniel, F., & Pernici, B. (2006). Insights into Web
service orchestration and choreography. Interna-
tional Journal of E-Business Research, 2(1), 58-77,
Idea Group Publishing, January-March 2006.

De Antonellis, V., Melchiori, M., De Santis, L.,
Mecella, M., Mussi, E., Pernici, B., & Plebani, P.
(2006). A layered architecture for flexible e-ser-
vice invocation. Software Practice & Experience,
36(2), 191-223.

Dobson, G., Lock, R., & Sommerville, I. (2005).
QoSOnt: An ontology for QoS in service centric
systems. Proceedings of the eScience All Hands
Meeting, Nottingham, September 2005.

Dustdar, S., & Schreiner, W. (2004). A survey on
Web services composition. Distributed Systems
Group, Technical University of Vienna.

Eisenberg, B., & Nickull, D. (2001). ebXML
technical architecture specification v1.04. Re-
trieved January 2005, from http://www.ebxml.
org/specs/index.htm

Emmerich, W., Butchart, B., Chen, L., Was-
sermann, B., & Price, S. L. (2006). Grid service
orchestration using the business process execution
language (BPEL). Journal of Grid Computing,
3(3-4), 283-304.

Farrell, J., & Lausen, H. (2006). Semantic annota-
tions for WSDL. W3C Working Draft, September
2006. Retrieved January 2007, from http://www.
w3.org/TR/sawsdl/

Fensel, D., & Bussler, C. (2002). The Web ser-
vice modeling framework WSMF. Electronic
Commerce: Research and Applications, 1(2002),
113-137.

Fox, G., & Gannon, D. (2006). Workflow in grid
systems. Concurrency and Computation: Practice
& Experience, 18(10), 1009-1019, August 2006.

Grefen, P., Pernici, B., & Sanchez, G. (1999); Da-
tabase support for workflow management—The
WIDE Project. Kluwer.

Hakimpour, F., Domingue, J., Motta, E., Cabral,
L., & Lei, Y. (2004). Integration of OWL-S into
IRS-III. Proceedings of the 1st AKT Workshop on
Semantic Web Services (AKT-SWS04); KMi, The
Open University, Milton Keynes, UK.

Haller, A., Cimpian, E., Mocan, A., Oren, E.,
& Bussler, C. (2005). WSMX—A semantic ser-
vice-oriented architecture. Proceedings of the
International Conference on Web Service (ICWS
2005). Orlando, Florida, 2005.

Hewlett-Packard Company. (2002). Web services
conversation language (WSCL) 1.0. W3C Note,

 ��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

March 2002. Retrieved December, 2004, from
http://www.w3.org/TR/wscl10/

Jung, J., Hur, W., Kang, S., & Kim, H. (2004).
Business process choreography for B2B col-
laboration. IEEE Internet Computing, 8(1), 37-45,
Jan-Feb 2004.

Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher,
T., Lafon, Y., & Barret, C. (2005). Web services
choreography description language version 1.0.
W3C Candidate Recommendation, 9 November
2005. Retrieved January 2007, from http://www.
w3.org/TR/ws-cdl-10/

Kennedy, M. (2005). Oracle BPEL process
manager quick start guide, 10g (10.1.2); Beta
Draft, April, 2005. Retrieved May 2005, from
http://download-uk.oracle.com/otndocs/products/
bpel/quickstart.pdf

Khalaf, R., & Nagy, W. A. (2003). Business pro-
cess with BPEL4WS: Understanding BPEL4WS,
Part 7, Adding correlation and fault handling
to a process. Research report, IBM developer-
Works, April 2003. Retrieved January 2005,
from http://www-106.ibm.com/developerworks/
webservices/ library/ws-bpelcol7/

Langdon, C. S. (2003). The state of Web services.
IEEE Computer, 36(7), 93-94.

Leavitt, N. (2004). Are Web services finally
ready to deliver? IEEE Computer, 37(11), 14-18,
Nov. 2004.

Maamar, Z., Mostefaoui, S. K., & Yahyaoui, H.
(2005). Toward an agent-based and context-ori-
ented approach for Web services composition.
IEEE Transactions on Knowledge and Data
Engineering, 17(5), 686-697, May 2005.

MAIS. (n.d.). MAIS project home page. Retrieved
January 2005, from http://www.mais-project.it

Marchetti, C., Pernici, B., & Plebani, P. (2004). A
quality model for multichannel adaptive informa-

tion. WWW (Alternate Track Papers & Posters)
2004, New York City, NY, pp.48-54.

Martin, D. (2003). The OWL services coalition.
OWL-S: Semantic markup for Web services. White
Paper. Retrieved December 2004, from http://
www.daml.org/services/owl-s/1.0/owl-s.html

Maurino, A., Modafferi, S., Mussi, E., & Pernici,
B. (2004). A framework for provisioning of com-
plex e-services. IEEE International Conference
on Services Computing (SCC 2004), Shanghai.

Microsoft Corporation. (n.d.). Microsoft BizTalk
Server. Retrieved January 2005, from http://www.
microsoft.com/biztalk/

Milanovic, N., & Malek, M. (2004). Current solu-
tions for Web service composition. IEEE Internet
Computing, 8(6), 51-59 Nov.-Dec. 2004.

Paulson, L. D. (2002). Choreographing Web
services. IEEE Computer, 35(11), 25-25, Nov.
2002.

Peltz, C. (2003). Web services orchestration—A
review of emerging technologies, tools, and stan-
dards. Hewlett-Packard Company, 2003.

Peltz, C. (2003). Web services orchestration and
choreography. IEEE Computer, 36(10), 46-52,
Oct. 2003.

Polleres, A., & Lara, R. (2005). D4.1v0.1 A con-
ceptual comparison between WSMO and OWL-S.
WSMO Working Draft, January 2005. Retrieved
January 2005, from http://www.wsmo.org/2004/
d4/d4.1/v0.1/20050106/

Roman, D., Lausen, H., & Keller, U. (2004).
D2v1.0. Web service modeling ontology (WSMO).
WSMO Working Draft; September 2004. Re-
trieved January 2005, from http://www.wsmo.
org/2004/d2/v1.0/20040920/

Roman, D., & Scicluna, J. (2006). Ontology-based
choreography of WSMO services. WSMO Final
Draft, May 2006. Retrieved January 2007, from
http://www.wsmo.org/TR/d14/v0.3/

��

Web Service Orchestration and Choreography: Enabling Business Processes on the Web

RosettaNet. (2006). Retrieved December 2006,
from http://www.rosettanet.org

Ross-Talbot, S., & Fletcher, T. (2006). Web
services choreography description language:
Primer. W3C Working Draft, June 2006. Retrieved
January 2007, from http://www.w3.org/TR/ws-
cdl-10-primer/

Sivashanmugam, K., Miller, J., Sheth, A., &
Verma, K. (2004). Framework for semantic Web
process composition. Special Issue of the Inter-
national Journal of Electronic Commerce (IJEC),
Eds: Christoph Bussler, Dieter Fensel, Norman
Sadeh, Feb 2004.

Smith, M. K., Welty, C., & McGuinness, D. L.
(2004). OWL Web ontology language guide. W3C
Recommendation, February 2004. Retrieved
January 2005, from http://www.w3.org/TR/2004/
REC-owl-guide-20040210/

Tosic, V., Pagurek, B, Patel, K., Esfandiari, B, &
Ma, W. (2003). Management applications of the
Web service offerings language (WSOL). CAiSE
2003, 468-484.

Van der Aalst, W. M. P., ter Hofstede, A. H. M.,
Kiepuszewski, B., & Barros, A. P. (2003). Work-
flow patterns. Distributed and Parallel Databases,
14(3), 5-51, July 2003.

Vinoski, S. (2004). WS-nonexistent standards.
IEEE Internet Computing, 8(6), 94-96, Nov.-Dec.
2004.

Weerawarana, S., & Curbera, F. (2002). Business
process with BPEL4WS: Understanding BPEL-
4WS, Part 1, Concepts in business processes. Re-
search report, IBM developerWorks, Aug. 2002.
Retrieved January 2005, from http://www-106.
ibm.com/developerworks/webservices/library/
ws-bpelcol1/

WfMC - Workflow Management Coalition (n.d.).
Retrieved January, 2007, from http://www.wfmc.
org

W3C - World Wide Web Consortium (n.d.). Re-
trieved January, 2007, from http://www.w3.org

W3C. (2001). Web services description language
(WSDL) 1.1. W3C Note, March 2001, http://www.
w3.org/TR/wsdl

xCBL.org. (2006). XML common business library.
Retrieved December, 2006, from http://www.
xcbl.org

ENDNOTES

1 The present work is a revision, extension
and update of the survey work published by
the authors in January 2006 in Daniel and
Pernici (2006).

