
Workflow Engine Performance Evaluation by a

Black-Box Approach

Florian Daniel1, Giuseppe Pozzi2, and Ye Zhang2

1 Università degli Studi di Trento, via Sommarive 14 I-38100 Povo, Trento -Italy-
2 Politecnico di Milano, P.za L. da Vinci 32 I-20133 Milano -Italy-

daniel@disi.unitn.it, http://disi.unitn.it/users/florian.daniel
giuseppe.pozzi@polimi.it, http://home.dei.polimi.it/people/pozzi

Abstract. Workflow Management Systems (WfMSs) are complex soft-
ware systems that require proper support in terms of WfMS performance.
We propose here an approach to obtain some performance measurements
for WfMSs (in order to compare them) by adopting a black box approach
– an aspect that is not yet adequately studied in literature – and report
some preliminary results: this allows us to evaluate at run-time the over-
all performance of a WfMS, comprising all of its constituent elements.
We set up two reference processes and four different experiments, to
simulate real circumstances of load, ranging from one process instance
to several process instances, entering the system either gradually or si-
multaneously. We identify some key performance indicators (CPU, main
memory and disk workloads, and completion time) for the tests. We
choose five WfMSs (some publicly available, some commercially avail-
able), and install them in their respective default configuration on five
different and separate virtual machines (VMware). For every WfMS and
for every experiment, we perform measurements and specifically focus
on the completion time. Results enable us to measure how efficient the
WfMSs are in general and how well they react to an increase of workload.

Key words: Performance evaluation, Workflow management system, black-box
approach, virtual machine

1 Introduction

A workflow is the automation of a business process where atomic work units
(task) are assigned to participants (agent) according to a workflow schema (pro-
cess model). A workflow management system (WfMS) manages several process
instances (cases), and relies on a database management system (DBMS).

We propose an approach to evaluate the performances of a WfMS treating
it as a black box and a monolithic system purely observed from outside. To
avoid the variability caused by using different computer systems, we use one
unique computer system running several separate virtual machines, each machine
featuring one WfMS. The tests we perform particularly aim at measuring the
performance of the core of a WfMS, i.e., its engine.

2 F. Daniel, G. Pozzi, Y. Zhang

The paper is structured as follows: Section 2 describes the state of the art and
compares it with the proposed approach; Section 3 addresses the requirements of
our approach; Section 4 recalls some basic concepts on performance evaluation;
Sections 5 and 6 introduce our approach and the experiments; Section 7 draws
some conclusions and sketches out some future research directions.

2 Related Work

The three main performance-related research areas in the domain focus on:
Impact of WfMSs addresses the changes from the use of a WfMS in managing
business processes. Reijers and Van der Aalst [1] focus on analyzing business
process performances on the basis of criteria including lead time, waiting time,
service time, and usage of resource.
Workflow Process Modeling mostly relates to evaluating the capability of
a workflow to meet the requirements of the business process, the workflow pat-
terns [2], adopting as key performance indicators (KPI) maximal parallelism,
throughput, service levels, and sensitivity [3]. Several studies focus on the per-
formance issues of process modeling in distributed WfMSs (e.g., Reijers et al. [4]
where actors are geographically distributed).
Architectural Issues discuss the inner architecture of WfMSs to improve their
performances from the inside. Furthermore, WfMSs must cope with issues such
as internet-based large-scale enterprize applications [5], dynamic change of the
processes [6]. Kim and Ellis [5] describe three performance analytic models cor-
responding to the workflow architectural categories of passive, class-active and
instance-active WfMS, especially on the aspect of scalability. Considering the
configuration of a distributed enterprize-wide WfMS, Kim and Ahn [7] propose
the workcase-oriented workflow enactment architecture.

Our Approach. Despite the many previous studies adopt a white box approach
and focus on the business layer, on the service layer, or on the internal struc-
ture of a WfMS, very few studies address an effective performance evaluation
method to assess the WfMS itself as a black box on a computer system level,
especially on an IT infrastructure layer which is a fundamental component for
every system. The black box concept here is derived from the black box method
of software testing, where the inner architecture of programs is not examined.
By this paper, we make an effort to design an approach that implements a black
box performance analysis, to test some WfMSs on an IT infrastructure, thus
trying to fill this gap on WfMS performance study.

Our approach builds on the work of Browne [8], evaluating the effective com-
puter performance on the following three factors: 1) theories and models rep-
resenting computer systems and computer processes; 2) evaluation techniques
which generate accurate assessments of the system or of the program behavior
from models and theories; 3) the technology for data gathering on executing
systems or processes and technology for data analysis. As our performance eval-
uation is within the context of computer system performance evaluation, we
develop three customized factors for WfMS in our approach in the light of [8].

Wf Engine Performance Evaluation by a Black-Box Approach 3

3 Requirements

The paper aims at evaluating the performance of WfMSs as it is perceived from
the outside, i.e., by system users. The key idea to do so is to test each system as

a whole, instead of singling out individual elements, e.g., the resource scheduler
(which decides whether to assign a given task to a human actor or to an au-
tomated resource, and to which instance thereof) or the DBMS underlying the
WfMS, and testing them individually. Also, in order to test the systems under
conditions that are as close to real production environments as possible, we do
not want to simulate the functioning of the systems or to emulate individual
functionalities. A thorough evaluation requires therefore setting up full installa-
tions of each WfMS, including the recommended operating system, the DBMS,
and any other software required for a standard installation of the systems.

In order to guarantee similar hardware and software conditions for every
WfMS, to eliminate the influence ad cross-interactions of already installed soft-
ware (if the WfMSs are installed on the same machine) or of different hardware
configurations (if the WfMSs are installed on different machines), we use a ded-
icated virtual machine for each installation, which can then easily be run and
tested also on a single machine. Virtual machines also help the repeatability of
the experiments and their portability on other computer systems. We call this
requirement independence from the host system.

In our research in general, we aim at devising a set of generic performance
metrics to assess WfMSs, whereas in this paper – as a first step – we specifically
focus on the workflow engine, which is at the core of each WfMS and is in charge
of advancing process instances according to their control flows and managing the
necessary process data (the process variables). It is therefore necessary to devise
a set of reference processes we use to study the performance of the engines and
minimize the influence of the other components, e.g., the DBMS underlying the
WfMS or the resource scheduler. We shall therefore define processes that do not
make an intensive use of business data, and formulate tasks that are executed
directly by the workflow engine under study. Note, however, that if a WfMS uses
a DBMS internally to store its process data, such will be part of the evaluation.

More precisely, it is necessary to define tasks as automatic and self-contained
software applications: we call this autonomy of execution. In this way, idle times
and response times from agents are completely avoided, providing a pure mea-
surement for the WfMS. Every WfMS comes with its own strategies to com-
plete tasks by invoking external software applications: different strategies gener-
ate performance variability on both completion time and resource usage, e.g.,to
startup suitable applications or persistent variable storage methods.

In order to be able to identify which system performs well in which execution
contexts, it is further important to execute the reference processes under varying
workload conditions. We expect each system will react differently to a growing
number of running process instances, concurrently running in the system.

In this work, we are specifically interested in comparing a set of commercial
and non-commercial WfMSs, in order to study if there are differences in how the
products of these two families manage their coordination task. Although, at the

4 F. Daniel, G. Pozzi, Y. Zhang

first glance, the black box approach and the focus on the workflow engine appears
to have a certain extent of limitation, we shall see, in the following sections, that
this approach already allows us to draw some interesting conclusions on the
performance of some state-of-art WfMSs.

4 Background

This section introduces some concepts related to the tests we perform and to
key performance indicators (KPIs) for IT infrastructures.

4.1 Performance Testing

Performance testing is one of the computer system performance evaluation meth-
ods - also know as Application Performance Management (APM). APM measures
the performance and the availability of an application while it is running: the
main APM goals are monitoring, alerting, and providing data for incident and
capacity management.
Purpose of Performance Testing. Performance testing aims at generating a
simulated load to predict the behavior of the system under a real load. During
performance testing, we verify what happens if the number of users or of the
servers increases (load testing); we also evaluate the capacity of system (stress
testing), and find the bottlenecks.
Types of Performance Testing. Two main types of performance testing are
typically performed. Load testing, also called service level verification, aims at
evaluating the behavior of the system under a simulated typical load, in order
to verify if the performance goal is fulfilled. During load testing, users enter
gradually the system, generating a progressively growing load.

Stress testing is considered a tuning test, as it aims at evaluating the perfor-
mance of the system under a heavy load to find the maximum load sustainable
by every component, helping to detect bottlenecks and providing us with in-
puts on performance tuning. During stress testing, all the users enter the system
simultaneously.
Structure of Performance Testing for an Application. The performance
testing structure includes three main components: load generator; controller;
monitor. The load generator consists of one or more workstations or programs
that generate the load on the application. The controller is a workstation that
controls the load generators to manage the test: it triggers and drives the load
generation, by controlling the ramp. The monitor is a workstation that measures
the system load, performing both generic measurements (e.g., CPU usage) and
specific measurements for any component (e.g., application server, DBMS).

4.2 KPI for Performance Testing of an IT infrastructure

KPIs characterize the performance of the measured system and considers several
layers of one service. Typically, the most relevant KPIs at the IT infrastructure

Wf Engine Performance Evaluation by a Black-Box Approach 5

level consider CPU, CPU idle time for I/O, CPU load (length of the process),
main memory usage, disk throughput, and network bandwidth. In Section 5.2
we describe the KPI we shall consider for our goals.

5 Evaluating WfMS Performance

The approach we describe here aims at evaluating the performances of a WfMS.
While the literature deeply considers the performances of the single components
that set up a WfMS, we propose here a black box approach. Our interest mainly
focuses on the overall evaluation of the IT infrastructure of a WfMS, as a mono-
lithic system: we do not want to test a WfMS in an isolated fashion, instead we
are interested in understanding its performances under real production condi-
tions, that is, also taking into account the minimal system requirements.

While several types of business process can be identified, we introduce two
reference processes used throughout the paper. Since we want to test the pure
performance of a WfMS, any possible human intervention (agent’s idle time)
and any difference in the computing system must be avoided: all the activities
are automatically performed with no human intervention; the same computing
configuration and operating condition are used for any WfMS.

The main part of our approach is based on the effective computer perfor-
mance evaluation framework by Browne [8]. We customize three main factors as
follows: workflow processes, which are composed by automatic activities; exper-
imental evaluation procedures, which generate an assessment of the load for the
WfMS under different operational conditions; performance indicators and data
gathering methods, which include performance measurement factors, tools for
performance data gathering and tables for data analysis.

5.1 Workflow Process Design

We introduce two reference processes to evaluate the core behavior of the WfMS:
both processes feature a limited set of workflow variables to avoid an intensive
use of the underlying DBMS. Consequently, the following processes differ from
business processes of the real world.

Although we look at two process models only, we are able to cover a wider
set of real-world processes. The first process has a simple structure and a light
load; the second one has a more complex structure and an heavier load.
Sample Process #1. The first reference process (SP1) is a very simple, typi-
cal, light and effective-running one: tasks are supposed simple, not requiring to
execute big software codes. The process includes basic elements and patterns [2],
decision nodes, automatic activities, one process variable (i), no temporary vari-
able and no database operation. As the workflow variable can be set up to 1000,
the process can cause continuous proper-weight load.
Sample Process #2. The second reference process (SP2) features two parallel
execution branches and generates a relatively heavy load. The process contains
every kind of routing tasks and patterns [2] (and-split, or-split, and-join, or-join),

6 F. Daniel, G. Pozzi, Y. Zhang

Initialize
(i=0)

Increment
(i=i+1)

Completed

i < 1000

i>=1000

Fig. 1. A simple reference process - SP1.

loops, and wait tasks. The task Initialize sets to 0 all the workflow variables i,
j, k, m, and n. The task RandomGenerate randomly assigns values to a (a > 0)
and b (b < 100): as a and b are randomly generated, every case goes through
different execution paths and sets of branches. However, the overall length of the
process flow is independent from the values randomly generated for a and b.

Initialize
Random
Generate

0<a<b<100

i++

j++

j < 1000

i < 1000

a++

b++

i >= 1000

j >= 1000

a=b
a>b

a<b
n++

n < 1000

m++

m < 1000k++

k < 1000

+ +

Completed

Fig. 2. A more complex reference process - SP2.

5.2 Key Performance Indicators

The suitable KPIs are CPU workload, main memory usage and disk usage. The
response time is also an important factor: we consider here the process comple-
tion time, i.e. the time required to complete the execution of the case.
CPU Workload. Several CPU performance metrics are defined, including CPU
usage, system time, user time, idle time and waiting time. As measuring the
workload that a certain process generates on the CPU is one of the main goals
of our approach, we consider the ProcessT ime/ProcessorT ime × 100 counter
to measure the CPU workload.
Main Memory Workload. Main memory usage is a very critical issue when
assessing the performance of a WfMS. Low memory conditions and frequent

Wf Engine Performance Evaluation by a Black-Box Approach 7

page faults slow down the execution of a process. Several performance indica-
tors on main memory workload can be applied: free memory, swap usage and
active/inactive memory. We choose Available MBytes as a measure of the main
memory workload generated by a WfMS during its execution, i.e. the physi-
cal memory available, computed as the sum of the zeroed, free, and stand-by
memory lists.
Disk Workload. Disk workload monitoring detects how efficiently the appli-
cation reads/writes data from/to the disk, also exploiting the file-system cache.
Considered factors include level of usage, throughput, amount of disk space avail-
able. Other activities arise from disk operations, such as interrupts generated by
the disk system and paging activity, influencing other resources such as processor
or main memory. We consider here the disk transfer/sec, as the rate of read and
write operations on the disk: it depicts how many I/O operations per second are
performed by the guest OS.
Completion Time. This indicator is the average amount of time required to
complete a case, measured as the interval between the start time and the com-
pletion time of process execution. This is a very direct measurement on how
efficiently the WfMS treats the process activity. When running several cases of
the same process in parallel, the average process completion time is the interval
between the earliest start time and the latest end time of all the cases divided by
the number of cases. Consequently, the ability of a WfMS to execute many par-
allel processes simultaneously will be demonstrated and clarified by the average
process completion time.

Observation. Installing several WfMSs on one unique system, to have one

unique physical configuration for the experiments, is a very challenging issue.
We use several, separate virtual machines on VMware, each of them running one
WfMS, only. Consequently, the measurement of the CPU usage is performed on
the host OS; main memory and disk workloads, as well as any other parameter,
are measured on the guest OS. In fact, when we use a virtual machine, we are
required to specify disk and memory usage for it. However, we theoretically
permit the OS of the virtual machine to use as much CPU as possible. That
is to say, we can get quite “comparable” results (“comparable” to the future
measurements) by using either host CPU or CPU of the virtual machine. Thus,
we use the performance monitoring tool in the host CPU instead of the virtual
machine, in order not to put the load of the performance monitoring tool itself
into the virtual machine to influence the WfMS.

5.3 Experiment Design

A minimum of five runs (Table 1) are executed per experiment and per WfMS.
Every run is executed individually, with no overlap, and with no additional
program running on the host computer. We set up the following four different
types of experiments.
Experiment #1. It measures the performance of a WfMS while one single
instance of SP1 is running. This experiment checks the efficiency of the WfMS
performing a simple and typical process.

8 F. Daniel, G. Pozzi, Y. Zhang

Experiment #2. It measures the performance of a WfMS while one single
instance of SP2 is running. This experiment collects data on a WfMS when
executing a relatively heavy, all-inclusive process with parallel sub-branches.

Experiment #3. It performs a load testing on the WfMS by SP2, where every
ten seconds one new instance enters gradually the system till the number of
simultaneously running instances is five. Theoretically, the maximum number of
parallel instances that we should run in this experiment depends on when the
workload generated by the current WfMS saturates. The experiment evaluates
how the system behaves under the simulated typical operating load of SP2.

Experiment #4. It performs a stress test on the WfMS by SP2, where multiple
instances start simultaneously. Experiment #4 can be divided in several parts,
according to the number of total running cases: the total number of simultane-
ously running cases increases progressively, starting from 5 and rising up to 10,
25, 50, 100 or even higher.

Observation. Experiments #3 and #4 differ as instances enter the system
gradually (Experiment #3) or simultaneously (Experiment #4). Experiment
#4 evaluates the performances under an increasingly heavy load, to find the
maximum load of every component and, possibly, the bottleneck.

Physical Configuration. For a fair comparison of the WfMSs, we use the same

physical configuration for every experiment. We have two physical configurations:
the hardware configuration includes type of computer/server, CPU, main mem-
ory, and hard disk; the software configuration includes operating system and
the data gathering software, excluding any other user process. However, some
WfMSs hold distinct OS compatibility requirements: one of the consideredWfMS
requires Windows 2003 Server, while the others run on Windows 2000. Windows
2003 Server will produce an additional load on the computer system, somehow
affecting the performance evaluation: in order to reduce the impact of the OS,
we increase the main memory allocated to balance this additional load.

Sampling Time. The sampling time describes the rate (how often) the moni-
toring system gathers data from the computer systems. A too high sampling rate
introduces an additional and not negligible work load to the computer system
itself. In our approach, we choose to acquire samples every 15 seconds, where
any observation does not last for more than four hours.

5.4 Data Collection

The performance testing of our approach will produce a large amount of data.
We set up some summary tables to collect and analyze results per experiment
(Table 1) or per WfMS (Table 2).

For one experiment of one WfMS, the first row of Table 1 describes the
considered process (Process template), and the number of cases simultaneously
running (# or running instances). Table 1 also depicts all the parameters we col-
lect during every run: the completion time, the CPU workload (%), the available
main memory, the disk transfer/sec. To obtain reliable results, we run the same

Wf Engine Performance Evaluation by a Black-Box Approach 9

experiment several times (one row of Table 1 for every run, identified by Run
Number), computing then the average values for that experiment on that WfMS.

The three resource measurement columns (CPU workload (%), available main
memory, disk transfer/sec) have three sub-columns: maximum, minimum and
average. For resource measurements, maximum and minimum statistics should
be taken into consideration because average does not suffice to analyze the per-
formances if data change dramatically. Average is computed as the mean of all
the sampled data. As an example, Table 1 shows that the second run of Exper-
iment #1 on process SP1 for WfMS#1 has a Completion Time of 72,818 msec,
the Max value for CPU workload (%) is 10.938, its Min value is 0, its Avg value
is 3.125 and so on.

We complete all the runs of Experiment #1 on every WfMS, obtaining 5
instances of Table 1, i.e., one instance per WfMS. We consider the average values
(bottommost row) of any table, and put these average values in Table 2, which
summarizes the average measurements per WfMS.

If the experiment (e.g., Experiment #3 and Experiment #4) requires several
instances running simultaneously, the Total completion time for N simultaneously-
started or gradually-entered cases is the interval between the earliest start time
and the latest end time of all the processes, while Averaged Process completion
time is computed as Total completion time divided by N. Table 3 summarizes the
average measurements of Experiment #4 (25 process instances running simulta-
neously) per WfMS.

Process template - SP1 # of running instances - 1

Run Single Process CPU workload (%) Main mem. (MB) Disk transfer (MB/sec)
Number Completion Time Max Min Avg Max Min Avg Max Min Avg

1 60,656 8.281 0.0 3.182 327 294 308.14 241.195 0.0 37.124
2 72,818 10.938 0.0 3.125 326 293 307.82 209.402 0.0 36.681
3 70,177 9.375 0.0 0.969 327 298 310.71 267.149 0.0 39.836
4 60,103 4.688 0.0 1.133 330 297 312.23 254.382 0.0 38.215
5 64,114 11.208 0.0 2.912 329 299 311.10 173.205 0.0 12.595

average 65,574 8.898 0.0 2.264 327.8 296.2 310.12 229.031 0.0 32.890
Table 1. Measurements for Experiment #1 on WfMS#1. Times are given in msec.

Process template - SP1 # of running instances - 1

WfMS Single Process CPU workload (%) Main mem. (MB) Disk transfer (MB/sec)
Number Completion Time Max Min Avg Max Min Avg Max Min Avg

1 65,574 8.898 0.0 2.264 327.8 296.2 310.12 229.031 0.0 32.890
2 75,457 3.345 0.0 0.661 209.6 182.4 192.596 16.431 0.0 3.043
3 118,928 3.859 0.0 0.358 180.8 175.8 177.857 88.244 0.0 64.231
4 55,755 6.663 0.0 0.812 258.7 256.2 258.236 9.367 0.0 2.478
5 66,650 15.512 0.0 7.643 189.2 109.8 143.972 16.920 0.0 4.098

Table 2. Average measurements for Experiment #1 on every WfMS. Times are given in msec.

10 F. Daniel, G. Pozzi, Y. Zhang

Process template - SP2 # of running instances - 25

WfMS Averaged CPU workload (%) Main mem. (MB) Disk transfer (MB/sec)
Number Completion Time Max Min Avg Max Min Avg Max Min Avg

1 28.09 7.187 0.0 1.872 20.0 1.0 2.930 391.191 0.0 251.293

2 36.12 4.192 0.0 0.718 102.0 1.0 31.982 372.124 0.0 41.029

3 22.91 3.981 0.0 0.419 128.0 119.3 120.984 101.923 0.0 57.192

4 32.39 12.981 0.0 2.311 170.6 160.1 168.123 78.837 0.0 8.712

5 23.81 18.939 0.0 7.938 162.0 107.2 114.090 18.571 0.0 6.751
Table 3. Average measurements for Experiment #4 on every WfMS, with 25 process
instances simultaneously running. Times are given in minutes - the smaller the better.

6 Experiments and Results

To validate our approach, we apply it to fiveWfMSs; for everyWfMS, we perform
the experiments of Section 5.3 and, next, evaluate the obtained results.

6.1 Tool Selection

The WfMSs. In order to obtain a wider scenario of WfMSs, we choose some of
the leading, X-PDL-compliant, and open sourceWfMSs (we name themWfMS#1,
WfMS#2, WfMS#4) and some of the top seller commercial WfMSs (we name
them WfMS#3, WfMS#5). To avoid any conflict among the installed WfMSs,
we install them on five separate virtual machines, run them on one unique PC
to obtain comparable and hardware independent measurements. The virtual
machines run Windows 2000 or Windows 2003 Server, while the host operating
system is Windows XP.
The Virtual Machine. As virtual machine, we choose VMware Server rather
than VMware ESX server, considering the possible migration of the virtual ma-
chine and the potential future extension of our approach.

ESX provides more accurate performance data, as ESX skips the OS level
and takes full control of the hardware, directly. On the other hand, VMware
Server is somehow influenced by the host OS, like Windows or Linux. However,
by taking the direct control of the hardware, ESX has its own file system (VMFS)
which provides faster I/O operations but makes it difficult to migrate the virtual
machine to other system. Additionally, virtual machine files for VMware Server
can be easily stored and transferred to other systems.

Moreover, ESX requires hardware-specific drivers, directly provided by VMware
for that selected hardware. Instead, VMware Server clings to the host OS, which
provides sufficient drivers to use the virtual machine. This feature makes VMware
Server easy to run in a wide range of systems.

Accordingly, we choose VMware Server as our virtual machine environment.
We assign to VMware Server an amount of 512 MBytes of main memory and of 8
GBytes of storage: the host machine has 2 GBytes of main memory, 320 GBytes
of storage and the Windows XP operating system.

Wf Engine Performance Evaluation by a Black-Box Approach 11

The Performance Monitoring Tool. We adopt the perfmon monitoring tool
supported by Windows, collecting data every 15 seconds.

6.2 Experiment Implementation

Given the requirements of Section 3, we implement the autonomy of execution
according to every WfMS’s own strategy: e.g., in WfMS#1 automatic activities
are defined by Java API of J2SE and the GUI structure of the WfMS itself, in
WfMS#2 autonomy is achieved by JPDL and Java API.

As for the guest OS, we use Windows 2000 for WfMS#1, WfMS#2, WfMS#3,
WfMS#4. We have to use Windows 2003 Server for WfMS#5, due to its strict
software requirements (Visual Studio). This requirement influences the overall
measurements, due to the different load on the host OS by the guest OS: to
partially cope with it, we increase the total amount of main memory assigned
to the guest OS to 768 MBytes.

Experiments #3 and #4 require a parallel execution of SP2. The simultane-
ous activation of several process instances generally differs from WfMS to WfMS:
for example, for one WfMS, one process instance can be instantiated via the Web
application, but the Web application does not support multiple instantiations.
In order to instantiate multiple process simultaneously we program a suitable
JUnit code.

We implement the reference processes (SP1 and SP2) on the five WfMSs.
We have five runs (Table 1) per experiment and per WfMS for experiments #1,
#2, and #3; for Experiment #4 we have five runs featuring 10 simultaneous
instances, and five runs featuring 25 simultaneous instances, respectively. The
final discussion will consider the average measurements of every set of five runs.

6.3 Analysis of the Results

A huge amount of experimental data support the final discussion and some
conclusions on the performances from the five WfMSs. We mainly focus on the
process completion time, considered as an overall performance indicator for the
black box approach we adopt. We do not dig into the internal architecture of
the five WfMSs: we rather focus on finding reasons, by combining the external
performance data analysis and the general features of WfMSs.
Experiment #1. Experiment #1 features one single running instance of SP1.
From Figure 3.a, WfMS#4 is the best performer since it requires the minimum
amount of time to complete the test. As SP1 is a very simple process, one
considerable amount of time is spent during process execution in accessing and
updating data in the persistent layer and in loading the program from the logic
layer: to our opinion, the great advantage for WfMS#1 comes from using its
built-in small DBMS, while other WfMSs use a larger-scale, fully fledged DBMS.

On the other hand, WfMS#3 is the least efficient one for this experiment. To
our opinion, this derives from its automatic execution of activities; WfMS#3 re-
quires additional loading time for the activity-relevant executable files deployed

12 F. Daniel, G. Pozzi, Y. Zhang

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5

M
in

0

2

4

6

8

10

12

1 2 3 4 5

M
in

Fig. 3. a: Experiment #1 (left), b: Experiment #2 (right) - average execution time for
the five WfMSs (x-axis). Times (y-axis) are given in minutes - the smaller the better

in its server. On the contrary, the execution scripts fulfilling the same func-
tionality in WfMS#1 and WfMS#4 do not require to be loaded because they
are located in the process definition file using their self-defined API or script
languages.

Experiment #2. As for Experiment #1, Experiment #2 features one single
running instance of the process, which is now SP2. Comparing Figure 3.a and
Figure 3.b, we observe that the efficiency rankings of WfMS#1, WfMS#4, and
WfMS#5 remain unaltered. WfMS#2 and WfMS#3 switch their rankings to
makeWfMS#2 the slowest in executing SP2. Since in SP2 features many routing
tasks and parallel task instances, to our opinion the mechanism of WfMS#2 to
execute multiple simultaneous task instances is not robust.

Experiment #3. Experiment #3 comes with five instances of SP2 entering
the system gradually. The leftmost bars for every WfMS of Figure 4 show that
WfMS#1 is apparently the best performer. We identify the following reasons: a
relatively small engine with respect to WfMS#3 and WfMS#5, so that WfMS#1
runs the automatic program more quickly without invoking several software lay-
ers; the hibernate layer of WfMS#1, which offers an optimized persistent layer
solution to facilitate concurrent accesses to the database. This advantage of
WfMS#1 is not obvious a priori, but shows up when the number of running in-
stances increases within a small range. On the other hand, the process completion
times of all the other WfMSs are almost identical within a small variability. This
comes from the fact that some WfMSs, which perform fairly well under relatively
light load, loose their advantages, while more robust WfMSs gradually catch up
on simultaneous execution. Through our experiment results, we identify three
of the main factors that have a certain impact on this kind of performance as:
the mechanism to execute a small amount of simultaneous process instances; the
strategy of space-time trade-off; and the persistent layer robustness.

By comparing Figures 3.a, 3.b, and the leftmost bars of Figure 4, we observe
that WfMS#1 is the second fastest WfMS in experiments #1 and #2, and it
takes the first place in Experiment #3. Thus, WfMS#1 efficiently executes those

Wf Engine Performance Evaluation by a Black-Box Approach 13

process models, both including and not including parallel work items, under a
relatively light load (from 1 to 5 instances gradually entering the WfMS).

WfMS#4 is the best performer in experiments #1 and #2, but it is the
worst performer in Experiment #3. This could mean that WfMS#4 performs
well with one single running instance, but its performances fall down rapidly as
more instances are executed simultaneously. One reason is that WfMS#4 comes
with a persistent layer which interprets and encapsulates data between the logic
layer and the persistent layer: consequently, additional time is required to access
the database tables when handling simultaneous instances of the same process.

Experiment #4. Experiment #4 comes in two parts, both on SP2: one runs
10 simultaneous instances, the other runs 25. The middle and rightmost bars of
Figure 4 show some reverse trends compared to Figures 3.a, 3.b, and to left bars
of Figure 4. WfMS#3 and WfMS#5 execute comparatively slow in experiments
#1, #2, and #3 (especially WfMS#3), while WfMS#3 and WfMS#5 are the
best performers in Experiment #4, with both 10 and 25 simultaneous instances.

0

5

10

15

20

25

30

35

40

1 2 3 4 5

M
in

Fig. 4. Average execution time for the five WfMSs (x-axis) for: a: Experiment #3
(leftmost bars for every WfMS) - five instances of SP2 gradually enter the WfMS; b:
Experiment #4 (middle bars) - ten instances of SP2 simultaneously enter the WfMS;
c: Experiment #5 (rightmost bars) - twentyfive instances of SP2 simultaneously enter
the WfMS. Times (y-axis) are given in minutes - the smaller the better.

These behaviors reveal that the two WfMSs show some advantages and ro-
bustness when dealing with several simultaneous process instances. For example,
WfMS#3 might have a complex persistent layer, which is not so efficient in the
simple situation, but is robust and stable as the workload increases. Moreover,
some of the good performers under light load circumstances achieve an high ex-

14 F. Daniel, G. Pozzi, Y. Zhang

ecution speed by sacrificing their hardware resources; however, as the workload
increases above a (small) threshold, the usage of the resources saturates, and
no additional resource can be allocated to further enhance the speed. Therefore,
those WfMSs which do not sacrifice their main memory and disk load to obtain
a good execution speed, stand out when the number of simultaneous executions
increases, despite they are relatively slow under light load circumstances.

7 Conclusions and Future Work

This paper describes a performance evaluation of five state-of-the-art Workflow
Management Systems (WfMSs) and the approach we followed in order to com-
pare their performances. We propose a black box approach for the performance
analysis, as this allows us to study the systems as they are perceived by the actual
users of the system, the perspective we are particularly interested in this work.
We focus on the workflow engine, i.e., the core of each WfMS, and identify a set
of requirements, such as autonomy of execution and independence from the host
system, to guarantee a fair performance evaluation. The actual evaluation of the
systems consists then in three main factors: selection of expressive reference pro-
cesses; performance data collection; and experiment evaluation. The reference
processes feature different levels of complexity; the experiments are defined on
the basis of performance testing theory; collected performance indicators include
CPU, main memory and disk workload, as well as process completion time (our
main criterion in this paper).

The conclusions we draw are twofold: (i) under low workload conditions,
both commercial and non-commercial products perform similarly; and (ii) un-
der high workload conditions and with more complex process models, commercial
products perform slightly better than their non-commercial competitors. Inter-
estingly, this finding is in line with the intuitive decision the typical system
designer would take: for less critical and less demanding workloads open-source
or free products can suffice, while for mission-critical and demanding workloads
a good choice is to invest some money in commercial products – not only to have
better product support, but also better performance.

7.1 Future Research Direction

WfMSs are very complex systems and their analysis considers several issues; our
approach requires further improvement to become more robust. Firstly, some
more typical processes and WfMSs must be considered: next, optimization and
fine tuning can significantly modify the behavior of a WfMS – especially for
commercial systems, while insofar we just considered the default configuration.
Further issues concern exception handling, scalability and distributed WfMSs.
Exception Handling. Expected exceptions describe a not negligible semantics
of a business process [9]. Whenever a WfMS does not come with an exception
handling unit, expected exceptions are mapped within the activity graph of the
WfMS [10]. However, such a mapping severely affects the overall performances

Wf Engine Performance Evaluation by a Black-Box Approach 15

of the WfMS: our approach can measure the real incremental workload due to
the pure exception management unit.
Scalability. WfMSs are growing up to accommodate an increasing number of
users, work items, information items, and complex workflow applications. The
architecture of a robust WfMS should be scalable up to thousands and millions
of instances, with no serious degradation of the performances. Therefore, the
total number of simultaneous instances of Experiment #4 is expected to be
much larger, while at the same time, WfMSs should be implemented to smoothly
operate under heavy load, too.
Distributed WfMS. Throughout the paper we assume that every process in-
stance in a WfMS is executing on one single server. Large enterprizes demand
the reliable execution of a wide variety of processes, demanding for a distributed
WfMS [11]. Typically, in a distributed WfMS, the process instance is partitioned
into several sub-processes, which are executed in a distributed environment on
different engines connected via an intranet or even the Internet. Our approach
can be enriched to analyze the performances on distributed WfMSs.

References

1. Reijers, H.A., van der Aalst, W.M.P.: The effectiveness of workflow management
systems - predictions and lessons learned. In: Journal of Information Management.
(2005) 457–471

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14 (2003) 5–51

3. Li, J., Fan, Y., Zhou, M.: Performance modeling and analysis of workflow. IEEE
Transactions on Systems, Man, and Cybernetics, Part A 34 (2004) 229–242

4. Reijers, H.A., Song, M., Jeong, B.: On the performance of workflow processes with
distributed actors: Does place matter? In Alonso, G., Dadam, P., Rosemann, M.,
eds.: BPM. Volume 4714 of Lecture Notes in Computer Science., Springer (2007)
32–47

5. Kim, K.H., Ellis, C.A.: Performance analytic models and analyses for workflow
architectures. Information Systems Frontiers 3 (2001) 339–355

6. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow Evolution. Data Knowl. Eng.
24 (1998) 211–238

7. Kim, K.H., Ahn, H.J.: An ejb-based very large scale workflow system and its
performance measurement. In Fan, W., Wu, Z., 0001, J.Y., eds.: WAIM. Volume
3739 of Lecture Notes in Computer Science., Springer (2005) 526–537

8. Browne, J.C.: A critical overview of computer performance evaluation. In: ICSE.
(1976) 138–145

9. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Trans. Database Syst. 24
(1999) 405–451

10. Casati, F., Pozzi, G.: Modeling Exceptional Behaviors in Commercial Workflow
Management Systems. In: CoopIS, IEEE Computer Society (1999) 127–138

11. Gillmann, M., Weißenfels, J., Weikum, G., Kraiss, A.: Performance assessment
and configuration of enterprise-wide workflow management systems. In Dadam, P.,
Reichert, M., eds.: Enterprise-wide and Cross-enterprise Workflow Management.
Volume 24 of CEUR Workshop Proceedings., CEUR-WS.org (1999) 18–24

