
Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell'informazione

Model-Driven Design of
Context-Aware Web Applications

Tesi di dottorato di:

Florian Daniel

Relatore:
Prof. Stefano Ceri

Correlatrice:
Prof. Maristella Matera

Tutore:
Prof. Letizia Tanca

Coordinatore del programma di dottorato:
Prof. Patrizio Colaneri

2007 - XIX

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 I 20133 � Milano

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell'informazione

Model-Driven Design of
Context-Aware Web Applications

Doctoral Dissertation of:

Florian Daniel

Advisor:
Prof. Stefano Ceri

Coadvisor:
Prof. Maristella Matera

Tutor:
Prof. Letizia Tanca

Supervisor of the Doctoral Program:
Prof. Patrizio Colaneri

2007 - XIX edition

To my family and friends

Riassunto

L'evoluzione dell'Information Technology negli ultimi anni ha visto il
World Wide Web trasformarsi da un media ipertestuale di sola lettura
in una piattaforma matura per l'erogazione di applicazioni multi-canali
e multi-servizi. Si è assistiti quindi all'evoluzione di semplici siti Web
statici in vere e proprie applicazioni Web complesse, anche basate sull'uso
intenso di dati. Per quanto riguarda lo sviluppo di applicazioni per il
Web, questa evoluzione ha fatto nascere la necessità di metodi di sviluppo
appropriati che siano capaci di far fronte alla complessità crescente ed
alle peculiarità speci�che delle nuove generazioni di applicazioni Web. È
il campo del Web Engineering che si propone a fornire risposte a queste
nuove richieste, concentrando gli sforzi sullo sviluppo di metodologie e
soluzioni sistematiche che permettano di raggiungere processi di sviluppo
e�cienti per le applicazioni Web moderne.
Con l'avvento dei nuovi dispositivi mobili, dotati di elevate capacità

di calcolo, il Web riesce a raggiungere un numero sempre più crescente di
utenti e a penetrare sempre di più nella nostra vita quotidiana. Si ma-
nifesta quindi sempre di più il bisogno di migliorare l'esperienza d'uso
dell'utente �nale, per esempio adattando l'applicazione alle sue prefe-
renze o alle caratteristiche del dispositivo in uso. In questo ambito, la
personalizzazione e, in generale, l'adattamento hanno già dimostrato i
loro bene�ci sia per i fornitori di applicazioni sia per i consumatori di
contenuti e/o servizi.
Analogamente, anche la context-awareness e meccanismi adattativi più

�essibili stanno diventando sempre più un fattore vincente per migliorare
sia l'e�cacia sia l'e�cienza delle applicazioni Web di oggi e soprattut-
to di domani. Con �context-awareness� si intende la capacità di tenere
conto di qualsiasi proprietà o informazione che caratterizzi l'interazione
dell'utente con l'applicazione, cioè il contesto, e di reagire a cambiamen-
ti che tali proprietà o informazioni possono manifestare durante l'uso
dell'applicazione. Adattamenti dell'applicazione non sono quindi più ba-
sati sulle sole preferenze dell'utente o sulle caratteristiche del dispositi-
vo, ma più in generale su qualsiasi proprietà che caratterizzi il contesto
dell'interazione. Adattamenti tipici di un'applicazione Web sono, per
esempio, l'adattamento di contenuti o di link ipertestuali, l'esecuzione di

i

operazioni o servizi, o l'adattamento di proprietà di presentazione o di
stile.
In linea con queste considerazioni, questa tesi si concentra sullo svi-

luppo di applicazioni Web context-aware e adattative. La risposta che
questa tesi propone alla s�da posta al mondo del Web Engineering con-
siste in un metodo di sviluppo concettuale e model-driven per la proget-
tazione di funzionalità context-aware e adattative nel Web. Il metodo
proposto si basa sull'estensione di un linguaggio di modellazione concet-
tuale che ha già a�ermato la sua validità, il Web Modeling Language
(WebML), che fornisce anche uno strumento per la generazione automa-
tica del codice dell'applicazione. Il modello di design proposto ri�ette
una concettualizzazione di problemi e soluzioni relativi all'uso di funzioni
context-aware e/o adattative nel dominio del Web e rappresenta una ri-
sposta approfondita ai principali requisiti che caratterizzano lo sviluppo
di applicazioni Web context-aware.
Questa tesi fornisce uno dei primi approcci concettuali alla context-

awareness e all'adattività nel campo del Web Engineering. Più precisa-
mente, questa tesi rappresenta uno dei primi tentativi di allargare l'appli-
cabilità di funzionalità adattative nel Web dai sistemi ipermediali adatta-
tivi ad applicazioni Web context-aware. Mentre i primi tipicamente sono
basati su un pro�lo utente dinamicamente aggiornati in base a osserva-
zioni della navigazione dell'utente, le ultime possono essere basate anche
su un modello di contesto più complesso e funzionalità attive che siano
attivate da questo contesto. Nonostante la ricerca descritta in questa
tesi sia applicata al metodo di sviluppo WebML, la natura generale dei
risultati ottenuti fa sì che questi contribuiscano anche all'avanzamento
del campo del Web Engineering in generale.

La tesi parte con un'introduzione dei concetti di fondo che sono ne-
cessari per la comprensione delle idee sviluppate; si descrivono cioè le
nozioni di context-awareness, adattabilità, adattività e il linguaggio di
modellazione WebML. A partire da un confronto delle soluzioni adatta-
tive proposte in altri metodi di sviluppo per applicazioni Web, la tesi
poi introduce gradualmente i nuovi concetti relativi all'adattività e al-
la context-awareness da applicare a WebML, descrive l'implementazione
del modello esteso nell'ambito dello strumento CASE per lo sviluppo di
applicazioni WebML, WebRatio, e discute un esempio di modellazione.
La tesi poi mostra come i risultati ottenuti sono stati utilizzati in contesti
diversi e come noi prevediamo che l'approccio proposto si possa svilup-
pare in futuro. Il capitolo conclusivo riassume il lavoro presentato, ne
discute i punti di forza e i suoi limiti e anticipa possibili lavori futuri.

ii

Abstract

The evolution of the Information Technology in the last years has seen
the World Wide Web transforming from a read-only hypertext media
into a full-�edged, multi-channel and multi-service application delivery
platform. As a consequence, there has been an evolution from simple,
static Web sites to complex, data-intensive Web applications. As for the
development of such Web applications, the described evolution demands
for appropriate development methods, able to cope with the growing
complexity and the speci�c peculiarities of such new generations of Web
applications. It is the �eld of Web Engineering that addresses this de-
mand and that aims to develop systematic methodologies and solutions
for an e�cient development process for modern Web applications.
Also, with the advent of new and powerful mobile devices, the Web is

addressing a continuously growing number of users and is more and more
pervading our everyday life. In this regard, the need to improve the user's
browsing experience, e.g., by adapting the application to user preferences
and device characteristics, has become manifest. Personalization and
adaptation to preferences and devices have already proved their bene�ts
for both application providers and content or service consumers.
Similarly, context-awareness and more �exible adaptation mechanisms

are increasingly becoming key factors to enhance both the e�ectiveness
and the e�ciency of the Web applications of today and especially of
tomorrow. �Context-awareness� is intended as capability to take into
account whichever properties or information that characterize the inter-
action with the application, i.e. the context, and to react to changes
that such properties or information may experience during the use of
the application. Reactions, i.e. application adaptations, are therefore
not anymore based on the sole user preferences and device characteris-
tics, but more in general on any property that characterizes the context
of the interaction. Typical application adaptations in Web applications
are, for example, the adaptation of contents or hyperlinks, the execu-
tion of operations or services, or the adaptation of presentation or style
properties.
In line with these considerations, this dissertation puts its focus on

the development of context-aware and adaptive Web applications. As

iii

answer to the challenge faced by the Web Engineering �eld, this dis-
sertation proposes a conceptual, model-driven method for the design
of context-awareness and adaptivity in Web applications. The proposed
method is achieved by extending an already established conceptual mod-
eling language for Web application design, i.e. the Web Modeling Lan-
guage (WebML), also providing for the automatic generation of the ap-
plication code. The proposed design model re�ects a conceptualization
of problems and solutions deriving from the use of context-aware and/or
adaptive features in the domain of the Web, thus representing a com-
prehensive instrument covering the main requirements in the design of
context-aware Web applications.
This dissertation provides one of the �rst methodological approaches

to context-awareness and adaptivity in the �eld of Web Engineering.
More precisely, this dissertation is one of the �rst attempts to enlarge the
applicability of adaptive application features in the Web from �adaptive
hypermedia systems� to �context-aware Web applications�. While the
former typically are based on a user model that is dynamically updated
based on the observation of the user's navigation actions, the latter may
be based on a more complex context model and active, context-triggered
application features. Although the research described in this dissertation
is applied to the WebML method, its general nature also contributes to
the advancement of the Web Engineering �eld in general.

The dissertation starts with an introduction to the background knowl-
edge required for the comprehension of the outlined ideas, i.e. context-
awareness, adaptability, adaptivity, and the Web Modeling Language
(WebML). Inspired by a comparison of solutions provided by other Web
modeling methods, the dissertation then gradually introduces the new
concepts related to adaptivity and context-awareness into WebML, de-
scribes the implementation of the extended model in the context of the
WebRatio CASE tool for the design of WebML applications, and dis-
cusses a modeling case study. Then, the dissertation shows how the
achieved results have been exploited in di�erent contexts and how we
envision the work will evolve. The concluding chapter summarizes the
presented work, discusses bene�ts and limitations, and outlines ongoing
and future work.

iv

Acknowledgements

Each time one concludes a period of his/her life, he/she feels the need
to thank all those who contributed to or, however, positively in�uenced
that experience. This dissertation is the result of one such period in my
life, my Ph.D. studies at the Politecnico di Milano, and, hence, I indeed
feel the need to thank a few people who I believe did contribute to make
me feel comfortable during this experience.
There are for example Maristella Matera and Stefano Ceri, who are

the actual reason for me sitting here today and writing about my Ph.D.
If it was not for them, I probably wouldn't even have thought about
doing a Ph.D. But they both insisted to the right degree, so I �nally
yielded to their idea and started this experience I now wouldn't like to
miss anymore. Thank you for your advise and the trust you had in my
work.
I would like to thank Giuseppe Pozzi for accompanying me in my �rst

teaching experience and for the many interesting discussions during our
lunches together.
I would like to thank Fabio Casati for hosting me as visiting researcher

in HP Labs in Palo Alto, California. Although not directly related with
this dissertation, the visit was an important part of my overall Ph.D.
experience.
Then, there is some other people I would like to thank for their friend-

ship: Federico Facca, Francesca Rizzo, Enrico Mussi, Pierluigi Plebani,
Cinzia Cappiello, Stefano Moda�eri, Danilo Ardagna, Marco Comuzzi,
and Giovanni To�etti Carughi. Federico and Francesca, it was always
nice to work with you, and, Federico, it was great having you as o�ce
mate. Enrico, thanks for su�ering so many times with me on the train
when it was late, as usual. Gigi, thanks for all the fun. Cinzia, the next
Stramilano is already waiting for us. Stefano, I'm sure we'll have lots
of further discussions on our common hobby, beer brewing. Danilo and
Marco, thanks for the amusing lunches together. Giovanni, thanks for
the fun and all the useful discussions.
Of course, then there is my family, my parents and my brother, who

always supported me in my decisions and believed in me. Thank you.

v

Also, I would like to thank Manu and her family for hosting me during
the last years.
Finally, I would like to thank all the students who worked with me

during this period and who actively contributed to the outcome of this
dissertation and all the people I unwittingly forgot to mention here, but
anyway contributed in some way to this dissertation.

Florian Daniel

vi

Contents

Riassunto i

Abstract iii

Contents vii

1 Introduction 1

1.1 Motivating Adaptivity in the Web 3
1.1.1 Use of Adaptivity 3
1.1.2 Adaptivity in the Web 5

1.2 Focus of the Dissertation 6
1.3 Objectives . 9
1.4 De�nitions . 10
1.5 Structure of the Dissertation 12

2 Context-Awareness and the Web 15

2.1 Context-Awareness and its Origins 15
2.1.1 Two Historical Examples of Context-Aware Appli-

cations . 17
2.2 Using and Modeling Context 20

2.2.1 Why is Context Di�cult to Use? 20
2.2.2 Physical and Logical Context 22
2.2.3 Context Modeling Approaches 24

2.3 Context and Web Applications 30
2.3.1 The Origins of Context-Awareness in the Web . . . 31
2.3.2 Examples of Context-Aware or Adaptive Web Ap-

plications . 33
2.4 Model-Driven Design of Context-Aware or Adaptive Web

Applications . 34
2.4.1 Hera . 35
2.4.2 OOHDM . 35
2.4.3 OO-H . 37
2.4.4 WSDM . 39

vii

Contents

2.4.5 UWE . 43
2.4.6 OntoWebber . 45
2.4.7 SiteLang . 47
2.4.8 Comparison of Approaches 48

2.5 Discussion . 52

3 The Web Modeling Language (WebML) 55

3.1 Introduction . 55
3.2 WebML Design Overview 57
3.3 Data Model . 58

3.3.1 Entities . 59
3.3.2 Attributes . 59
3.3.3 Identi�cation and Primary Key 60
3.3.4 Generalization Hierarchies 60
3.3.5 Relationships . 60

3.4 Hypertext Model . 61
3.4.1 Pages . 61
3.4.2 Hypertext organization 62
3.4.3 Units . 64
3.4.4 Links . 69
3.4.5 Global parameters 74

3.5 Content Management Model 75
3.5.1 Prede�ned Operations 76
3.5.2 Access Control and Mail Operations 80
3.5.3 Generic Operations 83

3.6 Automatic Code Generation 83

4 Modeling Context-Aware Web Applications 87

4.1 A Conceptual View over Context-Aware Web Applications 87
4.2 Modeling Context for Adaptivity 93

4.2.1 Characterizing Context Data 94
4.2.2 Modeling User, System and Environment Data . . 95
4.2.3 Example Data Schema for Adaptation in WebML . 96

4.3 Modeling Adaptive Hypertexts 98
4.3.1 Context-Aware Pages 98
4.3.2 Context Clouds . 98
4.3.3 Structuring Context-Aware Hypertexts 100
4.3.4 Enabling Adaptivity: Context Monitoring 101
4.3.5 Adaptivity Policies 103
4.3.6 Specifying Adaptivity Actions 104

4.4 Computation of Adaptive Hypertexts 108
4.4.1 Speci�city Rules 109

viii

Contents

4.4.2 Context-Aware Page Computations 112
4.5 Discussion . 115

5 Implementing Adaptivity and Context-Awareness 117

5.1 Pre-Processing of Page Requests 117
5.2 Implementing Context-Awareness in WebRatio 119

5.2.1 The Architecture of WebML/WebRatio Applications119
5.2.2 Extending the WebRatio CASE Tool 121
5.2.3 Implementation . 122

5.3 Enabling Background Context Monitoring 123
5.3.1 Context Monitor 124
5.3.2 Page Context Parameters 126
5.3.3 Context Digest . 126
5.3.4 Context Monitor Implementation 128

5.4 Discussion . 130

6 Case Study 133

6.1 Conceptual Design . 133
6.1.1 Data Modeling . 134
6.1.2 Hypertext Modeling 136

6.2 Implementation and Deployment 142
6.2.1 Background Context Monitoring 142
6.2.2 Automatic Code Generation 146

6.3 Discussion . 146

7 Exploitation and Evolution of Results 149

7.1 Multichannel and/or Multimodal Adaptive Information
Systems . 150
7.1.1 Adaptivity for the Presentation Layer 151
7.1.2 Multichannel Delivery 152
7.1.3 Multimodal Deployment of Adaptive Applications 155
7.1.4 Discussion . 157

7.2 Capturing Complex User Behaviors: the Web Behavior
Model . 158
7.2.1 The Web Behavior Model 159
7.2.2 WBM and WebML 162
7.2.3 Reacting to User Behaviors 168
7.2.4 The E-Learning Case Study 170
7.2.5 System Architecture 172
7.2.6 Discussion . 175

7.3 Enabling Runtime Adaptivity Management 176
7.3.1 Enabling Dynamic Adaptivity Management 177

ix

Contents

7.3.2 Case Study . 183
7.3.3 Implementation . 188
7.3.4 Discussion . 189

7.4 Conclusion and Future Works 189

8 Conclusion 191
8.1 Results and Contributions 191
8.2 Limitations . 193
8.3 Ongoing and Future Work 194

Bibliography 197

Index 209

x

1 Introduction

Current advances in communication and network technologies are chang-
ing the way people interact with Web applications. They provide users
with di�erent types of mobile devices for accessing � at any time, from
anywhere, and with any media � services and contents customized to the
users' preferences and usage environments. More and more users them-
selves ask for services and applications highly tailored to their special
requirements and, especially due to the increasing a�ordability of new
and powerful mobile communication devices, they also begin to appreci-
ate the availability of ubiquitous access.
In the context of modern software systems, such as multi-channel Web

applications, adaptivity is increasingly gaining momentum. Runtime
adaptivity provides highly �exible and responsive means for the cus-
tomization of contents and services with respect to the user's identity.
Varying device characteristics in mobile and multi-channel computing en-
vironments can be adequately taken into account and leveraged by means
of adaptive software designs, whose development is facilitated by the
availability of standardized communication protocols (e.g. HTTP) and
markup languages (e.g. HTML or WML), supported by most of today's
mobile devices. Consequently, multi-channel deployment does not any-
more require completely di�erent, parallel design approaches and rather
becomes a presentation1 issue on top of uni�ed engineering solutions.
Then, in addition to user pro�le and device characteristics, adaptivity
provides a way to also take into account a wide range of other properties
describing the interaction between a user and a software system, thus
paving the way for context-awareness and reactive behaviors.
Context-awareness is often seen as recently emerged research �eld in

information technology and in particular in the domain of the Web. From
the perspective of application front-end development it can however be
interpreted as natural evolution of personalization2 and adaptivity, ad-

1In this dissertation we use the term presentation with the meaning of �Web user
interface�.

2With personalization in this dissertation we intend the adaptation of the application
to the user's identity and to explicitly provided preferences over contents and/or
services.

1

1 Introduction

dressing not only the user's identity and preferences, but also his/her
usage environment. Personalization has already demonstrated its bene-
�ts for both users and content providers and has been commonly recog-
nized as fundamental factor for augmenting the e�ciency of the overall
communication of contents. Context-awareness goes one step further
in the same direction, aiming at enhancing the application's usefulness
by combining personalization and adaptivity based on an application-
speci�c set of properties (the context) that may a�ect the execution of
the application.

Parallel to the evolution of the user's expectations, software systems
are continuously getting more complex and di�cult to maintain, partly
also due to the previous, novel application requirements. E�cient ab-
straction mechanisms and design processes, such as those provided by
visual, model-driven design methods, are thus becoming crucial. In this
regard, the focus on essential design issues and the ease of reuse in model-
driven design methods may signi�cantly accelerate the overall design pro-
cess. Starting from application models, code generation techniques may
also provide for the automatic generation of application code or tem-
plates, thus assuring the fast production of consistent and high quality
implementations. In addition, the high level of abstraction that charac-
terizes model-driven design approaches and the ease of manipulation of
high-level modeling constructs �nally alleviate maintenance and evolu-
tion.

Given to such premises, this dissertation investigates the potential of
adaptive or context-aware features in the design of Web applications
and proposes a conceptual modeling approach addressing both adap-
tation and context-awareness. While adaptivity in general has been
considered in the domain of the Web before (mainly in the context of
adaptive hypermedia and e-learning systems), a review of the Web En-
gineering literature shows that context-awareness is an idea that has
not yet been adequately addressed in this area. In this dissertation,
both ideas are handled in a holistic fashion, and the resulting concepts
yield an extension of the Web Modeling Language (WebML [1]), an al-
ready established model-based language for the design of data-intensive
Web applications, accompanied by a development method and a CASE
(Computer Aided Software Engineering) tool for automatic code gener-
ation [2]. Although the described conceptualization is formalized in the
WebML design method, the introduced concepts have however a general
validity and suggest a design methodology that may apply as well to
other modeling methods.

Most conventional adaptive hypermedia systems mainly address the

2

1.1 Motivating Adaptivity in the Web

problem of adapting the results of user-generated requests. Di�erently
from such approaches, we also stress the importance of user-independent,
context-triggered adaptation actions (i.e. the decision to apply an adap-
tation may derive from the user's interactions, but it is taken autonomous-
ly by the context). This aspect leads us to model context as a ��rst class�
actor operating independently from users on the same hypertext the
users navigate and represents a distinguishing feature of the presented
work. This can be seen as a key to the interpretation of this dissertation
with respect to other Web modeling methods.

1.1 Motivating Adaptivity in the Web

Adaptivity in general presents several potentialities of use, whose realiza-
tion in the Web is nowadays more and more facilitated by the evolution
of the respective Web technologies.

1.1.1 Use of Adaptivity

Active application features, such as context-aware or adaptive behav-
iors, may augment the e�ectiveness of interactions and the e�ciency of
resource consumption in all those situations where services and contents
o�ered by an application strongly depend on environmental situations,
users' abilities or disabilities, or the state or health of a software sys-
tem. For example, typical applications demanding for active features
and adaptivity are:

• Adaptive personalization. User pro�le attributes for personaliza-
tion purposes may present di�erent levels of variability in time.
Pro�le properties may be static in nature (e.g. the name of a user),
slowly changing (e.g. pro�le data derived from a user's browsing
behavior) or even fast changing (e.g. the pulse frequency of a
patient). Adaptive personalization mechanisms that take into ac-
count such pro�le peculiarities could allow systems to go beyond
the common and static tailoring or services and contents.

• Interaction-enabling functionalities. Context could as well consider
handicaps or physical disabilities of users, such as vision problems,
blindness or paralysis, to adapt the application accordingly and to
provide alternative and better suited interaction mechanisms and
modalities. Adaptivity could thus provide functionalities enabling
handicapped users to properly interact with applications, thus fos-
tering the accessibility of applications.

3

1 Introduction

• E�ective content delivery. In general, whatever context data may
be leveraged to provide appropriate contents and program features
at the right time, priority, and emphasis. For example, speci�cally
targeted special o�ers could be advertised and directed more e�ec-
tively, presentation properties could be adapted to varying luminos-
ity conditions for better readability, etc. Adaptive or context-aware
extensions could thus enhance the overall e�ectiveness of applica-
tions by adapting individual application elements to varying users
or usages of the application.

• Delivery of context as content. Applications may depend intrin-
sically and in a structural manner from context data. Location-
aware applications, such as city map services or navigation systems,
treat position data as core contents of the application and adapt
them, supported by proper localization mechanisms. To such kind
of applications, the use of context data represents a functional re-
quirement, rather than an optional feature.

• Exception handling. Critical events during the execution of a soft-
ware system may raise exceptions and require prompt reactions be-
ing performed. Process-based or work�ow-driven applications, for
example, represent a typical class of applications that constantly
have to cope with exceptional situations in order to guarantee the
consistent termination of a running process. Here, adaptive or
context-aware mechanisms could be leveraged to capture respec-
tive application events and to enact the pieces of application logic
that are necessary to handle the exceptional situation.

• Production and control systems. Critical production or control sys-
tems may require, for example, highly speci�c sensing and alert-
ing mechanisms to prevent production losses or product quality
degradations. Context-awareness could facilitate the timeliness of
reactions and the e�cient handling of dangerous situations, but
also proactive maintenance approaches, such as those adopted in
a steadily growing number of hardware/software systems, may be
achieved.

• Self-healing software systems. Autonomic or self-healing software
systems elevate the idea of proactive maintenance from hardware to
software systems and aim at the creation of computing systems that
are able to con�gure, tune, and even repair themselves. Proactive
and adaptive capabilities in this context are an essential feature.

4

1.1 Motivating Adaptivity in the Web

1.1.2 Adaptivity in the Web

Due to the current lack of appropriate technologies, concepts and Web
design support, most of the previous application scenarios have actually
not been considered suited to the domain of the Web or, in general, to
be implemented with standard Web technologies.
Some recent initiatives to empower Web technologies, however, seem

to be promising for extending the previous scenarios also to the Web.
Traditional Web technologies (both hardware and software) are indeed
continuously being evolved and extended, and considerable e�orts are
being invested to solve existing inadequacies. For example, think about
the recent research e�orts in the �eld of Web services that have produced
numerous extensions (the often so-called WS-* speci�cations) to the orig-
inal version of the service-oriented architecture and its communication
protocols.
The e�ect of the ongoing research and evolution is that support for

a multitude of non-functional requirements is being developed, whose
initially inadequate coverage prevented the adoption of Web technologies
in the above domains. For example:

• Communication protocols are becoming more and more reliable,
thus providing room for the deployment on the Web of complex
and critical applications, such as those related to production and
control systems. The reliability of communication protocols has in
fact been considerably enhanced along both the software and the
hardware dimension. The introduction of reliable messaging tech-
niques (e.g. digital certi�cates or the WS-Reliability speci�cation)
provides for trustworthy communications on top of standard Web
protocols, such as HTTP or SOAP. The success of �ber optics, as
an example of hardware evolution, has allowed the Ethernet proto-
col (typically used in the Web) even to enter industrial production
environments, where the high electromagnetic interferences that
may exist in the presence of high-voltage machineries practically
prohibited the use of conventional, unreliable network technologies.

• On the other hand, the introduction of novel networking technolo-
gies, such as ADSL (Asynchronous Digital Subscriber Line) or �ber
optics for home and o�ce users and WiFi and 3rd generation mo-
bile telephony technologies (e.g. UMTS, GPRS, EDGE) for mobile
users, facilitates the continuously growing availability of Web ap-
plications or services.

• This evolution �nally results into a higher technology acceptance

5

1 Introduction

by end users and a higher pervasiveness of a great variety of ap-
plications and services. Such a widening of the audience, however,
demands for e�cient methods to address the variability of user
characteristics and contexts of use.

• In addition, Web applications have already proved their �exible
scalability (it su�ces to think about certain portal applications
that serve millions of users every day), facilitated maintainability
and high cost e�ciency. These three properties promote the Web
as a cost-justifying and e�cient deployment platform for a multi-
tude of application domains.

Based on this perspective as well as on our personal assessment, we
believe that the recent technology advances, complemented with ap-
propriate development methods for Web applications, provide an ad-
equate framework to enable the design of adaptive or context-aware
Web applications. Technological advances indeed facilitate the devel-
opment of adaptive Web applications, however, in general adaptivity
needs to be considered more a development issue, rather than a mere
functional/technological problem. In line with these considerations, this
dissertation aims to provide a solid development method and a modeling
instrument for context-aware Web applications, and to show the applica-
bility of Web technologies to the aforementioned (and other) application
domains.

1.2 Focus of the Dissertation

Instead of concentrating too much on technological issues, this disser-
tation, hence, aims to develop context-awareness for Web applications
from a conceptual point of view � however, always with implementability
in mind. For this purpose, in this work we extend the well known con-
ceptual modeling language WebML (Web Modeling Language [1]) with a
new modeling logic and with new design primitives. The extension of the
modeling language also entails an extension of the overall design method
of WebML applications, which allows us to contextualize the focus of
this dissertation, as graphically summarized in Figure 1.1.
The WebML approach to the development of Web applications consists

of di�erent phases. Inspired by Boehm's spiral model [3] and in line with
modern methods for Web and software applications development [4, 5, 6],
the WebML process is applied in an iterative and incremental manner,
in which the various phases are repeated and re�ned until results meet
the application requirements. Such an iterative and incremental life cycle

6

1.2 Focus of the Dissertation

Architecture Design
Software Architecture

Sensing Infrastructure

Data Design

Data Design

Testing and Evaluation

Maintenance and Evolution

Business Requirements

Requirements Specification

Data Design
Application Data

Context Model

Hypertext Design
Non-adaptive

Adaptive

Implementation

Figure 1.1: Phases in the WebML development process for context-aware
Web applications. The steps addressed in this work are high-
lighted in white.

appears particularly appropriate for the Web context, where applications
must be deployed quickly (in �Internet time�) and requirements are likely
to change during development.

The introduction of context-awareness and/or adaptivity into WebML
needs to take into account new development tasks deriving from the use
of context in the application design (the ones highlighted in white in
Figure 1.1). Out of the entire process, the �upper� phases of analysis
and conceptual modeling (i.e. data and hypertext design) are those that
are most in�uenced by the adoption of a conceptual model. The more
implementation-related phases can be automated to a high degree in the
case of standard WebML applications, while, due to the peculiarities of
each context-aware system (e.g. of the sensing infrastructure), in the
case of context-aware Web applications the same degree of automation
cannot be supported anymore, in general.

The most salient aspects of the extended development process can be
summarized as follows:

7

1 Introduction

1. Requirements Speci�cation. Requirements speci�cation focuses on
collecting information about the application domain and the ex-
pected functions and on specifying them through easy-to-under-
stand descriptions. The input to this activity is the set of business
requirements that motivate the application development and, in
case of context-aware applications, the set of desired adaptive be-
haviors with their triggering context properties. This task is not
further elaborated in this dissertation.

2. Data Design. During this phase, the data expert organizes the
main information objects identi�ed during requirements speci�ca-
tion into a comprehensive and coherent conceptual data model.
Data modeling is a well-established discipline.

However, data modeling for context-aware Web applications has
a special �avor, due to the role assigned to the context model,
and it is therefore one of the cornerstones of this work. In the
context of WebML, explicitly representing context properties in the
application's data source allows designers to express many useful
adaptation behaviors declaratively in the hypertext speci�cation.

3. Hypertext Design. Hypertext design is the activity that transforms
the functional requirements identi�ed during requirements speci-
�cation into one or more site views (hypertext structures), em-
bodying the needed information delivery and data manipulation
services. Hypertext design operates at the conceptual level and
exploits the WebML hypertext model that lets the hypertext ar-
chitect specify how units, de�ned over data objects, are composed
into pages, and how units and pages are connected by links to form
hypertexts.

According to the model-driven paradigm of WebML, also context-
awareness and adaptivity can be modeled visually, instead of being
buried in the source code of the application. This, however, re-
quires the introduction of new modeling primitives and concepts,
which are the main focus of the work presented in this dissertation.

4. Architecture Design. Architecture design concentrates on the def-
initions of the hardware, network, and software components by
means of which the application delivers its services to the users.
The inputs of architecture design are the non-functional require-
ments and constraints identi�ed during the requirements speci�-
cation, among them also requirements deriving from the use of
context.

8

1.3 Objectives

More precisely, in case of context-aware applications, architecture
design also consists of the design of a context sensing infrastructure,
tailored to the application requirements. Although we will discuss
an example sensing infrastructure in our case study, context sensing
is out of the scope of this work and therefore not further elaborated.

5. Implementation. Implementation is the activity of producing the
software modules necessary to transform the data and hypertext
design into an application running on top of the selected architec-
ture. Hence, the inputs of this phase are the data model and the
well formalized WebML schemas, one for each site view.

The implementation (and architecture design) of WebML appli-
cations is largely assisted by the WebRatio development environ-
ment [2]. Starting from the extensions applied to the modeling
language, we will show how the WebRatio environment can be
extended to cope with the new requirements introduced into the
implementation process by the use of context-aware application
features. More precisely, we will discuss the development of two
di�erent prototype implementations: the �rst prototype shows how
a subset of the context-aware features introduced in this disserta-
tion can be achieved without touching the WebRatio environment;
the second prototype, instead, shows how the new features can be
implemented inside the WebRatio modeling tool. The two proto-
types thus serve to prove the overall viability of context-awareness
in Web applications and to show the implementability of the model-
driven approach.

6. Testing & Evaluation and Maintenance & Evolution. Testing and
evaluation is the activity of verifying the conformance of the imple-
mented application to the functional and non-functional require-
ments, while maintenance and evolution represents the process that
a�ects the application after the application has been deployed.
These two phases are not further deepened in this dissertation.

1.3 Objectives

In line with the previous considerations, the objectives of the research
described in this dissertation can be summarized as follows:

• Promote the use of Web applications to satisfy novel application
requirements, i.e. adaptivity and context-awareness, thus widening

9

1 Introduction

the applicability of Web applications and paving the road for future
evolutions of the Web paradigm.

• Demonstrate the feasibility of context-awareness in Web applica-
tions that leverage existing technologies (both hardware and soft-
ware) through a prototype application.

• Study domain-speci�c peculiarities and functional and non-func-
tional requirements of context-awareness and adaptivity in Web
applications.

• Provide meaningful abstractions and e�cient development support
for the design of applications that adapt to the context of use.

• Develop a model-driven approach to the design of context-aware
Web applications as extension of the conceptual modeling method
WebML, also enabling the automatic generation of the application
code.

• Show how the extensibility of the proposed approach can be suc-
cessfully leveraged to address some advanced adaptivity features.

• Discuss bene�ts and limits of the particular solution proposed in
light of related works.

1.4 De�nitions

Throughout this dissertation we will make use of a set of recurrent terms
to discuss related work and to describe novel concepts. Newly intro-
duced terms or names are always de�ned at their �rst appearance. In
this section we however provide those de�nitions which we regard as
fundamental for the comprehension of the presented work.
We start with the de�nition of context and adaptation, which are two

of the main concepts this dissertation concentrates on. Our de�nitions
have been inspired by the work of Dey and Abowd [7], further discussed
in Section 2.1:

De�nition 1 (Context) Context is any information that can be used
to characterize the interaction of a user with a software system (and
vice-versa), as well as the environment where such interaction occurs.

Note that this de�nition does not take into account only interaction
and environment properties, but it also includes properties of the user
and the software system themselves.

10

1.4 De�nitions

De�nition 2 (Adaptation) Adaptation of an application to a particu-
lar context is the activity or process that the application needs to perform
in order to satisfy the requirements posed by the context.

According to this de�nition, adaptation to context can be achieved
in a variety of forms. In the context of software systems in the Web,
adaptation typically implies the re-computation of a page, the execution
of software handlers, the updating of data, etc.
Starting from the previous de�nitions, we are now able to de�ne the

concept of context-aware application:

De�nition 3 (Context-Aware Application) A context-aware appli-
cation is an application that uses context to deliver services or contents,
that adapts to context, or that does both.

Context-awareness in software applications therefore implies the capa-
bility to use context data to deliver contents, or to perform operations
and/or to autonomously take decisions or enact operations. In this work
we particularly stress the independent nature of context, which may
change and evolve completely independently from the user's interaction
with the software system. To underline this peculiarity, in this disserta-
tion we will use the term active context-awareness to better convey the
fact that context-awareness � at least in our interpretation � demands for
active mechanisms that are capable of performing adaptations indepen-
dently from the user interaction (ideally by means of a push mechanism).
Current adaptive Web systems, for instance, typically adapt pages only
in response to user-initiated page requests (pull mechanism).

De�nition 4 (Active Context-Awareness) Active context-awareness
means that adaptations to new context conditions are performed automat-
ically, at any time during application execution, and independently from
possible user interactions.

User-independent, automatic adaptations (i.e. active context-aware-
ness) requires the application to continuously observe the state of con-
text data, in order to be able to decide whether adaptations are to be
performed or not. In this dissertation, we will call this activity con-
text monitoring , to emphasize the di�erence of this approach from the
one followed by adaptive hypermedia systems. In fact, in adaptive hy-
permedia systems there is typically no context monitoring, as the only
observable behavior is the browsing of the user.
However, in addition to the previous de�nitions, in adaptive hyperme-

dia systems two further adaptation-speci�c terms have been commonly

11

1 Introduction

accepted [8]: adaptability and adaptivity (as well as their adjective coun-
terparts adaptable and adaptive, used to characterize applications). Due
to the introduction of context as adaptation trigger, in this work we
provide two slightly extended de�nitions3:

De�nition 5 (Adaptability) Adaptability is the ability to adapt an ap-
plication to device capabilities and/or user preferences prior to the exe-
cution of the application.

De�nition 6 (Adaptivity) Adaptivity is the ability of an application
to adapt to varying context conditions during the execution of the appli-
cation.

As such, adaptability is rather a (design time) property to be asso-
ciated to the development method or tools that are used to design the
application and to the technologies that are adopted to implement the ap-
plication, and less to the application itself. Adaptivity, instead, refers to
the application's capability to adapt during application execution (run-
time), thus after the deployment of the application. Accordingly, adapt-
ability is considered to be static, i.e. a�ected application properties are
�xed at design/deployment time, while adaptivity is dynamic, i.e. af-
fected application properties may change even after the deployment of
the application. Dynamic adaptivity is typically harder to design than
static adaptability, because of its tight integration into the application's
functionality speci�cation.

1.5 Structure of the Dissertation

This dissertation is structured as follows:
Chapter 2 introduces the reader to context-awareness and to context

modeling, starting from a historical perspective. The chapter then pro-
vides another historical perspective, this time over Web applications and
their evolution since the emergence of the World Wide Web. The two
aspects, i.e. context-awareness and Web applications, are then joined by
discussing how current conceptual modeling approaches for the design
of Web applications support context-awareness and/or adaptivity in the
design process.

3In particular, our de�nition of adaptivity is more general compared to the one given
in [8], since adaptivity is not anymore triggered by the sole browsing behavior of
a user stored in a user model, but instead by any context property stored in a
context model.

12

1.5 Structure of the Dissertation

Given the conceptual modeling approach followed throughout this dis-
sertation, Chapter 3 introduces the Web Modeling Language (WebML),
which will be used and extended to exemplify the new ideas to be ap-
plied to the domain of the Web. The chapter describes the basic modeling
primitives and the WebML design process, so as to allow the reader to
get familiar with the model-speci�c logic and to facilitate the compre-
hension of the following discussion. The reader already familiar with
WebML can easily skip this chapter.
After the introduction of WebML, Chapter 4 applies the ideas from the

�elds of context-awareness and adaptivity to the WebML language. This
chapter results into an extension of the language that enables Web de-
velopers to tackle generic, adaptive application features at a conceptual
level, also paving the road for the automatic generation of the application
code. This chapter is the core contribution of this dissertation, around
which the remaining chapters are built.
Chapter 5, for example, discusses the automatic code generation pro-

cess for adaptive Web applications, starting from the extended WebML
schemas. The chapter provides some insights into the development of
two prototypes that have been developed in the context of the Italian re-
search project MAIS (Multichannel Adaptive Information Systems) and
�nally have led to the extension of the WebRatio CASE tool for the
computer-assisted development of WebML applications. The chapter
also describes the development of a proper client-server module to be
added to adaptive Web pages, so as to enable active context-monitoring
in the background.
Chapter 6 exempli�es some modeling peculiarities by describing a

context-aware demonstration application providing location-aware infor-
mation inside the Politecnico university campus. Special focus is put
to the di�erent modeling requirements of volatile and persistent context
parameters in the extended WebML hypertext schemas.
Chapter 7 describes three correlated research works that have been

developed starting from the context-aware extension of the WebML lan-
guage described in the previous chapters. More precisely, �rst the chap-
ter describes how the results achieved so far have been exploited in the
context of the MAIS project in collaboration with other research groups.
Then, the chapter describes a possible extension of the described ap-
proach that enables the capturing of composite user events (i.e. entire
browsing behaviors) to trigger adaptivity rules. Finally, the chapter pro-
vides insight into a recent extension toward the runtime management of
adaptivity features by means of event-condition-action rules.
Finally, in Chapter 8 we draw our conclusions of the dissertation,

discuss the results obtained in the context of the Ph.D. program that

13

1 Introduction

have led to this dissertation, and provide an outlook over ongoing and
future work.

14

2 Context-Awareness and the
Web

Since its emergence in the early nineties, where the World Wide Web
imposed itself in the public as facility to browse documents and data in
form of textual, static resources (the hypertexts), the Web has been evolv-
ing continuously. The use of additional media types has transformed
hypertext into hypermedia, and the traditional one-way consumption
paradigm has evolved to a full-�edged, two-way interaction. Context-
awareness, on the other hand, has mostly been considered a separated
research �eld. In fact, initially context-awareness was studied by people
that typically were di�erent from the people that worked on hypertext
and Web technologies, i.e. there were separate research communities.
Only recently, context-awareness, adaptivity, and personalization have
been applied also to the domain of the Web. An analysis of the lat-
est works published at international conferences like Context1, Adaptive
Hypermedia2, or User Modeling3, which initially were distinguished by
di�erent research focuses, con�rms this trend.
In this chapter we discuss context-awareness and adaptive Web ap-

plications and show to what extent the two areas have merged so far.
Special focus is put on conceptual modeling and model-driven approaches
for the design of Web applications.

2.1 Context-Awareness and its Origins

In 1991 Weiser [9] published his revolutionary vision of ergonomic soft-
ware and computer systems and stressed the term ubiquitous computing ,
which immediately became a commonly acknowledged idea and research
�eld. Still today, researchers in the �eld of ubiquitous computing invest
considerable e�orts into the development of novel technologies and inter-
action paradigms with the aim of realizing Weiser's vision of computing

1http://www.context-05.org
2http://www.ah2006.org
3http://gate.ac.uk/conferences/um2005

15

http://www.context-05.org
http://www.ah2006.org
http://gate.ac.uk/conferences/um2005

2 Context-Awareness and the Web

systems and technologies that are no longer perceived by the user:

�The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until
they are indistinguishable from it.� [9]

This relatively vague idea did not yet provide any speci�c solution,
nor did there exist any technologies that could meet the requirements of
the idea, but exactly this reason inspired a huge number of researchers.
Very likely, also the research in the �eld of context-awareness, emerg-
ing in the early nineties, was inspired by Weiser's vision. Indeed, in
order for a system to become part of the natural human environment,
taking into account the context of the interaction and the execution en-
vironment seems to be the most basic, mandatory requirement posed
to the system. The system, hence, needs to adapt to the user and to
the environment � and not vice versa �, and this adaptation needs to
be performed in a manner that is as transparent as possible to the user.
Context-awareness thus seems to be one of the main ingredients to realize
the idea of ubiquitous computing.
Schilit and Theimer [10] were the �rst to introduce the term context-

aware in 1994. They referred to context as to location, identities of
nearby people or objects, and changes to those people or objects. Dey
and Abowd [7] describe context as the user's emotional state, focus of
attention, location, and orientation, as well as the date and time of the
interaction between the user and the system, and the objects and people
in the user's surroundings.
These two interpretations of context provide a descriptive de�nition,

which makes use of speci�c examples to describe the nature of context.
Other de�nitions make use of synonyms to depict the concept of con-
text; representative synonyms are for example: environment, situation,
or surroundings. In [11] Dey and Abowd try to provide an operational
de�nition that focuses on the main aspects of context: context refers to
where you are, who you are with, and what resources are nearby.
As these attempts to de�ne context show, due to the high dependency

of context from the actual purpose of the application and from the spe-
ci�c application domain or user community, it is very di�cult � if not
impossible � to provide a universal de�nition of context that applies
to all kinds of applications. Summarizing, we can say that context in
context-aware applications describes three interrelated environments:

• User environment : it provides context properties that are related
to the individual user of the system, e.g. identity, location, and
social situation.

16

2.1 Context-Awareness and its Origins

• Physical environment : it provides context properties that describe
the space or surroundings in which the user is located, e.g. lighting
condition or noise level.

• Computing environment : it provides context properties that de-
scribe the state or health of the resources (both hardware and
software) that compose the context-aware system, e.g. number
of available processors, devices accessible for user input and visu-
alization, network capacity, or connectivity.

It is worth noting that neither the previous de�nitions nor our def-
inition in Section 1.4 imply any restriction on how context data are
acquired. Context data acquisition may occur in two distinct fashions,
depending on the level of user involvement: implicit or explicit. Implicit
acquisition means that context data is acquired without the intervention
or (sometimes) knowledge of the user; this is for example the case of ap-
plications that automatically acquire location data via a GPS device or
that dynamically compute user pro�le data based on the user's browsing
behavior. Explicit acquisition, on the other hand, implies the involve-
ment of the user in the acquisition process; this is mainly the case of
applications that require the user to register and �ll a proper user pro�le
with personal data.
Independently from how context data are acquired, context data in

context-aware applications is leveraged in two main fashions, i.e. using
context and adapting to context, to provide support for the following
typical application features [11]:

• presentation of information and services to users;

• automatic execution of services;

• storing of context for later retrieval.

Depending on the particular requirements to be developed, an appli-
cation may implement one or more of these features, hence providing for
di�erent levels of context-awareness.

2.1.1 Two Historical Examples of Context-Aware
Applications

The following examples illustrate two historical approaches to context-
awareness pertaining to two typical application classes, i.e. o�ce or
meeting tools and (tourist) guides.

17

2 Context-Awareness and the Web

Figure 2.1: A typical screenshot of the Active Badge system providing
information about the location of o�ce personnel inside the
o�ce building [12].

The Active Badge System

Schilit and Theimer �rst discussed the term context-aware computing,
but it is commonly agreed that the �rst research investigation of context-
aware computing was the Olivetti Active Badge work in 1992 [12], one
year after Weiser's vision of �The Computer for the 21st Century�.
With the Active Badge system, people could be located inside an o�ce

building, and phone calls could be directed to the phone closest to the
called person. To associate locations to people, the o�ce personnel wore
badges that transmitted infrared signals (so-called active badges). A
network of sensors placed around the o�ce building picked up the signals,
and a central location server polled the sensors. In this way, the telephone
receptionist could easily �nd out in which room a person was located (see
Figure 2.1) and forward the call to a phone of that room. According to
the previous distinction of context properties, the Active Badge system
adopted user environment context data; users are directly associated to
a room.
In addition to the positioning of people, the system also supported

commands to �nd out which other badges were in the immediate prox-
imity to a named badge, to �nd out which badges were currently near
to a speci�ed location, to send out a noti�cation as soon as a badge to
be located was again traceable, and a possibility to obtain information
about where the badge had been during a one-hour period.
The prototype was �rst installed in 1990 in Olivetti Research Center in

18

2.1 Context-Awareness and its Origins

Figure 2.2: Screenshots of the indoor Cyberguide application and equip-
ment for the outdoor Cyberguide application with GPS unit
[13].

Cambridge, England. At the beginning, the personnel was worried about
their privacy, but after a short experimentation phase many of them
actually found the phone redirection service more useful than invasive.
The system has later also been installed at other local sites and at Olivetti
STL, Xerox EuroParc, MIT Media Lab and Xerox PARC.

Cyberguide

In the Georgia Tech Cyberguide project, mobile context-aware tour guide
prototypes were built in the mid nineties [13]. The goal was to provide
tourists with information based on their position and orientation. Initial
prototypes of the Cyberguide were designed to assist visitors on a tour of
the Graphics, Visualization and Usability Center during monthly open
house sessions. The prototypes worked on an Apple MessagePad (with
Newton OS) and used infrared beacons for user positioning. Information
was initially stored on the MessagePad. With the help of Cyberguide,
users could locate themselves in the building (i.e. view their current
location) and identify the demonstrators in their surroundings on a map
(see Figure 2.2). By selecting a demonstrator, it was possible to obtain

19

2 Context-Awareness and the Web

detailed information about its purpose.
Figure 2.2 shows also the equipment of the outdoor version of the

guide, which has been implemented for guidance through the Georgia
Tech Campus and for touring local establishments in Atlanta. Location
sensing in the outdoor version was based on GPS coordinates.
Both Cyberguide systems (indoor and outdoor) make us of user envi-

ronment context data. In the former case, users are associated to areas
inside the building, in the latter case, the user position is described
through GPS coordinates.

2.2 Using and Modeling Context

While the use of context in applications aims to ease users as much as
possible in the interaction with an application, the use of context in
the development of context-aware applications � in general � can not
be regarded as easy. This reason has led to a signi�cant amount of
context abstraction e�orts and development tools, out of which in this
section we will concentrate on context modeling approaches and context
management frameworks that aim to support the design of context-aware
applications. In the following we narrow our focus on context modeling,
but note that in general context modeling cannot be seen in complete
isolation from user modeling.

2.2.1 Why is Context Di�cult to Use?

There are several di�erent reasons that make context cumbersome or
even di�cult to use. Dey and Abowd [7] identify for example the follow-
ing characteristics:

• Context is acquired from non-traditional devices (i.e. not mouses
and keyboards), with which we have only limited experience. Mo-
bile devices, for instance, may acquire location information from
the standard outdoor GPS system or from proprietary indoor posi-
tioning systems. In both cases, location sensing requires dedicated
hardware (i.e. a GPS receiver and a proprietary location sensor)
that must be programmed in order to interface the sensors with the
application. Most of the times, this task implies the development
of ad hoc solutions, as it is just impossible to cover all the possible
application scenarios with o�-the-shelf hardware and software (this
is probably the real problem of context-aware applications).

• Context may be acquired from multiple distributed and hetero-
geneous sources. Tracking the location of users in an o�ce may

20

2.2 Using and Modeling Context

require the system to gather information from multiple sensors
throughout the o�ce and, possibly, to calculate interpolations of
position data, or similar.

• Context sensing technologies, such as video image processing, may
introduce uncertainty. Context sensing for certain properties or in
certain situations may only be able to provide results with an as-
sociated level of probability, e.g. a ranked list of candidate results.
Uncertainty typically increases with the complexity of the sens-
ing task; for example, detecting the presence of people in a room
reliably may require the combination of results coming from the
application of several techniques, such as image processing, audio
processing, �oor-embedded pressure sensors, etc.

• Context is dynamic. Applications must be able to adapt to con-
stantly changing context conditions, and changes in the environ-
ment must be detected. One of the strongest requirements one
can pose to a sensing infrastructure is for example the capability
to sense in real time. A dynamic (and possibly historical) context
model is needed to re�ect the dynamic nature of context, compris-
ing the context of use.

• Context must be abstracted to make sense to the application. GPS
receivers for instance provide geographical coordinates (i.e. lon-
gitude and latitude). But a tour guide application for example �
and in general any application providing context data to the user
� would make better use of higher level information such as street
or building names. Applications thus need the be able to perform
context data transformations.

The �rst three of these context characteristics mainly imply techno-
logical or implementation issues, while the latter two also involve design
issues at a higher level of abstraction: the dynamic nature of context
asks for active or reactive application designs, and the need for a con-
text abstraction to �t the application's own concepts asks for a suitable
design of the context model underlying the application.
These two characteristics therefore heavily in�uence the design of the

application and will thus be reconsidered in Chapter 4 when introducing
our model-driven approach to the design of context-aware Web applica-
tions. While the former (i.e. dynamics of context) represents a rather
intuitive problem, the latter needs some further elaboration to ease the
comprehension of the discussion of existing context modeling approaches.
The next section therefore provides some insight into context abstraction
by dividing context properties into di�erent abstraction levels.

21

2 Context-Awareness and the Web

2.2.2 Physical and Logical Context

Taking a more analytical view over context in general, allows one to
identify a basic distinction between context properties that should help
developers to understand how to derive and de�ne a context model. Ac-
cording to the level of abstraction where context properties are situated,
a context model can be separated into physical context and logical con-
text [14, 15].

Physical Context

Physical context properties correspond to the real world properties that
can directly be sensed by sensing hardware or software of a context-
aware application. Physical context is therefore not modi�able, and it is
outside of the control of the application. The sensed values just provide
a manageable description of the environment and the application that
can be taken in input by an application to provide services or contents
or to adapt. Physical context properties are thus located at a very low
level of abstraction, and they are continuously, dynamically updated,
due to the fact that the environment and the application state itself
may continuously change. Although the physical context is application
independent, the application designer is able to specify which properties
are of interest for a particular application, i.e. he speci�es the physical
context model.

De�nition 7 (Physical Context) Physical context is a virtual, man-
ageable representation of real world (i.e. physical) context properties that
can be sensed and made available to a software system through respective
sensing devices.

Physical context properties can thus be divided into three main sub-
classes that collect similar characteristics; Kappel et al. [14] identify the
following sub-classes:

• Natural context . The natural context comprises context properties
like location, time, luminosity, humidity, etc.

• Technical context . The technical context includes data about the
user agent (e.g. device and browser), the network (e.g. bandwidth,
throughput) and the application itself.

• Social context . The social context holds data about the user for
personalization purposes (e.g. the user's identity or preferences).

22

2.2 Using and Modeling Context

Logical Context Model

Physical Context Model

Sensing Infrastructure

Context-aware Functions

Environment

Le
ve

l o
f a

bs
tr

ac
tio

n

Logical context model

Physical context model

Sensing infrastructure

Context-aware functions

Physical environment

Virtual representation
of physical environment

Figure 2.3: The building blocks of context-aware applications.

Context with the latest time stamp is called current physical context.
A further distinction between historical physical context and future phys-
ical context (based on predictions/projections over current and/or his-
torical context properties) may be necessary in function of the individual
application requirements.

Logical Context Model

In contrast to physical context, logical context represents more abstract
information about context. Logical context information is needed to
enrich the semantics of physical context information (e.g. a cellID in
mobile telephony), thus making it meaningful for application purposes
(e.g. a street name). For each property that is part of the physical
context model, the logical context model may provide appropriate logical
information in order to augment the expressiveness of physical context
data. Unlike physical context, logical context is under full control of
the application designer; the logical context model can thus easily be
extended by the designer to represent additional concepts or semantics
necessary to capture the peculiarities of speci�c application domains.

De�nition 8 (Logical Context) Logical context re�nes physical con-
text data by means of higher-level semantics, in order to augment the
expressiveness of sensed data and translate them into application entities
or concepts.

Figure 2.3 provides a layered view over context-aware applications
and shows the typical building blocks that characterize the software and
hardware architecture of context-aware applications:

• Physical environment : it represents the interaction environment in
which the user and the application operate.

23

2 Context-Awareness and the Web

• Sensing infrastructure: by means of suitable sensors, it gathers
those properties from the physical environment that are required
to support the context-aware features of the application.

• Physical context model : it collects sensed context properties in form
of a manageable, virtual representation.

• Logical context model : it extends the physical context model with
additional semantics.

• Context-aware functions: they use the underlying context model
to provide context-aware application features.

Note how each building block in Figure 2.3 depends on the data and
functionalities provided by the building block immediately below each
block.

2.2.3 Context Modeling Approaches

The hight dependency of context from the speci�c domain in which a
context-aware application is being developed and the intrinsic di�culties
that arise when using context (see Subsection 2.2.1) make the speci�ca-
tion of a universal context model an unrealistic task. Thus, instead of
concentrating on the de�nition of a speci�c context model that could
be applied in a variety of application domains, it is more interesting to
study the di�erent approaches that have been developed for the speci�-
cation of the context models that underlie the applications. Rather than
concentrating on a speci�c solution, in this section we therefore focus on
the methodological aspect of context.
The initial momentum in the �eld of context-aware computing pro-

duced a variety of ad hoc solutions and speci�c applications (e.g. the
Active Badge and Cyberguide systems described in Subsection 2.1.1),
in which context data and the context model were hardwired into the
application code. Reusability, extensibility or sharing of context was not
an issue, and each application adopted proprietary solutions that were
incompatible among each other. There was no conceptual distinction be-
tween application data and context data and, therefore, no independent
management mechanism for context.
With the development of the Context Toolkit [16], Salber et al. made

a �rst step toward reusable and con�gurable context management. The
toolkit provided a set of abstractions (i.e. widgets, interpreters, and ag-
gregators) as mediators between the environment and the application
and a con�gurable execution framework for runtime support. The main

24

2.2 Using and Modeling Context

idea of the toolkit was to wrap the semantics and the logic of physical
sensors by means of proper widgets (i.e. Java classes) that, once de�ned
and added to the execution framework, could be reused in a variety of
di�erent and independent context-aware applications. Context abstrac-
tion was achieved by means of interpreters and aggregators that allowed
to extend the semantics of widgets by means of other Java classes rep-
resenting logical context information.
Although the Context Toolkit can be regarded as one of the �rst con-

text conceptualization e�orts, it however su�ers of one main drawback
that limits its extensibility and its widespread adoption: the context
model must be hard-coded. That is, there is not separation between
the description of context (i.e. the model) and the execution logic (i.e.
the widgets) required for the management of the description. A context
model in the Context Toolkit was thus rather speci�ed in an operational
fashion and less in a descriptive one, as context properties were tightly
coupled to concepts from object-oriented software development.
In the following we disregard the operational aspect (i.e. the imple-

mentation) and concentrate on the descriptive de�nition of context by
discussing the main conceptual modeling approaches that have emerged
for the speci�cation of context [17]: key-value models, markup schema
models, graphical models, object-oriented models, logic-based models
and ontology-based models.

Key-Value Models

Representing context properties as key-value pairs is the most simple
modeling solution to specify context information. Already Schilit and
Theimer [10] used key-value pairs to model context: they provided the
value of context parameters to an application by means of environment
variables.
The simplicity of this approach facilitates the management of small

amounts of context data and limits the risk of errors. Key-value pairs,
however, lack capabilities for sophisticated structuring of context data,
which could enable e�cient context retrieval and elaboration algorithms.

Markup Schema Models

Markup schema models are usually based on a serialization of a derivative
of the Standard Generic Markup Language (SGML), the superclass of
all markup languages such as the popular XML. Typical representatives
of this kind of context modeling approach are pro�les and extensions to
the Composite Capabilities / Preferences Pro�le (CC/PP) [18] and User

25

2 Context-Awareness and the Web

works. This should be covered by the model, for instance
by interpolation of incomplete data on the instance level.

5. level of formality (for): It is always a challenge to des-
cribe contextual facts and interrelationships in a precise
and traceable manner. For instance, to perform the task
“print document on printer near to me”, it is required to
have a precise definition of terms used in the task, for in-
stance what “near” means to “me”. It is highly desirable,
that each participating party in an ubiquitous computing
interaction shares the same interpretation of the data ex-
changed and the meaning “behind” it (so called shared
understanding).

6. applicability to existing environments (app): From the im-
plementation perspective it is important that a context mo-
del must be applicable within existing the infrastructure
of ubiquitous computing environments, e.g. a service fra-
mework such as Web Services.

The mentioned requirements are in particular important for
any context modeling approach applied to an ubiquitous com-
puting environment. Some of the requirements are addressed
within a certain approach’s context model, some are addres-
sed within the associated reasoning system, and some are not
addressed at all within a certain approach.

3. MODELING APPROACHES
Throughout this section we will survey the most relevant
context modeling approaches. These are classified by the
scheme of data structures which are used to exchange con-
textual information in the respective system. (Obviously so-
me of them may be classified in more than one category. In
these cases they are listed in the most representative one.)

3.1 Key-Value Models
The model of key-value pairs is the most simple data struc-
ture for modeling contextual information.

Already Schilit et al. [35] used key-value pairs to model
the context by providing the value of a context informati-
on (e.g. location information) to an application as an envi-
ronment variable. The key-value modeling approach is fre-
quently used in distributed service frameworks (e.g. Capeus
[34]). In such frameworks, the services itself are usually de-
scribed with a list of simple attributes in a key-value manner,
and the employed service discovery procedure (e.g. SLP, Ji-
ni,. . . see [39]) operates an exact matching algorithm on the-
se attributes.

In particular, key-value pairs are easy to manage, but lack ca-
pabilities for sophisticated structuring for enabling efficient
context retrieval algorithms.

3.2 Markup Scheme Models
Common to all markup scheme modeling approaches is a
hierarchical data structure consisting of markup tags with at-
tributes and content. In particular, the content of the markup
tags is usually recursively defined by other markup tags.

Typical representatives of this kind of context modeling ap-
proach are profiles. They usually base upon a serializati-
on of a derivative of Standard Generic Markup Language

(SGML), the superclass of all markup languages such as the
popular XML. Some of them are defined as extension to the
Composite Capabilities / Preferences Profile (CC/PP) [44]
and User Agent Profile (UAProf) [46] standards, which have
the expressiveness reachable by RDF/S and a XML seriali-
zation. These kinds of context modeling approaches usual-
ly extend and complete the basic CC/PP and UAProf voca-
bulary and procedures to try to cover the higher dynamics
and complexity of contextual information compared to sta-
tic profiles.

An example of this approach are the Comprehensive Struc-
tured Context Profiles (CSCP) by Held et al. [23]. Unlike
CC/PP, CSCP does not define any fixed hierarchy. It rat-
her supports the full flexibility of RDF/S to express natu-
ral structures of profile information as required for contex-
tual information. Attribute names are interpreted context-
sensitively according to their position in the profile struc-
ture. Hence, unambiguous attribute naming across the who-
le profile as necessary with CC/PP is not required. Another
drawback of CC/PP, the restricted overriding mechanism of
default values only, replaced by a more flexible overriding
and merging mechanism, allowing for instance to overri-
de and/or merge a whole profile subtree. See figure 2 for
a CSCP profile example.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:cscp="context-aware.org/CSCP/CSCPProfileSyntax#"
xmlns:dev="context-aware.org/CSCP/DeviceProfileSyntax#"
xmlns:net="context-aware.org/CSCP/NetworkProfileSyntax#"
xmlns="context-aware.org/CSCP/SessionProfileSyntax#"
<SessionProfile rdf:ID="Session">

<cscp:defaults rdf:resource=
"http://localContext/CSCPProfile/previous#Session"/>

<device><dev:DeviceProfile>
<dev:hardware><dev:Hardware>

<dev:memory>9216</dev:memory>
</dev:Hardware></dev:hardware></dev:DeviceProfile>

</device>
</SessionProfile>

</rdf:RDF>

Figure 2: CSCP profile example

A similar approach to CSCP is the CC/PP Context Extensi-
on by Indulska et al. [27]. They extended the basic CC/PP
and UAProf vocabulary by a number of component-attribute
trees related to some aspects of context, e.g. concerning loca-
tion, network characteristics, application requirements, ses-
sion information as well as certain types of relations and de-
pendencies. The authors concluded that the their approach
is capable of enabling context-awareness to applications and
other parts of ubiquitous computing infrastructure. They al-
ready realized, that it is difficult and non-intuitive to capture
complex contextual relationships and constraints due to the
underlying CC/PP.

Another context modeling approach in the markup scheme
category – which does not bear towards CC/PP – is the Per-
vasive Profile Description Language (PPDL) [14]. This XML-
based language allows to account for contextual information
and dependencies when defining interaction patterns on a li-
mited scale. The number of evaluable contextual aspects and
the comprehensiveness of the language itself seems to be re-
latively limited. Due to the fact that no design criteria and

Figure 2.4: CSCP pro�le example [17].

Agent Pro�le (UAProf [19]) standards, which have the expressiveness
reachable by RDF/S and an XML serialization.
Common to all markup schema modeling approaches is a hierarchical

data structure consisting of markup tags with attributes and content. In
particular, the content of the markup tags is usually recursively de�ned
by other markup tags. Figure 2.4, for example, shows a markup fragment
taken from the Comprehensive Structured Context Pro�les (CSCP) by
Held et al. [20].
Markup schema models are a �exible means to represent context data.

Schema de�nitions, such as DTD or XML Schema, can be used for struc-
ture validation and/or type checking, even in presence of partial context
data. Schema de�nitions further represent a step toward formality, which
may facilitate the interoperability between di�erent models. De Virgilio
and Torlone [21], for example, leverage this feature in their framework
for representation and translation of context information, based on an
intermediate representation format called General Pro�le Model (GPM).

Graphical Models

A well known general purpose modeling instrument is the Uni�ed Mod-
eling Language (UML) which has a strong graphical component (UML
diagrams). Due to its generic structure, UML is also appropriate to
model context.
Henricksen et al. [22] have extended the Object-Role Modeling (ORM)

approach [23] into an intuitive and nicely designed graphics-oriented con-
text modeling language. In ORM, the basic modeling concept is the fact,
and modeling a domain in ORMmeans identifying appropriate fact types
and the roles that entity types play in these. Henricksen et al. extended
ORM to allow the de�nition of categorized fact types, taking into ac-

26

2.2 Using and Modeling Context

count their persistence and source in either a static (facts that remain
unchanged as long as the entities they describe persist) or dynamic fash-
ion. Depending on the source of the facts, dynamic facts are further
distinguished into pro�led, sensed, or derived types. Also, a new history
fact type has been de�ned to cover the time aspect of context. The last
extension of ORM for context modeling purposes are fact dependencies,
which represent a special type of relationship between facts, where a
change in one fact automatically leads to a change in another fact: the
dependsOn relation. [17].

This kind of approach is further particularly suited to derive Entity-
Relationship models from context models, which is very useful to trans-
late the abstract context models into relational database structures for
the use in context-aware applications. See Figure 2.5 for a description of
the modeling notation.

Graphical models are powerful for the structuring of context infor-
mation and, as the approach by Henricksen et al. [22] shows, they are
a good starting point for the generation of application code from the
model. Since graphical modeling languages are typically intended for
human use only, this is a very useful feature.

Object-Oriented Models

Object-oriented context modeling approaches aim to employ the main
bene�ts of the object-oriented paradigm � namely encapsulation and
reusability � to cover parts of the problems arising from the dynamics
of context. The details of context processing are encapsulated inside the
object and, hence, hidden to other components or the developer. Access
to contextual information is provided through speci�ed interfaces only.

An example of modeling approach pertaining to this category is the
Active Object Model of the GUIDE project [24]. All the details of data
collection and fusion (e.g. the context-driven composition of HTML
fragments) are encapsulated in the active objects and thus hidden to
other components of the system. The approach has been primarily driven
by the requirement of being able to manage a great variety of personal
and environmental contextual information while maintaining scalability.

Object-oriented models are not considered being formal models, but a
certain level of formality can be achieved through the use of well de�ned
object interfaces.

27

2 Context-Awareness and the Web

Person

(name)

located at
Location

(name)
LocatedAt(PersonName, LocationName)

(c) Sensed Fact Type

engaged in

(name)
[]

Activity

(name)

Person

(name)

located at

Location

engaged in(p1,a) dependsOn located at(p2,l) iff p1 = p2

(f) Fact Dependency

Location

permitted to use
DevicePerson

(name) (id)

Person

(name)

engaged in
Activity

(name)
[] EngagedInNow is a view corresponding to the following SQL:

CREATE VIEW EngagedInNow AS

SELECT PersonName, ActivityName

FROM EngagedIn

WHERE CURRENT_TIMESTAMP >= StartTime and

 (CURRENT_TIMESTAMP <= EndTime or EndTime is null)

CREATE VIEW LocatedNear AS

SELECT PersonName, DeviceID

FROM PersonLocatedAt, DeviceLocatedAt

WHERE PersonLocatedAt.LocationName =

 DeviceLocatedAt.LocationName

LocatedNear is a view corresponding to the following SQL:

LocatedNear(PersonName, DeviceID)

located at

Device

(id)

*

*

LocatedAt(PersonName, LocationName, ProductionTime, StandardError)

located at

Person

(name)

Location

(name)

StandardError
(nr)+

s

(a) Static Fact Type

Device

(id)

is of type

(code)

Device Type IsOfType(DeviceID, DeviceType)

(b) Profiled Fact Type

PermittedToUse(PersonName, DeviceID)

(e) Temporal Fact Type EngagedIn(PersonName, StartTime, EndTime, ActivityName)

EngagedInNow(PersonName, Activity)

(d) Derived Fact Type

located at

located near

Location

(name)

Person

(name)

located near(p,d) iff p located at l1

 and d located at l2

 and l1=l2

(g) Quality Annotation

Production
 Time

(timestamp)
Freshness Accuracy

� � � ª � ª�� h*~XzMjvjvuvnS|�zC´Xs-q�¬SjvzM�
Figure 2.5: ORM extended for context modeling [22].

28

2.2 Using and Modeling Context

lability. All the details of data collection and fusing (e.g. the
context adaptive composition of HTML fragments) are en-
capsulated within the active objects and thus hidden to other
components of the system.

The approach of Bouzy and Cazenave [6] followed a simi-
lar intention: They propose to use general object oriented
mechanisms to represent contextual knowledge about tem-
poral, goal, spatial and global contexts in computer Go (a
4000 years old game that is very famous in Japan, China and
Korea). They justified their object oriented context mode-
ling approach with its inheritance and reutilization capabili-
ties, allowing “to define the smallest number of properties,
functions and rules [..] in order to simplify knowledge repre-
sentation in very complex domains and systems”.

3.5 Logic Based Models
A logic defines the conditions on which a concluding expres-
sion or fact may be derived (a process known as reasoning
or inferencing) from a set of other expressions or facts. To
describe these conditions in a set of rules a formal system is
applied. In a logic based context model, the context is conse-
quently defined as facts, expressions and rules. Usually con-
textual information is added to, updated in and deleted from
a logic based system in terms of facts or inferred from the
rules in the system respectively. Common to all logic based
models is a high degree of formality.

One of the first logic based context modeling approaches
has been researched and published as Formalizing Context
in early 1993 by McCarthy and his group at Stanford [29,
30]. McCarthy introduced contexts as abstract mathemati-
cal entities with properties useful in artificial intelligence.
He prevented emphatically to give a definition what context
is. Instead he tried to give a formalization recipe which al-
lows for simple axioms for common sense phenomena, e.g.
axioms for static blocks worlds situations, to be lifted to con-
text involving fewer assumptions, e.g. contexts in which si-
tuations change. Thus lifting rules, which relate the truth in
one context to the truth in another context, are an important
part of the model itself. The basic relation in this approach is
ist(c, p), which asserts that the it proposition p is true in the
context c. This allows for formulas such as c0: ist(context-
of(“Sherlock Holmes stories”), “Holmes is a detective”),
where c0 is considered to be an outer context. McCarthy’s
model already supports the concept of inheritance.

The main focus of Giunchiglia’s approach, sometimes refer-
red to as Multicontext Systems, is less on context modeling
than on context reasoning [18, 17]. He take a context to be
that specific subset of the complete state of an individual en-
tity that is used for reasoning about a given goal; it is seen as
a (partial) theory of the world which encodes an individual’s
subjective perspective about it.

Another early representative of this kind of approach is the
Extended Situation Theory by Akman and Surav [2]. As the
name implies it extends the Situation Theory which has been
proposed by Barwise and Perry [4]. Barwise and Perry tried
to cover model-theoretic semantics of natural language in a
formal logic system. Akman and Surav used and extended
this system to model the context with situation types which

are ordinary situations and thus first-class objects of situa-
tion theory. The variety of different contexts is addressed
in form of rules and presuppositions related to a particular
point of view. They represent the facts related to a particu-
lar context with parameter-free expressions supported by the
situation type which corresponds to the context. Confer figu-
re 4 to see a short example of how the rules of a context are
represented as constraints in their approach.

���������	�
 �	�
 ��������������� �������
�! "�#���	�
 �	�
 ���$&%'�)(�*�� �+�"�,�

-
 ��/.���((10!23� � �����+�"��4�5.6(10&7986��0:�*�� �<;���4>=+=+=
?@�A� �CB �!
 -

Figure 4: Example from Extended Situation Theory

A similar approach is the Sensed Context Model proposed
by Gray and Salber [19]. They use first-order predicate lo-
gic as a formal representation of contextual propositions and
relations.

Another approach within this category is the multimedia sy-
stem by Bacon et al. [3]. In this system the location as one
aspect of the context is expressed as facts in a rule based
system. The system itself is implemented in Prolog.

3.6 Ontology Based Models
Ontologies are a promising instrument to specify concepts
and interrelations [43, 20]. They are particularly suitable to
project parts of the information describing and being used in
our daily life onto a data structure utilizable by computers.

One of the first approaches of modeling the context with on-
tologies has been proposed by Ötztürk and Aamodt [31].
They analysed psychological studies on the difference bet-
ween recall and recognition of several issues in combination
with contextual information. From this examination they de-
rived the necessity of normalizing and combining the know-
ledge from different domains. They proposed a context mo-
del based on ontologies due to their strengths in the field of
normalization and formality.

Another approach within the ontology category has been
proposed as the Aspect-Scale-ContextInformation (ASC) mo-
del [39]. Using ontologies provides an uniform way for spe-
cifying the model’s core concepts as well as an arbitrary
amount of subconcepts and facts, altogether enabling con-
textual knowledge sharing and reuse in an ubiquitous com-
puting system [15]. This contextual knowledge is evaluated
using ontology reasoners. The model has been implemented
applying selected ontology languages. These implementati-
ons build up the core of a non monolithic Context Ontolo-
gy Language (CoOL), which is supplemented by integration
elements such as scheme extensions for Web Services and
others [41, 40]. Beyond determination of service interope-
rability in terms of contextual compatibility and substituta-
bility, this language is used to support context-awareness in
distributed service frameworks for various applications. For
instance a contextual motivated non-carrier service hando-
ver is presented as one of the applications [42].

Figure 2.6: An example of modeling with Extended Situation Theory
[17].

Logic-Based Models

A logic de�nes the conditions on which a concluding expression or fact
may be derived (a process known as reasoning or inferencing) from a set
of other expressions or facts. To describe these conditions in a set of rules,
a formal system is applied. In a logic-based context model, the context is
de�ned as facts, expressions, and rules. Usually contextual information
is added to, updated in, and deleted from a logic-based system in terms
of facts, or inferred from the rules in the system, respectively.

One of the �rst logic-based context modeling approaches was published
in 1993 by McCarthy [25]. He described context by means of abstract
mathematical entities with properties as known from arti�cial intelli-
gence, so as to facilitate the reasoning over context data. The main idea
of the work is to bind the validity of a logical proposition to a speci�c
context.

Figure 2.6, instead, depicts a context modeling example adopting the
Extended Situation Theory by Akman and Surav [26]. Context is mod-
eled with situation types, which are ordinary situations and thus �rst-
class objects of situation theory. The variety of di�erent contexts is
addressed in form of rules and presuppositions related to a particular
point of view. They represent the facts related to a particular context
with parameter-free expressions supported by the situation type which
corresponds to the context.

Common to all logic-based models is the high degree of formalization
of the context model. This characteristic enables the use of reasoning
techniques that could be adopted to support sophisticated dynamics in
the context model or to deduce dependent context properties. On the
other hand, however, the high level of formalization hinders the evalua-
tion � and thus the use � of incomplete, partial, or ambiguous context
information.

29

2 Context-Awareness and the Web

Ontology-Based Models

Ontologies are a universal instrument to specify concepts and relation-
ships and, hence, to model information. Especially with the current in-
terest in the Semantic Web and Semantic Web technologies (e.g. OWL
and RDF(S)), ontologies are gaining momentum also in the domain of
the Web.
A promising emerging context modeling approach based on ontologies

is the CoBrA (Context Broker Architecture) system [27] by Chen et
al. The CoBrA system uses a broker-based agent architecture to enable
agents to acquire, reason about, and share context knowledge and to
provide runtime support for context-aware systems. A key component
of the proposed system is a context ontology de�ned in the Web Ontology
Language (OWL), which contains the basic concepts of people, agents,
places, and presentation events. The ontology describes the properties
and relationships between these basic concepts, including relationships
between places, roles associated with people in presentation events, and
typical intentions and desires of speakers and audience members.
Due to their �exibility, extensibility, and increasing support for rea-

soning tools, ontologies are the most promising instruments for context
modeling in context-aware applications. Also, the availability of visual
ontology modeling tools and the growing adoption of standard ontol-
ogy languages like OWL or RDF(S), accelerate the acceptance of and
familiarity with ontology-based modeling techniques among developers.

2.3 Context and Web Applications

Context-awareness in general, until recently, has been mainly studied in
the �elds of ubiquitous, pervasive, wearable, or mobile computing. In
the domain of the Web, so-called adaptive hypermedia systems [28] were
the �rst to use a user's preferences, knowledge, and goals (thus context)
during the interaction to adapt the hypertext to the needs of the user.
As this dissertation concentrates on the design of context-aware Web
applications, we brie�y overview how context-aware or adaptive features
have found there way into Web applications.
Looking back in history, the World Wide Web can be characterized by

three generations of applications, di�ering in both the technology used
and the services provided [14]:

• Static Web pages (1st generation): at the beginning, the Web
was employed merely for simple read-only applications, present-
ing pieces of information to anonymous users whose number and

30

2.3 Context and Web Applications

type was not necessarily predictable. Such usage a�rmed the Web
as one of the most powerful mass medias (if not the most powerful
one) of today's world. Typically static Web pages are hand-made.

• Dynamic Web pages (2nd generation): later on, the Web was more
and more used for increasingly complex applications, where huge
amounts of change-intensive information were managed by under-
lying database systems, and Web pages were generated out of such
data sources. The basis for promising application areas like e-
commerce was built. Typically dynamic Web pages are automati-
cally generated by �lling page templates with application data or
through XSLT transformations.

• Ubiquitous access (3rd generation): currently, we are facing a new
generation of Web applications being characterized by the any-
time/anywhere/any media paradigm, thus providing ubiquitous
access to services, turning e-commerce into m-commerce. The pre-
requisite for realizing such services is awareness of context. Time-
aware, location-aware, device-aware, and network-aware services
are suitable to extend already existing customization concepts.

2.3.1 The Origins of Context-Awareness in the Web

Kappel et al. [14], for example, individuate the origins of customization
with respect to ubiquitous or Web applications in two main streams,
personalization and mobile computing.

Personalization

The notion of personalization represents a major challenge since the end
user has been put in the middle of concern when developing interactive
applications, which dates back to the early eighties. Personalization aims
to provide users with an experience more tailored to their background
knowledge and objectives. Personalization, however, is also bene�cial to
application developers, as it may enable a better re-use of application
features and to target a broader range of users with one and the same
application.
Adaptive Web applications aim at tailoring a system's interactive be-

havior and the content it visualizes to skills, tasks, and preferences of hu-
man users. The following classi�cation describes four approaches where
personalization has been used successfully:

• Adaptive user interfaces: these aim at tailoring the system's in-
teractive behavior to skills, tasks, and preferences of human users

31

2 Context-Awareness and the Web

with special consideration of interface-related requirements.

• Intelligent help and tutoring systems: these systems adapt their ex-
planations and teaching strategies to the individual needs of users
in terms of their knowledge level and learning progress.

• Information �ltering and recommender systems: they emphasize
more on adapting the content of an application, and their main goal
is to go through large volumes of dynamically generated textual
information and present to the user those which are likely to satisfy
his/her information requirements.

• Adaptive hypermedia: whereas the aforementioned approaches do
not really consider the actual identity of users, and treat them all
the same way, today Web applications are developed for an un-
predictable number of anonymous users and work as if they were
designed for each individual user. Each user can manage his own
data objects, he has his own user pro�le and preferences over con-
tent and style properties.

Especially the customization concepts of this last class of applications
are easily extensible, and context-aware mechanisms may adapt the ap-
plication to varying context conditions during runtime.

Mobile Computing

The area of mobile computing can be seen as second major root of cus-
tomization. In contrast to personalization, which has already a long
tradition in application development, the research on mobile computing
begun in the early nineties. According to [14], also mobile computing
presents some main approaches:

• Location-based services: location information, which can be made
available by mobile network providers or using technologies such as
the Global Positioning System (GPS), is used for realizing various
indoor or outdoor location-based services such as geographically
targeted advertising, �eet management, tra�c control, or emer-
gency services. The two historical examples introduced earlier in
this chapter are mainly location-based services.

• Multi-channel Delivery : this requires to consider the varying capa-
bilities of devices in terms of hardware (e.g. display size and com-
putational power) and software (e.g. operating system and Web
browser) in order to allow a proper adaptation of the application's
user interface and interaction behavior.

32

2.3 Context and Web Applications

Customization

Personalization

Mobile Computing

Adaptive
Hypermedia

Adaptive User
Interfaces

Intelligent/Advisory Help
and Tutoring Systems

Information
Filtering/

Recommender
Systems

Network
Adaptation

Multi-Channel
Delivery

Location-based
services

Figure 2.7: Summary of the approaches that in�uenced today's cus-
tomization and adaptation approaches [14].

• Network Adaptation: in this respect, communication autonomy re-
quires that the application properly adapts to sudden disconnec-
tions, which can be caused either voluntary, or happen against the
will of the user because the battery runs empty or network connec-
tion is lost. Restrictions and variations in bandwidth may require
to change either the content of the transmitted data or the methods
used to send that data (e.g. by altering the underlying protocol).

Figure 2.7 summarizes the previous considerations on research areas
and approaches that have led to today's customization and adaptation
concepts.

2.3.2 Examples of Context-Aware or Adaptive Web
Applications

A signi�cant number of dedicated applicative solutions have been suc-
cessfully developed [12, 29], and context abstraction e�orts have pro-
duced proper platforms or frameworks for rapid prototyping and imple-
menting context-aware software solutions [16]. Within the domain of the
Web, so-called adaptive hypermedia systems [28] use a user's preferences,
knowledge, and goals throughout an interaction to adapt the hypertext
to the needs of the user. Recent research e�orts also address the special
needs of portable devices and mobile Web applications.

33

2 Context-Awareness and the Web

HyCon [30], for example, represents a general platform for the devel-
opment of context-aware hypermedia systems with special emphasis on
location-based services. In addition to proper location-sensing devices
(like GPS receivers), support for other local and remote context sensing
devices is provided. Example HyCon applications range from location-
based browsing and annotation to geo-based search support, and essen-
tially make use of GPS coordinates. The main drawback of the approach
proposed by the authors, however, lies in the fact that a proprietary Web
browser (HyConExplorer) is required.
The AHA! system proposed by De Bra et al. [31] represents a user

modeling and adaptation tool originally developed in the e-learning do-
main. AHA! is delivered as Open Source software and provides a versa-
tile adaptive hypermedia platform for the development of on-line courses,
museum sites, encyclopedia, etc. According to a continuously updated
user model, it allows customizing hypertext links (adaptive navigation)
and contents (adaptive presentation).
Belotti et al. [32] address the problem of fast and easily developing

context-aware (Web) applications along a technological, database-driven
approach, based on extended functionalities speci�cally tailored to Web
publishing. The authors propose the use of a universal context en-
gine in combination with a suitable content management system [33].
In [32] they describe their resulting general, context-aware content man-
agement system, which enables developers to seamlessly adapt content,
view, structure, and presentation of Web applications to runtime context
properties. Context a�ects the actual Web application indirectly by al-
tering the state of the database and is not able to trigger autonomously
application functionalities.

2.4 Model-Driven Design of Context-Aware or
Adaptive Web Applications

At a more conceptual level, model-driven design methodologies aid de-
velopers in the design of complex Web information systems. However,
despite the growing number of individual adaptive or context-aware Web
applications, only few attempts exists that also aim at modeling adap-
tivity and/or context-awareness at the conceptual (i.e. design) level.
In this section we review some of the most prominent model-driven de-

sign methodologies by putting special attention to the di�erent level of
support that each of them provides for the speci�cation of personaliza-
tion, adaptability, adaptivity, and context-awareness. More precisely,
in the following we review the following design methods: Hera [34],

34

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

OOHDM [35, 36], OO-H [37], WSDM [38], UWE [39], OntoWebber [40]
and SiteLang [41].
We conclude this section with a comparison of the adaptive/context-

aware features of the discussed approaches.

2.4.1 Hera

In [42] the authors show how the model-driven Hera design methodol-
ogy [34] allows designers to specify the conditional inclusion or exclusion
of hypertext fragments at content, navigation, and presentation level.
Adaptation is achieved by means of so-called appearance conditions, at-
tached to design artifacts and based on user pro�le and device capability
information (i.e., CC/PP [18]). The described approach thus provides
means for static adaptation (i.e. adaptability), where adaptation does
not consider the user's browsing behavior.
Hera distinguishes three design models: Conceptual Model, Applica-

tion Model, and Presentation Model. The Application Model extends
the Conceptual Model with navigation primitives, and the Presentation
Model enhances the Application Model with layout primitives. Concern-
ing adaptation, each of the three Hera design models enables access to
only those pro�le attributes that are meaningful in the context of the
particular model.
Figure 2.8 exempli�es the Hera approach to adaptation. Figure 2.8(a)

shows the conditional inclusion/exclusion of concepts into/from the Con-
ceptual Model; only if the condition attached to the concept is true, the
concept will be part of the resulting Conceptual Model. Figure 2.8(b)
shows how slices (i.e. meaningful data presentation units) in the Appli-
cation Model can be suppressed by attaching proper appearance condi-
tions to the respective modeling primitive; in the example, the textual
description of the Technique concept will only be showed to users with
a level of expertise equal to Expert. Finally, Figure 2.8(c) shows how
so-called regions in the Presentation Model can be conditionally visual-
ized or hidden; in the �gure, based on the prf:client attribute of the
pro�le, either Region 3 or Region 3a (or none, if none of the conditions
is true) will be rendered.

2.4.2 OOHDM

The OOHDM (Object-Oriented Hypermedia Design Method) approach
proposed by Schwabe et al. [36] leverages object-oriented design primi-
tives with a syntax close to that of UML for the design of Web applica-
tion models. The OOHDM design process is articulated into a concep-

35

2 Context-Awareness and the Web

2.3. Presentation model

The presentation model (PM) describes the presenta-
tion’s layout. PM is composed of regions that represent a
rectangular area on the user’s display. While slices are as-
sociated to concepts, regions are associated to slices. Navi-
gational relationships from AM are materialized to different
region relationships: spatial relationships (compositional
relationships from AM are good candidates for spatial rela-
tionships), temporal relationships, and hyperlinks (naviga-
tional relationships from AM are good candidates for hyper-
links). Spatial relationships can be specified quantitatively
by giving the (x,y) coordinate with respect to the top-left
corner of the parent region or qualitatively by specifying
a qualitative constraint (e.g. “right”) in relation to another
region. Figure 4 presents one region from the PM in our
running example. In order not to complicate the figure we
omit from it the region relationships between attributes.

Artifact.picture

Artifact.aname

Artifact.year

Artist.aname

Region 2 Region 3

Region 1

spatial relationship

qualitative (spatial relationship)

xy

right
quantitative (spatial relationship)

xy
right

Figure 4. Presentation model

3. Adaptation

The presentation adaptation considers “adaptation hot-
spots” [11] during a WIS design. Basically all Hera models
considered in section 2 are adaptation hot-spots. In this pa-
per we consider only static adaptation, i.e. an adaptation that
does not consider the user’s browsing behaviour.

The static adaptation is based on another model, the user
profile, a CC/PP [8] vocabulary to model user preferences
and device capabilities. An excerpt of a user profile instance
is given below

<Description rdf:about="Profile">
<ccpp:component>
<HardwarePlatform>
<imageCapable>Yes</imageCapable>
<client>Desktop</client>
...

</HardwarePlatform>
</ccpp:component>
<ccpp:component>
<UserPreferences>
<levelOfExpertise>Expert</levelOfExpertise>

...
</UserPreferences>
</ccpp:component>
...

</Description>

The adaptation is realized by means of appearance condi-
tions attached to different design artifacts. Evaluating such
conditions to true/false enables/inhibits the presence of their
associated artifacts in the design. Because of the overlay
nature of Hera models, an artifact deleted in one model will
also be eliminated from the subsequent models. In order to
specify meaningful adaptation conditions, each model can
only use a subset of the profile attributes in conditions.

3.1. Adaptation in CM

Adaptation in CM removes concepts and media types
that have an associated condition not valid. Figure 5 de-
picts an adaptation condition in CM (remember that MM is
part of CM). The media items corresponding to the Image
media type will be part of the CM instance only if the user’s
device has image viewing capabilities. The same adaptation
technique can be used on the concepts from Figure 1.

Image prf:imageCapable = Yes

Figure 5. Adaptation condition in CM

3.2. Adaptation in AM

Adaptation in AM suppresses slices that do not fulfill an
attached condition. As a consequence navigation relation-
ships that are pointing to suppressed slices will be hidden.
Figure 6 presents an adaption condition based on the level
of expertise of a user (Beginner, Normal, or Expert)
with respect to a given domain. If for example the user is an
Expert he will have access to the textual description of a
certain artistic technique in slice Technique.main.

description

exemplified_by

picture

Artifact

Set

Technique

main

tname

compositional relationship (with CM property name)

prf:levelOfExpetise = Expert

Figure 6. Adaptation condition in AM

(a) Conceptual model.

2.3. Presentation model

The presentation model (PM) describes the presenta-
tion’s layout. PM is composed of regions that represent a
rectangular area on the user’s display. While slices are as-
sociated to concepts, regions are associated to slices. Navi-
gational relationships from AM are materialized to different
region relationships: spatial relationships (compositional
relationships from AM are good candidates for spatial rela-
tionships), temporal relationships, and hyperlinks (naviga-
tional relationships from AM are good candidates for hyper-
links). Spatial relationships can be specified quantitatively
by giving the (x,y) coordinate with respect to the top-left
corner of the parent region or qualitatively by specifying
a qualitative constraint (e.g. “right”) in relation to another
region. Figure 4 presents one region from the PM in our
running example. In order not to complicate the figure we
omit from it the region relationships between attributes.

Artifact.picture

Artifact.aname

Artifact.year

Artist.aname

Region 2 Region 3

Region 1

spatial relationship

qualitative (spatial relationship)

xy

right
quantitative (spatial relationship)

xy
right

Figure 4. Presentation model

3. Adaptation

The presentation adaptation considers “adaptation hot-
spots” [11] during a WIS design. Basically all Hera models
considered in section 2 are adaptation hot-spots. In this pa-
per we consider only static adaptation, i.e. an adaptation that
does not consider the user’s browsing behaviour.

The static adaptation is based on another model, the user
profile, a CC/PP [8] vocabulary to model user preferences
and device capabilities. An excerpt of a user profile instance
is given below

<Description rdf:about="Profile">
<ccpp:component>
<HardwarePlatform>
<imageCapable>Yes</imageCapable>
<client>Desktop</client>
...

</HardwarePlatform>
</ccpp:component>
<ccpp:component>
<UserPreferences>
<levelOfExpertise>Expert</levelOfExpertise>

...
</UserPreferences>
</ccpp:component>
...

</Description>

The adaptation is realized by means of appearance condi-
tions attached to different design artifacts. Evaluating such
conditions to true/false enables/inhibits the presence of their
associated artifacts in the design. Because of the overlay
nature of Hera models, an artifact deleted in one model will
also be eliminated from the subsequent models. In order to
specify meaningful adaptation conditions, each model can
only use a subset of the profile attributes in conditions.

3.1. Adaptation in CM

Adaptation in CM removes concepts and media types
that have an associated condition not valid. Figure 5 de-
picts an adaptation condition in CM (remember that MM is
part of CM). The media items corresponding to the Image
media type will be part of the CM instance only if the user’s
device has image viewing capabilities. The same adaptation
technique can be used on the concepts from Figure 1.

Image prf:imageCapable = Yes

Figure 5. Adaptation condition in CM

3.2. Adaptation in AM

Adaptation in AM suppresses slices that do not fulfill an
attached condition. As a consequence navigation relation-
ships that are pointing to suppressed slices will be hidden.
Figure 6 presents an adaption condition based on the level
of expertise of a user (Beginner, Normal, or Expert)
with respect to a given domain. If for example the user is an
Expert he will have access to the textual description of a
certain artistic technique in slice Technique.main.

description

exemplified_by

picture

Artifact

Set

Technique

main

tname

compositional relationship (with CM property name)

prf:levelOfExpetise = Expert

Figure 6. Adaptation condition in AM

(b) Application model.

3.3. Adaptation in PM

Adaptation in PM eliminates regions that have an as-
signed condition invalid. As a side effect region relation-
ships that involved the removed regions will also be dis-
carded. Figure 7 shows two mutual exclusive conditions de-
pending on what kind of client (Desktop or WAP Phone)
the user has. For a Desktop client the available horizontal
space is larger than for example a WAP Phone client. As a
consequence the region displaying the artist’s name is on the
right hand side of the artifact’s region for a Desktop client
and below the artifact’s region for a WAP Phone client.

Artifact.picture

Artifact.aname

Artifact.year

Artist.name

Region 3a

Region 3

Artist.aname

Region 1

Region 2

below

spatial relationship

qualitative (spatial relationship)

quantitative (spatial relationship)
xy

right/below

xy
right

prf:client = Desktop

prf:client = WAP Phone

Figure 7. Adaptation condition in PM

4. Reuse

All Hera models are suitable for reuse by means of dif-
ferent recycling mechanisms. There are a lot of recycling
mechanisms among which we mention inheritance [7], pro-
totyping (code sharing) [3, 7], attaching new properties to
existing design artifacts etc. In this paper we focus on in-
heritance. Extending a model by means of inheritance will
enable also the (direct) reuse of design aspects of the old
subsequent models if the designer didn’t refine them (indi-
rect reuse).

4.1. Reuse in CM

Concepts from CM can be easily extended to new con-
cepts by subclassing the old ones. Figure 8 illustrates the
insertion of two new concepts Painting and Painter
as extensions of the existing Artifact and Artist con-
cepts. The Painting concept has the new area property
attached to characterize the painting’s surface. The concept
relationships creates and created_by are also appro-
priately refined by paints and painted_by. In subsec-
tion 2.1 we already discussed how a new media type similar
to an old one can be added to MM based on inheritance.

Text

Artifact

Text
Text

Text

Text

Image

Text

Text

Painting
painted_by

1* paints
Painter

subPropertyOf

subClassOf

property

exemplified_by
year

exemplifies *1 *

description

tname

created_by

1creates
Technique

aname

biographyaname

picture

Artist

area

Figure 8. Inheritance in CM

4.2. Reuse in AM

Slices from AM can be extended to new slices that
increase the complexity of the old ones by adding new
slice compositional elements and new navigational relation-
ships. For example, these new slices can add to the AM
the properties of the new concepts inserted to the CM in
subsection 4.1. Figure 9 depicts the subclassing of the
Artifact.main slice by the Painting.emain slice.

area

exemplifies

Technique

tname

created_by

Artist

aname

picture

aname

year

tname

emain

Painting

main main

description

exemplified_by

picture

Artifact

Set

Technique Artifact

compositional relationship (with CM property name)

navigational relationship

subClassOf

Figure 9. Inheritance in AM

(c) Presentation model.

Figure 2.8: Adaptation in the Hera method [42].

36

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

tual model, a navigation model, and a interface model. The conceptual
model represents domain objects, relationships, and the intended appli-
cation's functionality. The navigation model (expressed by a so-called
context schema) de�nes nodes as views on conceptual objects (using a
language similar to object database view de�nitions) that provide users
with navigable objects. The (abstract) interface model describes the
user-perceptible manifestation of navigation objects.
Customization or personalization in OOHDM is supported in the three

design models in the following ways [43]:

• In the conceptual model, by explicitly representing users, roles, and
groups, and by de�ning algorithms that implement di�erent busi-
ness rules for di�erent users.

• In the navigational model, by de�ning di�erent applications for
each pro�le, by customizing node contents and structure, and by
personalizing links and indexes.

• In the interface model, by de�ning di�erent layouts according to
user preferences or selected device characteristics.

In [43] the authors discuss personalization in OOHDM by means of an
example conference paper review system (see Figure 2.9(a) for the de-
scribed context diagram for navigating application concepts). More pre-
cisely, the authors discuss a set of recurrent personalization patterns and
their speci�cation in OOHDM: role-based personalization, link personal-
ization, structure personalization, content personalization, and behavior
personalization. Figure 2.9(b), for example, provides an example of role-
based personalization for the application described in Figure 2.9(a). The
navigation nodes presented to users are customized by querying the con-
ceptual model according to a user's role: the public, customized view of
papers augments the attributes from the Paper class with the paper's
schedule, obtained by querying the Session object. The PC chair view,
instead, adds the list of reviewers to each listed paper.

2.4.3 OO-H

OO-H (Object-Oriented Hypermedia [37]) is an object-oriented design
model, which is based on two complementary application views, namely
(i) the Navigational Access Diagram (NAD), which enriches the standard
UML class diagram with navigation and interaction properties, and (ii)
the Abstract Presentation Diagram (APD), which represents both the
structure of the site and presentation details.

37

2 Context-Awareness and the Web

an access restriction — typically, the user must log
in to access its elements.

An arrow leaving a context indicates that from
an element in that context, you can follow a link
to another element in the destination context. For
example, from the “paper by reviewer with review”
context, you can navigate to the “reviews by
paper” context, which is the set of reviews for that
paper. Arrows with a black dot at the origin indi-
cate landmarks, elements that can be accessed
from anywhere in the application.

Because a node, such as a paper, can appear in
different navigational contexts, we must define the
features — the attributes and anchors — that apply
for each context. For example, an anchor indicat-
ing the next paper in a context will activate dif-
ferent links according to the context in which it
appears (“next paper by an author,” “next paper

about a topic,” and so on). We specify those fea-
tures using InContext classes that “decorate” the
node when it is viewed in a context.6

Interface Model
Finally, the abstract interface model indicates the
user-perceptible manifestation of navigation objects.
Separating the interface from the navigation speci-
fication lets us cope with varying interface tech-
nologies modularly. For example, given a particu-
lar navigation model, we can specify different
inter-faces — for a browser or for a variety of mobile
devices such as phones and handheld organizers. We
also use an object-oriented formalism — abstract
data views,7 which act as observers of nodes.6

For conciseness, we do not address interface
personalization in this article, although our model
handles it with the approach it uses for other

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 37

Personalized Web Applications

Update/creation

Creation/update

PC member

Paper

By author + Paper title

Alphabetical(Nonconflicting)
paper title

By paper

Papers assigned
to PC member

By PC member
Reviewer

Reviewer

Papers assigned
to reviewer

By reviewer
without review

Review

By paper

 By grade

Status=not
defined

By status

Papers with status
not defined

Status:

By reviewer with
review

AuthorRegister author; Update author data

 Register coauthor; Update coauthor data

Register PC member; Update PC member data

Register reviewer; Update reviewer data

Submit paper

Check/modify data about a paper;
Access reviews

Verify conflicts of a paper;
Indicate interest;

Assign PC member

Assign reviewer
Enter/edit review

Inform accepted and
rejected papers

Peruse papers

Creation/update

Update

Coauthor

Creation/update

Creation/update

Creation/update

Main menu

coauthor

Figure 2. Context diagram of a conference paper review system. Square solid boxes are sets of related objects, such as
“Paper by PC member,” gathering the papers assigned to that committee member. Lines indicate navigation possibilities,
such as going from “paper by grade” to “reviews by paper.” Dashed boxes are indexes.

(a) OOHDM context diagram. Square solid boxes represent related objects, arrows
indicate navigation possibilities, and dashed boxes are indexes.

each role, letting the user see customized content
according to the navigation path chosen (corre-
sponding to different roles). The key need here is
to identify individuals and their corresponding
roles, so that the application enables the appro-
priate roles.

The following text shows a specification of the
papers by reviewer context customized not only to
the reviewer role but also to each individual
reviewer.

Context: Papers BY Reviewer, user: Reviewer
Elements: p:Paper where p IsReviewed By user
InContext Class:PaperByReviewer
Navigation: sequential, order by authorName

We do this by applying a filter stating that the
context’s elements are only those papers that
have been reviewed by the current user. The
InContext Class declaration binds the context
to the specific decorator, adding anchors for
sequential navigation to other papers.

Link Personalization
Web applications deal with a great number of
objects; how we reach them depends on many fac-
tors. Different users — individuals or roles — should
have different linking topologies. For example,
certain users should have more direct access to
certain information objects. In the conference
paper review system, we might want each review-
er to have direct access only to the papers he or
she will evaluate and no others. An electronic
store, such as Amazon, might want to give cus-
tomers personal recommendations of products
they might like. The products that are directly
accessible for one user might be different than
those accessed by a different user.

Solution. Personalize links by calculating the link’s
end point with user-related information. With per-
sonalized links, all users access the same informa-
tion objects. Although anchors may look similar —
see, for example, Amazon’s link to Recommenda-
tions — each individual has a different, customized
node topology.

Algorithms for calculating links’ end points. Link
personalization, the scenario we find in recom-
mender applications,14 is by far the most widespread
kind of individual customization on the Web. In
OOHDM, we specify links by indicating the source
and the target; in the target we can write expres-
sions involving conceptual objects, as shown here:

LINK Recommendations, user:Customer
SOURCE HomePage
TARGET CD: C WHERE C belongsTo
user.reccomendations.

The variable “user” in this expression refers to
the actual individual using the application; in this
example it refers to a customer object. The appli-
cation sends the message “recommendation” to the
object standing for the user.

Not all recommendation strategies involve per-
sonalization, however. For example, sites such as
Amazon provide other kinds of recommendations
that depend on the product rather than the indi-
vidual user. (“Users who bought this product also
bought…” is a product-based recommendation.)

Our conference paper review application
includes another interesting example of link per-
sonalization, shown below.

NODE Paper FROM Paper
Name:String
related: Anchor (relatedPapers)

Link relatedPaper, user: Reviewer
SOURCE Paper
TARGET Paper: P WHERE P belongsTo
user.assignedPapers

When a reviewer accesses a paper node, he or
she can navigate to related papers that the review-
er is evaluating. This link is personalized.

Structure Personalization
Many applications must handle not only thou-
sands of objects but also a great variety of sub-
jects and services. Because the number of possi-
ble options can overwhelm users, we might want
to circumscribe the navigation space to the

40 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Adaptive Software

NODE Public.Paper FROM Paper: p
Name:String
Authors: Set Set….
Abstract: String
Schedule

Select date From Session:s
Where p isScheduledIn s

NODE PC.ChairPaper FROM Paper: p
Name:String
Authors: Set Set….
…..
Reviewers:

Set Select name From Reviewer:r
Where p isReviewedBy r

Figure 5. Profile specifications. Different specifications show different information depending on the profile.(b) Role-based personalization in OOHDM. Di�erent pro�le speci�cations yield dif-
ferent rendered information.

Figure 2.9: Personalization in the OOHDM method [43].

38

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

In the context of the OO-H methodology, Garrigós et al. [44] present
a structured approach to personalize Web sites, based on three facets of
a user pro�le, namely user characteristics, user requirements, and user
context (see Figure 2.10(a)).
For each user pro�le, a personalization strategy is expressed by means

of personalization rules addressing the application content and the navi-
gation model for both single users and for groups of users. The rules can
be expressed using the PRML language (Personalization Rule Modeling
Language), complying with the ECA paradigm. Rules can be of three
di�erent types:

• Acquisition rules refer to where and what information must be
acquired for enacting the personalization.

• Personalization rules specify the e�ect that the personalization
causes on the system.

• Pro�le rules classify users according to the information they access.

As reported in Figure 2.10(b), personalization is embedded in the Nav-
igation Access Diagram. NADs are conceptual models that represent how
users can navigate the Web application contents and services. In order
to specify personalization, NADs also include the speci�cation of events
(Start events, Navigation events, Method Invocation events) that trigger
the personalization rules, as well as the criteria that must be satis�ed to
ful�ll the personalization requirements.
The whole set of rules associated to a NAD is stored in a PRML �le.

An example of such �le is reported in Figure 2.11.

2.4.4 WSDM

WSDM (Web Site Design Method) is an audience-driven Web site design
method: since the very �rst phases of design, the method puts the em-
phasis on the identi�cation of the needs and characteristics of di�erent
classes of the target audience [38]. The addressed audience requirements
refer to the information contents, functions, navigation structures, and
usability. Such requirements, initially collected and speci�ed, are then
taken into account during the WSDM design activities, which address
Information Design, Functional Modeling, and Navigational Design.
In [45] the authors present an extension of WSDM to cover the spec-

i�cation of adaptive behaviors. In particular, an event-based Adap-
tive Speci�cation Language is de�ned, called ASL, which allows design-
ers to express adaptations on the structure and the navigation of the

39

2 Context-Awareness and the Web

�

�

���� ,�;;<=����:�	�����.�

*� ��+���������	���

��� �0�� ����� �"���� ���� �0�� :�".���	�� �/"��� �0�� ����� ��� ��"���2� � ��� .���� �"������

��)"�����"�� "�� �0�� �0���� ��������� �5�������� ��� �0�� �����"��� �����"�� ��� .���� ���

��)"�����"�����������"��0��/�".���	�/�0���"���")��0������2��

�

DeviceContext

getDeviceContext()

(from Framework)
PDA

Age
value

browseBooks

browseMusic

Context
(from Framework)

Characteristic

ID
(from Framework)

Session

ID
ipAddress
nextAction
name
host

(from Framework)

User

ID
numberOfSessions
login
password

(from Framework)

Requirement

ID
numberOfAccesses
relevance

(from Framework)

...

Mp3Player

MobilePhone

��
����"3������-"����)"���0��9>����������

�

9�	���� �� �0".�� �0�� ��������� ����� ")� �0�� ����� �"����)"�� �0�� ������	� �5������

���������� ��� �����"�� %� 7�"��� �����/����� �������0"����"����������� ���������)"�� �0���

�5������ 0���� /���� "������82� 60��)�	���� �0".�� �"����������� �0��� /��"�	� �"� �0��

)����."�:� ���:�	�� ���:��� .��0� �0�� ��5�� K)�"�� 9����."�:12� 60"��� ��������

�"��������� �0�� �:����"�� �"� ������ �0�� 	������� ;;<=� ����� �"���� �"� �0�� �"�������

����"��������"�� ��4���������2� ��� "��� �5������ �0�� ����	���� ������ �"� ��������

��)"�����"�� ��	�����	� �0�� ����1�� �	�2� 9"��".��	� �0�� ��������� ���������� ��� �0��

�����"��������"���0�����)"�����"������/��������)���������������0������������2�60������

.0�� �0�� ���������� ��0������)�"�� �0�� �����)����� �0������������� ������ ")� �0�� �����

�"���2� ��� �0�� ����� .��� �0�� "�0��� ��������� ��)"�����"��)"��)��)�����	� �0��

����"��������"�� ��4���������� ������������� /��������")� ��0��������� ������"���.��0�

�0�� ��"������������)�"�� �0��������"���� 7�2	2�+���-+%+������ ����-"/���+0"���

��0������	�)�"�� �������"���5�� ���� /�".��("":�� ���� /�".��-�����)�"��

!�4��������82��

(a) OO-H user pro�le for personalization.

�0�������������������"�������82�60������"��������"��������4������"�������������0����"�

�� ��")���� .���� /�� ���		����� /�� �������� /�".���	� ������ 7������ >���	���"�� "��

-��0"����"����"�8�	���������/���0������������	�0��������"�2�����"����5�����������0��

����"��������"���������������		�����/��>���	���"���������7��������"��")�����	���"����

���:�82� ��� �0���.���"���>���0�����))������ �5�����"���)"����))������������ 7��� �0���

.����/�������0����"���))�������������")����82� �60��.0"�������")����������"��������"���

>��������"���������+!-E�)���2������0����5�������"��.���0".��0��+!-E�)����)"��"���

������	��5�����2�
�

����

��������	���
���

���������	
���������	
��

������	
����	����������	������	�	��

��
��������
����
����

	�
�
��
��
�
�
�
��
���
�
�
�	�
�
�	�
�
�

�	��������
�	���
�����	�
���	������

��
�	����
���������

��	�������������	�����

	���	����	�����

������������	�����

�����	��������

��	�������������	�����

������������

�	������	������

�� ���	������������

���������	�����

���	���������

��	�������������	�����

��	��������!�����

�
����������
����

�	��������
�	���
���	������

	�
�
��
�

�
��	�
��� �
� 	�
	�
�

�
�����$3��7������)���8�>���)"���0��9�����5������

0������������������/�1����������#23�&����

�����0������������".�����"��0".��0���"������")��0��+!-E��"�)�	�����"��)����)"��"���

������	� �5�����
D
� 7�0�� ������ ������� ��� �0��� �5������ ����������/��� ��� �0�� ��/��� ���

�����"��C2�82������������0".��0������������")��0���)����)"��".���0��"�	�������"��")�

�0������"��������"���"�������;;<=2�60���)����0���)"���/�	������"��2�

� 60�� ��(��������� ����� �������� ��)����� �0�� ������ ������� �"� 	��0��� �0�� ��4������
��)"�����"�� �"� ������)�� �0�� ����� ���"� ����� 	�"���2� ��� "��� �5������ .�� 0���� ���

��4������"�� ����� �"� �������� �0�� �������)�"�� .0��0� �0�� ����� ��� �"�������	� �"� �0��

.�/�����7��������"���5�82�60��������	�����0����������"���5������	������0"����)�����

����0������"��������"��)����."�:2��

� 60��
��&���� ����� �������� �"������� �0�� ��")���� �����2� 60�� ��")���� ������)"�� �0���
�5��������)����	�H-��"��I�H(�".��("":�I�����H�����������I������������		�����

/�� �0��#����� �����2��0��� �� ����� ������� �0�� ������� 7�2�2� ������� �� �����"�8� �F0�� ���

�����0����"��0����")����	�"��7�8��F0��/��"�	��"�7/�����"���0����")�����"�����"�82���

������������������������������ �����������������������������
D��"��������/�����")��0��������0����/����"�������)"�����������������"��2�

(b) OO-H Navigation Access Diagram.

Figure 2.10: Personalization in the OO-H method [44].

40

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

ACQUISITION SECTION
#RULE:“AcquireContext” priority=”high”
When start do
DeviceContext=getDeviceContext()
endWhen

PROFILE SECTION
#RULE:“defMinors”
priority:”medium”
When start do

If (charHasValue (Age,<,18))
then
AttachUserToPGroup(“Minors”)

endIf
endWhen

#RULE:“defSmallScreen”
priority:”medium”
When start do
If (deviceContext=”PDA” or
deviceContext=”MP3” or
deviceContext=”WAP") then
AttachUserToPGroup(”smallScreen”)
endIf
endWhen

#RULE:“defBrowseBooks” priority:”medium”
When start do
If (userhasReq (“brosweBooks”)) then
AttachUserToPGroup(“browseBooks”)

endIf
endWhen

PERSONALIZATION SECTION
RULE:“restrictProducts”
When Navigation.ViewProducts do

If
(Products.allowedFromAge>18)
then

Product.Visible=false
endIf

endWhen

RULE:“PersonalizeDisplay”
When Navigation.ViewProducts do

Product.picture.Visible=false
endWhen

RULE:“ShowNewBooks”
When Navigation.ViewNovelties do

If (Products.category=’Books’ and
Products.dateOfAddition=currentDate-week) then

Select(name, description, price) in Products
endIf

endWhen

Figure 2.11: Example PRML rules in OO-H [44].

41

2 Context-Awareness and the Web

define promotion and demotion as moving the node one link
closer or further away from the top of a path. Promotion is
realized by adding a link to the node from a grandparent of this
node, while demotion means adding a link from a sibling to the
node and removing the original link to the node. Promotion is
shown in figure 2, demotion in figure 3. Note that in this version
of promotion, the original link is preserved.

Definition Let n ∈ N, p path where n ∈ pathNodes(p) and
level(n,p) ���

• promoteNode(n, p) stands for
addLink(grandParent(n,p)),n);

Definition Let n ∈ N, p path where n ∈ pathNodes(p), np =
parent(n,p) and ∃ n’ ∈ N: sibling(n, n’) ∧ np = isParent(np , n’),
then

• demoteNode(n, p, n’) stands for
addLink(n’,n);

deleteLink((np , n))

grandparent
(n,p)

parent(n,p)

n

promoteNode(n,p)

grandparent
(n,p)

parent(n,p)

n

l1

l2

l1

l2

Figure 2: Promotion of a node n along a path path(l1 , l2)

np

n
demoteNode(n,p, n’)

np

n’

n

l2

l3

l1

n’

l1

l3

Figure 3: Demotion of a node n via a path p to a sibling n’

Linking connects two nodes that were not (or not directly)
connected by adding new links between them. Even though the
designer did not model a link explicitly, for some nodes it turn out
at runtime that they are conceptually related in the users’ minds.
Similarly, unlinking is based on observing a lack of correlation; if
a link between two nodes is never followed, we might infer that
they are unrelated in the users’ minds, even though the designer
connected them for some reason. Removing them may result in a
simpler and more transparent site structure. In the literature, many
algorithms have been described to determine whether pages are
related, based on (restricted) clustering and user access patterns
within one user session. These may be useful to determine if
nodes are related (node will be contained in pages in the website)

Definition Let n, n’ ∈ N:

• linkNodes(n, n’)
addLink((n’,n)); addLink((n,n’))

• unLinkNodes(n, n’)
deleteLink((n’,n)); deleteLink((n,n’))

4.2.2 Clustering
In the literature, clustering associates a collection of related pages
and makes them accessible as a group on a newly created page.
The system recognizes a collection of similar documents that are
not grouped together anywhere at the site, creates a new page for
them and adds a reference to the new page. Documents may be
considered related based on their filenames, their locations in the
site hierarchy, their correlation in visitor paths, etc. A similar
transformation can be defined on our Navigational Model: if two
or more nodes are related, but not yet grouped we can add a node
and the necessarily links to make them accessible as a group.
Clustering of chunks can be done by connecting them to a single
node.

Definition Let n ∈ N, n’ ∉ N, h, h’ ∈ H
• clusterChunks(n, h, h’)

addNode(n’);
connectChunk(h, n’); connectChunk(h’, n’);
addLink((n, n’)); addLink((n', n))

Definition Let n, n1, n2 ∈ N, n’ ∉ N
• clusterNodes(n, n1, n2)

addNode(n’);
addLink((n’,n1)); addLink((n’,n2));
addLink((n, n’)); addLink((n', n))

5. ADAPTATION SPECIFICATION
LANGUAGE
Now that we have defined the navigational model, the basic
operations upon that model and some conceptual navigational
transformations, we are ready to define a language that allows
specifying at design time certain kinds of runtime adaptive
behavior. Using this language, the designer can specify what type
of adaptation is permitted during the life of the website. In this
way, he can prohibit that the structure of the website completely
runs out of his control due to the unlimited use of adaptation. The
language can be characterized as event based: conditions (based
on user access patterns) will trigger rules (the adaptive behavior).
Frequency of re-applying the rules is not specified here. Also the
way the user access patterns are determined is not specified
withthe language. These issues are left to (the implementation of)
the adaptation engine, and are not described in this paper.

We suppose that the following functions are available to monitor
the user access to the website:

Let M = (N, H, L, C) be the Navigational Model for the website
W, n, n1, n2 ∈ N, l ∈ L, h1, h2 ∈ C, and p a path in M:

- numberOfVisits (n)
Returns the number of visits to the nod

- totalNumberOfVisits
Returns the number of visits to the website

- numberOfVisits (n, p)
Returns the number of visits to the node n via the path p

- numberOfTraversings (l)
Returns the number of time link l is traversed

- relatedNodes (n1, n2)

(a) Promotion of a node n along a path path
(l1, l2).

define promotion and demotion as moving the node one link
closer or further away from the top of a path. Promotion is
realized by adding a link to the node from a grandparent of this
node, while demotion means adding a link from a sibling to the
node and removing the original link to the node. Promotion is
shown in figure 2, demotion in figure 3. Note that in this version
of promotion, the original link is preserved.

Definition Let n ∈ N, p path where n ∈ pathNodes(p) and
level(n,p) ���

• promoteNode(n, p) stands for
addLink(grandParent(n,p)),n);

Definition Let n ∈ N, p path where n ∈ pathNodes(p), np =
parent(n,p) and ∃ n’ ∈ N: sibling(n, n’) ∧ np = isParent(np , n’),
then

• demoteNode(n, p, n’) stands for
addLink(n’,n);

deleteLink((np , n))

grandparent
(n,p)

parent(n,p)

n

promoteNode(n,p)

grandparent
(n,p)

parent(n,p)

n

l1

l2

l1

l2

Figure 2: Promotion of a node n along a path path(l1 , l2)

np

n
demoteNode(n,p, n’)

np

n’

n

l2

l3

l1

n’

l1

l3

Figure 3: Demotion of a node n via a path p to a sibling n’

Linking connects two nodes that were not (or not directly)
connected by adding new links between them. Even though the
designer did not model a link explicitly, for some nodes it turn out
at runtime that they are conceptually related in the users’ minds.
Similarly, unlinking is based on observing a lack of correlation; if
a link between two nodes is never followed, we might infer that
they are unrelated in the users’ minds, even though the designer
connected them for some reason. Removing them may result in a
simpler and more transparent site structure. In the literature, many
algorithms have been described to determine whether pages are
related, based on (restricted) clustering and user access patterns
within one user session. These may be useful to determine if
nodes are related (node will be contained in pages in the website)

Definition Let n, n’ ∈ N:

• linkNodes(n, n’)
addLink((n’,n)); addLink((n,n’))

• unLinkNodes(n, n’)
deleteLink((n’,n)); deleteLink((n,n’))

4.2.2 Clustering
In the literature, clustering associates a collection of related pages
and makes them accessible as a group on a newly created page.
The system recognizes a collection of similar documents that are
not grouped together anywhere at the site, creates a new page for
them and adds a reference to the new page. Documents may be
considered related based on their filenames, their locations in the
site hierarchy, their correlation in visitor paths, etc. A similar
transformation can be defined on our Navigational Model: if two
or more nodes are related, but not yet grouped we can add a node
and the necessarily links to make them accessible as a group.
Clustering of chunks can be done by connecting them to a single
node.

Definition Let n ∈ N, n’ ∉ N, h, h’ ∈ H
• clusterChunks(n, h, h’)

addNode(n’);
connectChunk(h, n’); connectChunk(h’, n’);
addLink((n, n’)); addLink((n', n))

Definition Let n, n1, n2 ∈ N, n’ ∉ N
• clusterNodes(n, n1, n2)

addNode(n’);
addLink((n’,n1)); addLink((n’,n2));
addLink((n, n’)); addLink((n', n))

5. ADAPTATION SPECIFICATION
LANGUAGE
Now that we have defined the navigational model, the basic
operations upon that model and some conceptual navigational
transformations, we are ready to define a language that allows
specifying at design time certain kinds of runtime adaptive
behavior. Using this language, the designer can specify what type
of adaptation is permitted during the life of the website. In this
way, he can prohibit that the structure of the website completely
runs out of his control due to the unlimited use of adaptation. The
language can be characterized as event based: conditions (based
on user access patterns) will trigger rules (the adaptive behavior).
Frequency of re-applying the rules is not specified here. Also the
way the user access patterns are determined is not specified
withthe language. These issues are left to (the implementation of)
the adaptation engine, and are not described in this paper.

We suppose that the following functions are available to monitor
the user access to the website:

Let M = (N, H, L, C) be the Navigational Model for the website
W, n, n1, n2 ∈ N, l ∈ L, h1, h2 ∈ C, and p a path in M:

- numberOfVisits (n)
Returns the number of visits to the nod

- totalNumberOfVisits
Returns the number of visits to the website

- numberOfVisits (n, p)
Returns the number of visits to the node n via the path p

- numberOfTraversings (l)
Returns the number of time link l is traversed

- relatedNodes (n1, n2)

(b) Demotion of a node n via a path p to a sibling n'.

Figure 2.12: Transforming the navigation structure in WSDM [45].

42

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

Returns true if the nodes n1 and n2 are related, false
otherwise

- relatedChunks (h1, h2)
Returns true if the chunks h1 and h2 are related, false

otherwise
- grouped (h1, h2)

Returns true if the chunks h1 and h2 are connected to the
same node, false otherwise.

- inAudienceTrack(x, T)
Returns true if the concept x (e.g. a node or a chunk) is
present in the Audience Track T.

The designer can define rules on one single element (a node, a
link, or a chunk) to anticipate adaptive behavior on one particular
element, but in this way the possibility are rather limited.
Therefore, the designer is also able to specify adaptive behavior
that is not hooked to one particular element, but to a group of
elements, e.g., all nodes of a particular Audience Track, or nodes
that have a similar access pattern. To accomplish this
functionality, the forEach constructor can be used. The forEach
constructor allows to apply a rule on each element of a set.

We will use BNF notation to define the syntax of the Adaptation
Specification Language (ASL). Due to space considerations it is
impossible to fully specify ASL; only a compact version of the
syntax is given here. Words in italic in the syntax denote
identifiers that need to be substituted. Words or symbols in bold
are keyword. The symbol ‘!’ is used to denote empty (nothing).
<condition> is not specified, but the syntax is the usual one
making use of boolean operators, function calls, the relation
operators <, ≤ >, ≥ = ≠��DQG�WKH�VHW�UHODWLRQDO�RSHUDWLRQV�⊃, ⊇, ⊄,
⊂, ⊆, ∈, ∉.

<rule> ::= (<expression> (; <expression>) * |
forEach (<set> (, <set>)* :

<expression>(; <expression>)*))

<set> ::= <variable> (, <variable>)* in <elements>
 (! |with <property> (and <property>) *)

<elements> ::= (Nodes | { node (, node)* } |
 Chunks | { chunk (, chunk)* } |
 Links | { link (, link)* })

<property> ::= <condition>

<expression>::= if <condition>
 then <operation> (; <operation>)*

<operation> ::= (deleteNode (node) | addNode (node) |
 connect(chunk,node) | disconnect(chunk,node)|
 deleteLink (link) | addLink (link) |

 promoteNode(node, path) |
 demoteNode(node1, path, node2) |

 linkNodes(node1, node2) |unLinkNodes(node1, node2) |
 clusterChunks(node, chunk1, chunk2) |
 clusterNodes(node, node1, node2))

To illustrate the use of the Adaptation Specification Language, we
will give a few examples, using the Navigational Model of the
telephone company of figure 1. As a first example of adaptation,
consider the following situation: a lot of users might want to
check the tariff formula after they've consulted their credit, to find
out why a certain call was billed in a particular way. Beforehand,
we do not know if people will act in this way, and more-over, the
telephone company would like to avoid linking these two pages if

it's not strictly necessary, fearing people will discover their tariff
is not that beneficial after all. As a designer, specifying the
following rule would be the ideal solution:

if related(n12, n4) then linkNodes(n12,n4)

Another interesting and more complex adaptation we could
consider is the following: we might want to anticipate that certain
utilities offered by the website will be extremely popular, while
others will not be. However, beforehand we are unable to predict
which utilities will be the popular ones, and which the less
popular ones. Therefore, we'll use the forEach rule:

forEach node in {n10, n11, n12} :
if numberOfVisits (node, ((n1,n2),(n2,n6),(n6,node))) /

 numberOfVisits (node) ≥ 0,9 and
(numberOfVisits(node,((n1,n2),(n2,n6),(n6,node))
) / totalNumberOfVisits ≥ 0.05
then promoteNode(node, ((n1,n2),(n2,n6),(n6,node)))

Note that both rules are specified at design time, thus effectively
allowing to model adaptive behavior before implementation
should even be considered. Given an implementation framework,
the runtime adaptation rules could even be automatically
generated.

6. CONCLUSION & FUTURE WORK
In this paper we present an approach to design adaptive websites.
This is done by extending an existing web site design method
WSDM with an Adaptation Specification Language that allows a
designer to specify the desired adaptive behavior. Following the
WSDM approach, the specification is done at the conceptual level
rather than at the implementation (or page) level. In this way the
specification is independent of the actual implementation and can
be carried over to different implementations. The benefit of the
approach is that the adaptive behavior is under control of the
website designer. In this way he can avoid that the structure of the
website runs out of his control by unlimited adaptation and that
the website becomes unmanageable. At this point, it is still up to
the designer not to specify any rules that would cause the resulting
navigational model to be inconsistent, or violate the design
philosophy. In the audience driven approach, for example, one
might easily imagine a rule triggering a series of linking and
unlinking operations, causing a node to become unreachable from
its Audience Track. Although possible, we have not defined any
constraints that allow controlling this. If a tool supports the
method, this tool can guarantee that the adaptation rules
formulated in the language will not violate the chosen
organizational approach.

We are also fully aware of the current limitations of the
Adaptation Specification Language and that further study of
different kinds of adaptive behavior is necessary and may lead to
additional rules being specified in the Adaptation Specification
language.

Future work also includes the actual mapping of the conceptual
and implementation design to the actual implementation, after
which further experiments with the adaptation language will be
possible.

Complementing the work on adapting the navigation and
structural issues of web sites, a specification mechanism for

Figure 2.13: BNF of the Adaptation Speci�cation Language [45].

Web site. Such adaptations consist in transformations of the navigation
model, which can be applied to nodes (deleting/adding nodes), informa-
tion chunks (connecting/disconnecting chunks to/form a node), and links
(adding/deleting links). Other transformations on the structure of the
navigation model are described in Figure 2.12. In particular, Promotion
(Figure 2.12(a)) makes a node easier to �nd by moving it closer to the
root of the site; Demotion (Figure 2.12(b)) on the contrary moves the
node farther away from the root. These adaptations may take place in
function of the node popularity, following the rule �the more popular the
node, the closer to the root�.
It is worth noting that in WSDM the audience-driven paradigm also

characterizes the adaptation features that are supported. Adaptation
rules impact on the site structure depending on the usage of the Web site
by the whole set of users and do not address individual user preferences.
Figure 2.13 reports the BNF de�nition of the ASL language and some

examples of rules expressed with this language.

2.4.5 UWE

UWE (UML-based Web Engineering [39]) is a UML-compliant design
model de�ned as UML pro�le and as extension of the UML meta-model.
It is characterized by the separate modeling of Web application concerns.
Di�erent models, based on UML stereotypes, are built for the content,
the navigation structure, the business processes, and the presentation.

43

2 Context-Awareness and the Web

«link aspect»

Mountains
Recognising

Directly
Solving

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

«advice»

«pointcut»

(a) Annotation model aspect.

Mountains
Recognising

Directly
Solving

EBNF−Knowledge
Applying

Introduction
EBNF−Session

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

(b) Weaving result.

Fig. 4.Adding annotations to the SmexWeb navigation structure.

NavigationAnnotation, has to be added to all the links (hence the name�link aspect�)
present in the pointcut. The result of the weaving is shown in Fig. 4(b).

4.4 Runtime Aspects

The difference between a run time aspect and a model time aspect is that the effect of
weaving the aspect with the navigation model is based on information only available at
runtime. This includes information about which link is being traversed and the state of
the user model. In addition, a run time aspect may change the runtime environment.

There are three types of run time aspects, link annotation aspects, link traversal
aspects, and link transformation aspects. A�link annotation aspect� is used for adap-
tation of the link’s annotation attributes depending, for example, on the experience of
the user. A�link traversal aspect� allows us to model the adaptation of the user and
navigation model when a link is traversed, e.g., to count how often a certain link is
followed and, in combination with a�link annotation aspect�, to increase the link’s
priority, if followed often. With a�link transformation aspect� new navigation links

6

(a) Annotation model aspect.

«link aspect»

Mountains
Recognising

Directly
Solving

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

«advice»

«pointcut»

(a) Annotation model aspect.

Mountains
Recognising

Directly
Solving

EBNF−Knowledge
Applying

Introduction
EBNF−Session

Mountains
Building

recognising mountains
building mountains
solving directly

Annotation
«navigation annotation»

recLevel : int

(b) Weaving result.

Fig. 4.Adding annotations to the SmexWeb navigation structure.

NavigationAnnotation, has to be added to all the links (hence the name�link aspect�)
present in the pointcut. The result of the weaving is shown in Fig. 4(b).

4.4 Runtime Aspects

The difference between a run time aspect and a model time aspect is that the effect of
weaving the aspect with the navigation model is based on information only available at
runtime. This includes information about which link is being traversed and the state of
the user model. In addition, a run time aspect may change the runtime environment.

There are three types of run time aspects, link annotation aspects, link traversal
aspects, and link transformation aspects. A�link annotation aspect� is used for adap-
tation of the link’s annotation attributes depending, for example, on the experience of
the user. A�link traversal aspect� allows us to model the adaptation of the user and
navigation model when a link is traversed, e.g., to count how often a certain link is
followed and, in combination with a�link annotation aspect�, to increase the link’s
priority, if followed often. With a�link transformation aspect� new navigation links

6

(b) Weaving result.

Figure 2.14: Adding annotations to the UWE navigation structure [46].

Baumeister et al. [46] explore Aspect-Oriented Programming [47] tech-
niques for modeling adaptivity in the context of the UWE method. The
authors concentrate mainly on aspects for adaptive link hiding, adaptive
link annotation, and adaptive link generation. This kind of adaptation is
achieved in UWE by adding annotations to navigation links in the nav-
igation model. Annotations are handled as independent model aspects;
the authors distinguish model time and runtime aspects.

Figure 2.14 shows how annotations are introduced by using a model
aspect that separates the annotation feature from the navigational be-
havior, thus documenting the navigation adaptation in a dedicated man-
ner. In particular, as can be seen in Figure 2.14(a), the pointcut of the
�link aspect� package describes the parts of the navigation model that
are subject to adaptation. The advice then speci�es that the class Anno-

44

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

Static
T: Homepage
A: Researchers
A: Publications
A: Projects
A: Search

List
T:Researchers
E:Academic
-Staff
IP: name
OP: name

Fact
T:Researcher
E:Academic
-Staff
OP: *

List
T: Collaborator
E: Academic
-Staff
IP: name
OP:name,email

List
T:Publications
E:Publication
IP: year, title
OP: title

Slide
T: Publications
E: Publication
IP: year
OP: *

List
T: PubInYear
E: Publication
IP: year
OP: title,

keywords

Fact
T: Publication
E: Publication
OP: *

List
T: Projects
E: Project
IP: name
OP: *

Query
T: Search
E: Publication
InP: keyword

(T: title E: entity IP: Indexed Properties OP: Output Properties InP: Input Properties * : all properties)

Figure 5. An example of a site-view graph

P1

P2 P3 P4 P5

P6

P8

P7

P9

L1 L2 L3 L4

L11

L9

L6
L7

L12

L8 L10

L5
C7C6

Pi

Ci

Page

card

link
Li

 Design primitives. The basic elements of a site-view graph are cards, pages and links. A
card is the minimal unit of a site-view graph. A page contains one or more cards and
corresponds to a physical Web page. Links are used to connect cards to form the navigational
structure of the site-view graph. Pages are connected only through the links attached to their
cards. The semantics of these design primitives are defined in the schemas for navigation,
content and presentation. Each schema categorizes and attaches necessary properties to these
design primitives. For instance, a card is attached with properties about coming and outgoing
links in navigation schema, entity property in content schema, and font property in
presentation schema.
 To see how these design primitives fit together to form a complete site-view graph, an
example of a site-view graph for the SWCP is presented in Figure 5. The details about the
graph will be explained in the rest of the section when we describing each model in site view
specification.
 Web information structures. The typical information structures on the Web can be
categorized into three basic types [8]:

• Sequential. A linear form of information flow, the simplest and most common structure.
The linkage from page P6 to P7 in Figure 5 is an example.

• Hierarchical. A hierarchical structure involves having a page linking to lower level pages
of detail. An example could be the root page P1 links to next level of pages P2 to P5 in
Figure 5.

• Associative. This structure involves nonlinear navigation, fundamentally any structure that
is not sequential or hierarchical. L7 in figure 5 is an example where the retrieval of a list of
publications as search result from database helps to form the linkage between the two
pages.

Figure 2.15: A site view graph in OntoWebber [40].

tation must be added to all the links included in the pointcut. The
resulting model, merging navigation and adaptation, is reported in Fig-
ure 2.14(b).
Content adaptation and presentation adaptation are not tackled yet

in UWE, but they are under investigation by the authors. The main
contribution of the work can be identi�ed in the strong separation of
navigation model and adaptation model, achieved by interpreting adap-
tation as cross-cutting aspect with respect to application modeling.

2.4.6 OntoWebber

Jin et al. [40] propose a fully ontology-based, model-driven approach to
the declarative design of Web sites: OntoWebber. The authors stress
the importance of data integration in the context of Web portals by
means of semistructured data formats and equip OntoWebber with a
suitable integration layer. Web site design with OntoWebber consists in
the speci�cation of a set of di�erent models: domain model, navigation
model, content model, presentation model, personalization model, and
maintenance model, where the joint design of the navigation, content,

45

2 Context-Awareness and the Web

Domain Model Navigation Model

Presentation
Model

Maintenance Model

Content
Model

Personalization Model

Figure 2. Site Models and Their Relationship

site-specific site-view-specific

are only specific to a particular site view, tailored for a particular user. Navigation model,
content model and presentation model belong to this category. Take content model as an
example, for a particular Web site, there could be many content models, though each is
associated with a specific site view. Put it another way, a particular site view specification
contains a navigation model, a content model, and a presentation model. And a Web site
contains multiple site view specifications.
 The relationship of the site models is also shown in Figure 2. There is an arrow between two
models if the source model refers to the destination model as part of its operational data.
Specific to a particular site view, the navigation model specifies the navigational structure of
the site view without concerning what content will be associated with primitive elements of
the structure. Based on the domain model, content model then relates concepts in the domain
to the primitives in the navigation model. The primitives in the navigation model can also be
associated with appropriate presentation styles by the presentation model. Specific to the Web
site, the domain model defines all the concepts and their properties and relationships in the
domain. The personalization model handles the update of individual-dependent data according
to user preferences over navigation, content and presentation aspects of their own site views.
All these models are part of the operational data for the maintenance model, which not only
manages source data, but the other models as well.
 The distinct separation of these site models facilitates the conceptual modeling process.
Designers can focus on each aspect of the site design at a time without bothering with detailed
dependencies on different aspects other than those explicitly specified in the model. Models
can also be reused easily, such as the reuse of favorite presentation style with different content
and navigation models. The declarative specification of these models also makes it much
easier to change any aspect of the site, simply by defining rewriting rules for the models.
 The vocabulary (ontologies) for describing site models is a set of pre-defined site modeling
schemas using DAML+OIL. Table 1 shows the relationship between models, the schemas
used to define them, and meta-schemas (schemas used to define the modeling schemas).

Table 1. Relationship between models and schemas
Site model Site modeling schema Meta-schema

Domain model DAML+OIL DAML+OIL
Navigation model Navigation schema DAML+OIL
Content model Content schema (and upper ontology) DAML+OIL
Presentation model Presentation schema DAML+OIL
Personalization model Personalization schema (and upper ontology) DAML+OIL
Maintenance model Maintenance schema (and upper ontology) DAML+OIL

(a) Relationships between OntoWebber mod-
els.

User

Capacity

Interest

Request

username*

password*

capacity

interest

request

name*

age*

gender*

occupation*

incomeLevel*

browserType*

conectionSpeed*

navigateModel+

contentModel+

presentModel+

Trigger

Figure 11. Personalization schema

 Basically, two types of personalization can be provided by the system. The fine-grained
personalization is achieved by defining the personalization model using the above schema. A
coarse-grained personalization can also be used, by assigning user to specific user group. For
each user group, a particular site view and personalization model is constructed. This can be
modeled by defining similar properties for user groups as for users in the above schema and
add relationship between user and user group. In the course-grained personalization, the site
view of the user will not be updated as often as in the fine-grained personalization, since it
only changes when group view changes. This helps to reduce workload of the system
considerably.

3.5 Site Maintenance Modeling

Maintenance of a Web site typically falls into two categories, content maintenance and
functionality maintenance. The later can be further classified into corrective, adaptive, and
perfective maintenance [14]. Here we will focus on the content maintenance aspect, since the
functionality part is more of a software-engineering issue, while what we are interested is the
data management of a Web site.
 From data management point of view, Web site maintenance can be regarded as a
manipulation of data when certain data changes. Therefore, we come to a simple schema for
maintenance modeling, which is shown in Figure 12.
 Administrator is the target object of maintenance rules, and will update the source data,
meta-data, and site view specifications according to the fired triggers. There are basically two
types of maintenance rules.
 User-oriented rules. Administrator is a super user, who has the authority to initiate actions
that influence users and user groups with certain properties. It can be achieved by rewriting the
personalization model. An example of these rules could be “if any instance of Book about
Semantic Web (e.g. title or keyword contains the phrase) has been published, re-compute the
site views of users who are working on a project about DAML.

(b) Personalization model.

Figure 2.16: Personalization in the OntoWebber method [40].

and presentation models is called site view design. In particular, site
view design yields a so-called site view graph, which allows the automatic
generation of the three di�erent conceptual models. Figure 2.15, for
example, describes a possible OntoWebber site view graph.
Figure 2.16(a) shows the relationships between the di�erent design

models in the OntoWebber approach. As showed in the �gure, the con-
tent model, navigation model, and presentation model (i.e. the site view)
can be customized according to the personalization model. The authors
distinguish between �ne-grained and coarse-grained adaptation/persona-
lization; the former is achieved by incrementally rewriting a user's site
view structure, the latter is achieved by switching between site views.
Personalization is based on three user properties, i.e. capacity, interest,

46

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

62 K.-D. Schewe and B. Thalheim

Example 3.1. If we rewrite the story space from Example 2.1 we obtain the
following KAT expression:

α1((ϕ0α2 + ϕ1α3(α5 + 1)ϕ3 + ϕ2α4(α6 + 1)ϕ4)∗ϕ5)(α7ϕ6 + α13ϕ7)
(ϕ6α8(α8 + 1)α9α10α11α12ϕ8+ϕ7α8α

∗
8α14α15α

∗
16α11α17(ϕ12α18α19)∗ϕ12α18ϕ9)

α20(ϕ10 + ϕ11)

4 Applying Many-Sorted Kleene Algebras with Tests

In order to reason about story spaces, we may now exploit the fact that they
can be described by many-sorted KATs.

4.1 Equational Reasoning with KATs

Hoare logic [9] is the oldest formal system for reasoning about abstract pro-
grams. Its basic idea is to use partial correctness assertions – also called Hoare
triplets – of the form {ϕ}p{ψ}. Here p is a program, and ϕ and ψ are its pre-
and postcondition, respectively, i.e. logical formulae that can be evaluated in a
program state.

The informal meaning of these triplets is that “whenever the program p is
started in a state satisfying ϕ and terminates, then it will do so in a state
satisfying ψ”.

Using KATs, such a Hoare triplet corresponds to a simple equation ϕpψ̄ = 0.
Equivalently, this can be formulated by ϕp ≤ pψ or pψ̄ ≤ ϕ̄p or ϕp = ϕpψ.

In [13] it has been shown that KATs subsume propositional Hoare logic
(PHL), i.e. all derivation rules of Hoare logic can be proven to be theorems for
KATs. However, the theory of KATs is complete, whereas PHL is not.

In order to use KATs to reason about story spaces, the general approach is
as follows. First we consider the atomic actions and scene and the many-sorted
KAT defined by them. In this KAT we can express the story space or parts of
it by some process expression p. We then formulate a problem by using equa-
tions or conditional equations in this KAT. Furthermore, we obtain (conditional)
equations, which represent application knowledge. This application knowledge
arises from events, postconditions and knowledge about the use of the WIS for a
particular purpose. We then apply all equations to solve the particular problem
at hand.

The application knowledge contains at least the following equations:

1. If an action p has a precondition ϕ, then we obtain the equation ϕ̄p = 0.
2. If an action p has a postcondition ψ, we obtain the equation p = pψ.
3. If an action p is triggered by a condition ϕ, we obtain the equation ϕ = ϕp.
4. In addition we obtain exclusion conditions ϕψ = 0 and tautologies ϕ+ψ = 1.

(a) SiteLang story space expressed by means of a many-sorted Kleene algebra with

tests.

ϕ5x = x for all x ∈ K
ϕ5ϕ0 = 0 ϕ5ϕ1 = 0 ϕ5ϕ2 = 0

(b) Personalization predicates.

64 K.-D. Schewe and B. Thalheim

That is, the whole story space can be simplified to

α1(α7ϕ6 + α13ϕ7)
(ϕ6α8(α8 + 1)α9α10α11α12ϕ8+ϕ7α8α

∗
8α14α15α

∗
16α11α17(ϕ12α18α19)∗ϕ12α18ϕ9)

α20(ϕ10 + ϕ11)

This means that for a user who knows about loans the part of the story space
that deals with information about loans including sample applications will be
cut out.

4.3 Satisfaction of Information Needs

The problem of satifying the information needs of a particular WIS user can
be formalised by assuming that there is a goal that can be represented by some
formula ψ. Thus, we can take ψ ∈ B. Furthermore, assume that our story space
is represented by some process expression p ∈ K. Then the problem is to find a
minimal process p′ ∈ K such that pψ = p′ψ.

In order to find such a p′ we have to use the application knowledge. In this
case, however, we only obtain the general application knowledge that we already
described above, unless we combine the application with personalisation.

For instance, assume we can write the story space p as a choice process p1+p2.
Let equations ϕψ = 0 and p2 = p2ϕ (postcondition) be part of our application
knowledge. If the goal is ψ, we get

pψ = (p1 + p2)ψ = p1ψ + p2ψ = p1ψ + p2ϕψ = p1ψ.

This means we can offer the simplified story space p1 to satisfy the goal ψ.
Let us finally illustrate this application with a non-artificial example.

Example 4.2. Let us continue Example 3.1 and look at a user who is going to
apply for a home loan. This can be expressed by the goal ϕ10. Then we express
application knowledge by the equations ϕ10ϕ11 = 0 (a user either applies for a
home loan or a mortgage, not for both), ϕ10ϕ9 = 0 (a user applying for a home
loan does not complete a mortgage application) and ϕ6ϕ7 = 0 (a user either
selects a home loan or a mortgage, but not both).

Then we can simplify pϕ10 with the expression p from Example 3.1 step by
step. First we get (ϕ10 + ϕ11)ϕ10 = ϕ10, which can then be used for

(ϕ6α8(α8 + 1)α9α10α11α12ϕ8

+ ϕ7α8α
∗
8α14α15α

∗
16α11α17(ϕ12α18α19)∗ϕ12α18ϕ9)ϕ10 =

ϕ6α8(α8 + 1)α9α10α11α12ϕ8ϕ10

+ ϕ7α8α
∗
8α14α15α

∗
16α11α17(ϕ12α18α19)∗ϕ12α18ϕ9ϕ10 =

ϕ6α8(α8 + 1)α9α10α11α12ϕ8ϕ10

(c) Simpli�ed/personalized application model.

Figure 2.17: Personalization in the SiteLang method [48].

and request ; Figure 2.16(b) shows the adopted personalization model.

2.4.7 SiteLang

SiteLang [41] is a storyboard speci�cation language that allows the spec-
i�cation of information services based on the concepts of story and in-
teraction spaces as well as media objects. More precisely, SiteLang is
a process algebra for storyboarding, i.e. for expressing application �sto-
ries�.
In the context of SiteLang, Schewe et al. [48] describe a singular, al-

gebraic approach to personalization or adaptation in Web information
systems by leveraging Kleene algebras with tests [49] as alternative for-
malization of SiteLang story spaces. Figure 2.17(a), for example, shows
an algebraic expression representing a story space. The so formalized
story space can now be personalized according to the preferences of ap-
plication users by specifying proper (conditional) equations, as exempli-
�ed in Figure 2.17(b). User preferences are thus speci�ed by means of
proper pre- or post-conditions that act as �lters over the Web informa-
tion system's story space and that tailor the algebraic expression of the
story space to the individual user. Applying the algebraic preferences
to the expression of the story space enables the automatic simpli�cation
of the story space into the expression shown in Figure 2.17(c). Unlike
the previous conceptual approaches, this idea heavily leverages formal
reasoning about Web information systems.

47

2 Context-Awareness and the Web

In [50] the authors show how SiteLang applications in general can
be adapted to the usage history, context parameters (e.g. the current
delivery channel), and/or to the role users play in the application.

2.4.8 Comparison of Approaches

As the previous description of design methods shows, the di�erent fo-
cuses of the most prominent conceptual Web design methods and their
di�erent modeling paradigms yield di�erent levels of support for applica-
tion adaptation. Adaptation features are expressed by means of a variety
of formalisms, and, also, the actual adaptation features supported vary
from method to method. For instance, while all of the described methods
support some form of personalization, only few of them are designed to
support more advanced adaptation mechanisms, i.e. runtime adaptivity
or context-awareness.
To compare the described design methods more systematically, we

introduce a set of dimensions that we believe are apt to express how
adaptation is supported by those methods. In particular, the dimensions
are:

• Adaptability : does the approach provide means for the design time
adaptation to device characteristics or user pro�les?

• User pro�le adaptivity : does the approach provide means for the
runtime adaptation to a user model?

• Context-Awareness: does the approach support adaptivity accord-
ing to a generic and dynamic context model?

• Modeling Paradigm: how is application adaptation (i.e. rules)
speci�ed?

• Tool support : is the approach supported by a proper CASE tool,
assisting designers throughout the development phases?

Table 2.1 summarizes how the discussed design methods address the
identi�ed dimensions. In general, all of the approaches support the
(static or design time) adaptability of the application to individual user
pro�les and/or device characteristics. Adaptivity and context-awareness
are supported only in a very limited fashion, especially context-awareness
is not addressed as envisioned in the introductory sections of this chapter.
WSDM does not explicitly support context-awareness, but the pro-

posed approach to application adaptation, which distinguishes WSDM
from the approaches of the other methods, leads us to say that WSDM

48

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

presents context-aware features: its audience-driven adaptation of the
application is in fact not triggered by an individual user model (as re-
quired by the above characterization), but by a model of the overall
audience of the application, i.e. a context property according to our
de�nitions. In addition, the e�ects of adaptation actions (e.g. the elim-
ination of a navigation node) e�ectively apply to the application as a
whole in a global fashion, as opposed to user-speci�c (i.e. individual)
adaptation e�ects supported by the other methods.
The PRML language proposed by Garrigós et al. in the context of the

OO-H method provides a singular, uni�ed solution by means of runtime
personalization rules addressing both adaptability and adaptivity; typi-
cal design time decisions, such as those concerning adaptability, are thus
handled at runtime. Although this aspect could have the disadvantage of
delaying adaptability decisions to the execution time, the integration of
OO-H and PRML seems to o�er the most complete adaptation coverage.
Concerning the modeling paradigms underlying the methods, they all

count on more or less intuitive graphical models in the actual application
design process. Adaptation design is however mostly addressed in a
textual fashion, requiring the designer to get familiar with a di�erent
speci�cation paradigm. In a unique fashion, SiteLang is characterized
by a very strong formalization, which allows the application to leverage
automatic reasoning techniques to personalize the system's story space;
a similar formal paradigm (based on personalization predicates) is kept
also for personalization speci�cation.
Tool support for the computer-assisted development of Web applica-

tions is not provided by all of the described methods. Especially adapta-
tion speci�cation, which may require the designer to hand-code adapta-
tion rules and to switch from the original to another modeling paradigm,
is out of the scope of the tools.
Due to the lack of an explicit support for context-awareness, none of

the approaches discussed leverages a proper context model for applica-
tion adaptation. However, in principle all methods could be extended to
support adaptivity and context-awareness. In general, we observe that
the more an approach also provides an implementation framework (not
only a design instrument), possibly also shaping the architecture of the
�nal application, the more application adaptation can be shifted from
pure design time to runtime, thus enabling dynamic adaptation mecha-
nisms.

Throughout this dissertation, we will introduce concepts and solutions
that address the �ve dimensions used to characterize adaptivity. More
precisely, we will show how the WebML modeling language, properly

49

2 Context-Awareness and the Web

extended, is able to cope with adaptability, adaptivity, and context-aware-
ness. We will try to keep as much as possible the modeling paradigm
that already characterizes WebML and to extend the WebML CASE
tool accordingly.

Table 2.1: Comparison of the adaptation features of the most prominent
conceptual design methods.

Method Dimension Evaluation

Hera Adaptability It fully supports adaptability with respect
to device characteristics and user prefer-
ences by means of appearance conditions

attached to modeling constructs.
Adaptivity There is no explicit notion of adaptivity; it

is however considered future work [42].
Context-
Awareness

Adaptability features are based on CC/PP
pro�les, and there is no support for a more
general context model. If adaptivity is in-
troduced in Hera, it should however be
easy to leverage also general context data.

Modeling
Paradigm

Hera models adopt an intuitive, graphical
modeling paradigm; adaptability rules are
speci�ed through a textual formalism.

Tool Support The method is equipped with a proper
Hera Presentation Generator [51], based on
Hera design models.

OOHDM Adaptability User preferences and device characteristics
can be taken into account by tailoring con-

text diagrams.
Adaptivity There is no explicit support for runtime ap-

plication adaptation.
Context-
Awareness

Customization is considered with respect
to user pro�le and device, more general
context data is not yet discussed.

Modeling
Paradigm

OOHDM models are inspired by the
object-oriented design paradigm (e.g.
UML). Customization of nodes, links
and indexes is expressed by queries over
conceptual objects.

continued on next page

50

2.4 Model-Driven Design of Context-Aware or Adaptive Web Applications

continued from previous page

Method Dimension Evaluation

Tool Support A template-based environment, OOHDM-
Web [52], supports site development.

OO-H Adaptability Adaptability can be speci�ed by means of
the PRML rule language.

Adaptivity Adaptivity is supported through adapta-
tion rules and a proper runtime pro�ling
mechanism.

Context-
Awareness

OO-H supports context-based personaliza-
tion through explicit context representa-
tion, addressing location, network status,
device type, and time.

Modeling
Paradigm

The application design is expressed by
means of UML-based visual diagrams.
Adaptation rules are expressed by means
of textual PRML rules bound to visual di-
agrams by specifying the triggering events.

Tool Support OO-H development is supported by the Vi-
sualWade CAWE tool [53].

WSDM Adaptability WSDM does not explicitly provide adapt-
ability to user preferences and devices.

Adaptivity Not explicitly supported.
Context-
Awareness

Application adaptations are triggered by
a model of the whole community of users
and thus �transform� the navigation model
based on the global Web site usage.

Modeling
Paradigm

WSDM models are visual, while adaptivity
is expressed by means of textual ASL rules.

Tool Support The Audience Modeler CASE tool sup-
ports the audience modeling phase of
WSDM, the Chunk Modeler CASE tool
supports the data modeling phase.

UWE Adaptability Adaptability of contents, links, and pre-
sentation properties is supported by means
of a representation of user characteristics
(e.g. task, preference, interests).

Adaptivity Adaptive link hiding and adaptive link gen-
eration are managed at runtime based on
the current status of the user model.

Context-
Awareness

UWE covers context representation, ad-
dressing user location and hardware, soft-
ware, and network platform.

continued on next page

51

2 Context-Awareness and the Web

continued from previous page

Method Dimension Evaluation

Modeling
Paradigm

The application design uses UML-based
visual diagrams. Adaptation is based
on aspect-oriented modeling by separating
cross-cutting features into aspects bound
to the principal model.

Tool Support The UWE method is supported by Ar-
goUWE, which does not include support
for adaptivity. Some tool extensions are
however planned.

OntoWebber Adaptability The method supports coarse-grained adap-
tation by tailoring site views to user groups
and �ne-grained adaptation based on a
prede�ned personalization model.

Adaptivity Adaptivity at runtime is not mentioned.
Context-
Awareness

Design support for context-aware applica-
tion features is not provided.

Modeling
Paradigm

Ontologies (modeled in RDF and
DAML+OIL) are the grounding of
OntoWebber. The site view graph is an
intuitive, graphical schema, that can be
adapted to the needs of the users.

Tool Support OntoWebber is equipped with a proper de-
velopment suite [54], comprising Ontology
Builder, Site Builder, Site Generator, and
Personalization Manager.

SiteLang Adaptability Support for adaptability to preferences and
devices characteristics is provided.

Adaptivity In [50] the authors use the term adaptivity,
but sometimes with the meaning of adapt-
ability, according to our de�nition.

Context-
Awareness

In [50] the authors show how context is
used to suitably select media types.

Modeling
Paradigm

The main idea if SiteLang is story board-
ing, based on the modeling of usage scenar-
ios. SiteLang has a strong formalization,
also enabling automatic reasoning.

Tool Support SiteLang development is aided by the Sto-
ryboard Editor [55].

2.5 Discussion

This chapter provided some insight into the historical perspective of
context-awareness and of context modeling in general. We discussed
some works that are related with the approach we will develop through-

52

2.5 Discussion

out this dissertation, i.e. we discussed the most prominent conceptual
Web design methods. Hence, special focus was put on design support for
context-awareness or adaptivity in Web applications. The comparison
of the methods shows that although all of the methods provide means
for the design of adaptable Web sites or for personalization, none of
them explicitly supports the design of context-aware Web applications,
where adaptivity may be triggered by a generic context model during
the execution of the application.
In order to support the development of context-aware Web applica-

tions by means of conceptual modeling methods, we therefore need to
enrich the expressive power of the adopted models and/or languages, so
as support the modeling of context data and the de�nition of adaptive
application features. Showing how this can be done in WebML, is the
aim of this dissertation.

53

3 The Web Modeling Language
(WebML)

TheWebModelling Language (WebML) is a third-generationWeb design
methodology conceived in 1998 on the wake of the early hypermedia
models and of the pioneering works on Hypermedia and Web design, like
HDM [56] and RMM [57].
The original goal of WebML was to support the design and imple-

mentation of so-called data-intensive Web applications [1], de�ned as
Web sites for accessing and maintaining large amounts of structured
data, typically stored as records in a database management system, like
on-line trading and e-commerce applications, institutional Web sites of
private and public organizations, digital libraries, corporate portals, and
community sites. But the language has also constantly been subject to
evolution, and the original version has been extended with new concepts
and modeling facilities to cope with novel requirements that have been
posed to Web applications. For instance, WebML has been extended
toward the modeling of Web services and the interaction between a Web
application and Web services [58] and toward the modeling of process-
enabled Web applications [59].
The extension of WebML toward the modeling of context-aware and

adaptive Web applications described in this dissertation requires knowl-
edge of WebML-speci�c concepts and notions. Therefore, this chapter
introduces the reader to the necessary terminology. Note that the con-
tents of this chapter are outside the scope of the research that led to this
dissertation.

3.1 Introduction

WebML is a visual language for the speci�cation of the structure of a
Web application and the organization and presentation of contents in
one or more hypertexts. For the de�nition of its visual modeling primi-
tives, WebML reused existing conceptual data models and proposed an
original notation for expressing the navigation and composition features

55

3 The Web Modeling Language (WebML)

of hypertext interfaces. The hypertext model of WebML took an ap-
proach quite di�erent from previous proposals: instead of o�ering a high
number of primitives for representing all the possible ways to organize a
hypertext interface that may occur in data-intensive Web applications,
the focus was on inventing a minimal number of concepts, which could
be composed in well-de�ned ways to obtain an arbitrary number of ap-
plication con�gurations. This initial design choice deeply in�uenced the
de�nition of the language and its evolution toward more complex classes
of applications.
Four major versions of WebML characterize the progression of the

language:

• WebML 1 : The original version comprised only a �xed set of prim-
itives to model read-only data-intensive Web sites. The focus was
on the modular organization of the interface, on navigation de�ni-
tion and on content extraction, and publication in the interface.

• WebML 2 : It added support to model business actions (called op-
erations), triggered by the navigation of the user. In this way,
the expressive power was extended to support features like content
management and authentication and authorization.

• WebML 3 : The introduction of the concept of model plug-ins trans-
formedWebML into an open language, extensible by designers with
their own conceptual-level primitives, so to widen the expressive
power to cover the requirements of new application domains. This
transition emphasized the role of component-based modeling and
was the base of all subsequent extensions.

• WebML 4 : The notion of model plug-ins was exploited to add or-
thogonal extensions to the core of WebML, covering sectors and
applications not previously associated with model-driven develop-
ment. For example, Web Service interaction and work�ow mod-
eling primitives were added as plug-in components to enable the
modeling and implementation of distributed applications for multi-
actor work�ow enactment [58, 59].

A distinctive trait of the WebML experience is the presence of an in-
dustrial line of development running in parallel to the academic research.
One of the original design principles of WebML was implementability,
with the ultimate goal of bringing Model-Driven Development (MDD)
to the community of �real� developers. To achieve this objective, Politec-
nico di Milano spun o� a company (called Web Models) in 2001, with

56

3.2 WebML Design Overview

the mission of implementing and commercializing methods and tools for
model-driven development of Web applications, based on WebML.
The major result of the industrial R&D is WebRatio [2], an integrated

development environment supporting the modeling of applications with
WebML and their implementation with model-driven code generators.
Today WebRatio is a consolidated industrial reality: more than one hun-
dred applications have been developed by Web Models' customers, over
4.000 trial copies are downloaded per year, and many universities and
institutions in the world use the tool in their Web Engineering courses.

3.2 WebML Design Overview

The WebML design process starts with the de�nition of a data schema,
expressing the organization of the application content. The WebML
WebML!Data Model adopts the Entity-Relationship (ER) primitives to
represent the organization of the application data. Its fundamental ele-
ments are therefore entities, de�ned as containers of data elements, and
relationships, de�ned as semantic connections between entities. Entities
have named properties, called attributes, with an associated type. Enti-
ties can be organized in generalization hierarchies, and relationships can
be restricted by means of cardinality constraints.
The WebML Hypertext Model allows then designers to describe how

data, speci�ed in the data schema, are published into the application
hypertexts. The overall structure of hypertexts is de�ned in terms of
site views, areas, pages, and content units. A site view is a particular
hypertext, designed to address a speci�c set of requirements. It consists
of areas, which are the main sections of the hypertext, and comprises
recursively other sub-areas or pages. Pages are the actual containers of
information delivered to the user; they are made of content units, which
are the elementary pieces of information extracted from the data sources
and published in pages. Content units and pages are interconnected by
links to constitute site views.
Several site views can be de�ned on top of the same data schema,

to serve the needs of di�erent user communities, or for arranging the
composition of pages to meet the requirements of di�erent access devices
like PDAs, smart phones or similar appliances. The WebML Hypertext
Model includes:

• The composition model, concerning the de�nition of pages and their
internal organization in terms of elementary pieces of publishable
content, called content units. Content units o�er alternative ways

57

3 The Web Modeling Language (WebML)

of arranging content dynamically extracted from entities and rela-
tionships of the data schema. WebML units denote one or more
instances of the entities of the data schema, typically selected by
means of queries over entities, attributes, or relationships, and also
forms for collecting input values into �elds. Unit speci�cation (ex-
cept for the entry unit) includes the indication of a source and a
selector: the source is the name of the entity from which the unit's
content is extracted; the selector is a predicate, used to determine
the actual objects of the source entity that contribute to the unit's
content.

• The navigation model, based on the de�nition of links that connect
units and pages, thus forming the hypertext. Links can connect
units in a variety of legal con�gurations, yielding composite navi-
gation mechanisms. Links between units are used to carry pieces
of information from the source unit to the destination unit.

• The operation model, consisting of a set of units for specifying
content management operations. The basic primitives support cre-
ating, deleting or modifying an instance of an entity (respectively
represented through the create, delete, andmodify units), or adding
or dropping a relationship between two instances (respectively rep-
resented through the connect and disconnect units).

Besides having a visual representation, WebML primitives are also
provided with an XML-based, textual representation, used to specify ad-
ditional detailed properties, not conveniently expressible in the graphic
notation. Web application speci�cations based on WebML can be there-
fore represented as visual diagrams as well as XML documents.

3.3 Data Model

The goal of data modeling is to enable the speci�cation of the data
used by the application in a formal yet intuitive way. The result of data
modeling is a conceptual schema, which conveys in a simple and readable
way the available knowledge about the application data. WebML does
not propose yet another data modeling language, but exploits the most
successful and popular notation, namely the Entity-Relationship (ER)
model.

58

3.3 Data Model

Album Artist

Figure 3.1: Graphic notation for entities.

Album

Title
Year
Cover

Artist

FirstName
LastName
Biography
Photo

Figure 3.2: Graphic notation for entities and attributes.

3.3.1 Entities

Entities are the central concept of the Entity-Relationship model. An
entity represents a description of the common features of a set of objects
of the real world. Examples of entities are Person, Car, Artist, and
Album. An entity has a population, which is the set of objects that are
described by the entity. These objects are also called the instances of
the entity.

As all the concepts of the Entity-Relationship model, entities are spec-
i�ed using a graphic notation. They are denoted by means of rectangles,
with the entity name at the top. Figure 3.1 shows an Entity-Relationship
schema consisting of two entities: Album and Artist.

3.3.2 Attributes

Attributes represent the properties of real world objects that are relevant
for the application. Examples of attributes are the name, address, and
photo of a person. Attributes are associated with entities, with the
meaning that all the instances of the entity are characterized by the
same set of attributes. In other words, the entity is a descriptor of the
common properties of a set of objects, and such properties are expressed
as attributes.

Attributes are graphically represented inside the entity box, below the
entity name, as shown in Figure 3.2. In the example, the entity Album

is characterized by attributes Title, Year and Cover, and the entity
Artist by attributes FirstName, LastName, Biography and Photo.

59

3 The Web Modeling Language (WebML)

Artist

PopArtist JazzArtist

Figure 3.3: Generalization hierarchy.

3.3.3 Identi�cation and Primary Key

All the instances of an entity must be distinguishable by means of a
unique identity that permits their unambiguous identi�cation. It is good
practice to de�ne the primary key of entities using a single special pur-
pose attribute, called object identi�er (abbreviated as OID), whose sole
purpose is to assign a distinct identi�er to each instance of an entity.
WebML assumes that the OID property is implicitly de�ned for all en-
tities and omits it from the Entity-Relationship diagrams.
Alternative identi�cation schemas are admissible and the identifying

attributes can be de�ned as keys (also called alternative keys). Alterna-
tive keys must be not null and unique, just like primary keys.

3.3.4 Generalization Hierarchies

The Entity-Relationship model permits the designer to organize entities
into a hierarchy, where they share common features. The basic gener-
alization hierarchy (also called IS-A hierarchy) has one super-entity and
one or more sub-entities (see Figure 3.3 for an example). Each sub-entity
inherits all attributes and relationships de�ned in the super-entity and
may add locally-de�ned attributes and relationships.

3.3.5 Relationships

Relationships represent semantic connections between entities, like the
association between an artist and his/her album or between an artist
and his/her reviews. The meaning of the association is conveyed by the
relationship's name, which is established by the designer. The simplest
form of relationship is the binary relationship, which connects two enti-
ties, but also relationships involving more than two entities, called N-ary
relationships, are allowed.
Relationships can be annotated with minimum and maximum car-

dinality constraints, respectively denoting the minimum and maximum

60

3.4 Hypertext Model

Artist Album
Publication
1:1 0:N

Figure 3.4: Graphic notation for relationships.

number of objects of the destination entity to which any object of the
source entity can be related. Based on their maximum cardinality con-
straints, relationships are called �one-to-one�, if both relationships roles
have maximum cardinality 1, �one-to-many�, if one relationship role has
maximum cardinality 1 and the other role has maximum cardinality N,
or �many-to-many�, if both relationships roles have maximum cardinality
N. Figure 3.4 shows a �one-to-many� relationship, associating one artist
to multiple albums.
The Entity-Relationship model admits N-ary relationships and rela-

tionships with attributes. However, as well known in the data modeling
�eld, both these constructs can be represented using a combination of
entities and binary relationships, thus we do not investigate them more
accurately.

3.4 Hypertext Model

The goal of hypertext modeling is to specify the organization of the front-
end interfaces of a Web application. The speci�cation of the hypertext in
WebML is kept as much as possible at the conceptual level, which means
that it does not commit to speci�c design or implementation choices. In
fact, while drawing a WebML hypertext model, a developer does not
already need to worry about, for example, the actual distribution of
functionality between the various tiers of the Web application. These and
other design choices may be taken later on in the development process.

3.4.1 Pages

Pages are the actual interface elements delivered to the user who browses
the hypertext by accessing its pages in the desired sequence. A page
typically consists of several units, grouped together to accomplish a well-
de�ned communication purpose.
Figure 3.5 shows the graphic notation for pages, which is simply a la-

beled box surrounding the units that belong to the page. In the example,
the page called AlbumPage contains two content units, one to display the
list of all artists and one to display the list of all albums. The �gure also

61

3 The Web Modeling Language (WebML)

AlbumPage

AlbumIndex

Album

AlbumPage

AlbumIndex

° All the way
° Let's talk about...
° Sing-a-long
° These are ...

ArtistIndex

° Celine Dion
° Frank Sinatra
° Nirvana
° Lenny Kravitz

ArtistIndex

Artist

Figure 3.5: WebML graphic notation for pages.
3.3 Hypertext Model 23

AlbumSiteView

ArtistPage

Artist

ArtistData

AlbumIndexPage AlbumPage

Artist

ArtistShortData AlbumIndex

Album
[ArtistToAlbum]

Album

AlbumData AlbumSupports

Support
[AlbumToSupport]

AlbumTracks

Track
[AlbumToTrack]

Artist
[AlbumToArtist]

ArtistShortData

ArtistsPage

AllArtists

Artist L

H

Figure 3.22 Site view in WebML.

Figure 3.22 shows an example of the graphic notation for site
views. Site views are characterized by a user-defined name and con-
tain a set of pages and/or areas. In the example, the AlbumSiteView
groups four pages within one module.

3.3.6.2 Areas, Landmarks and Home Pages
Like site views, areas as well are containers of pages or, recursively,
other sub-areas, which can be used to give a hierarchical organiza-
tion to a site view. Links can be drawn between pages and units in
the usual way, and can cross the borders of areas. Following an inter-
area link simply implies that the focus moves from a page of one area
to a page of another area.

CompanySiteview

CustomerInformation

HomePage H

L

CorporateNews

ContactUs

InvestorInfo

TechSupport

EcologyPolicy

NewBrands

D

D

Figure 3.23 Two-level decomposition of site views into areas.

Pages and areas are characterized by some distinguishing
properties, which highlight their “importance” in the Web site. In
particular, pages inside an area or site view may have the following
three properties, which can be found graphically in Figure 3.23:

Figure 3.6: Site view in WebML.

shows a possible rendition of the AlbumPage in HTML, which is simply
the aggregation of the renditions of the two units.
Note that, although in the �gure the position of the units in the HTML

rendition is the same as that of the index unit icons in the WebML spec-
i�cation, this fact is purely coincidental. A WebML page speci�cation
is abstract and has nothing to do with presentation aspects, like the
relative position of content elements in the HTML rendition.

3.4.2 Hypertext organization

The speci�cation of large and complex hypertexts, starting form pages,
can be organized hierarchically, by using modularization constructs such
as site views, areas, and nested pages.

Site Views

A WebML hypertext is packaged into an application to be delivered
to users by enclosing its linked pages and units into a modularization
construct called site view.
Figure 3.6 shows an example of the graphic notation for site views.

Site views are characterized by a user-de�ned name and contain a set

62

3.4 Hypertext Model

CompanySiteview

CustomerInformation

HomePage H

L

CorporateNews

ContactUs

InvestorInfo

TechSupport

EcologyPolicy

NewBrands

D

D

Figure 3.7: Two-level decomposition of site views into areas.

of pages and/or areas. In the example, the AlbumSiteView groups four
pages into one module.

Areas, Landmarks and Home Pages

Like site views, areas as well are containers of pages or, recursively,
other sub-areas, which can be used to give the site view a hierarchical
organization. Links can be drawn between pages and units in the usual
way, and can cross the borders of areas. Following an inter-area link
simply implies that the focus moves from a page of one area to a page
of another area.
Pages and areas are characterized by some distinguishing properties,

which highlight their importance in the Web site. In particular, pages
inside an area or site view may have the following three properties, which
can be found graphically in Figure 3.7:

• The home page (small �H� inside the page icon) is the page at the
(unique) default address of the site and presented after the user
logs in to the application.

• The default page (�D�) is the one presented by default when its
enclosing area is accessed. The default page inside an area must
be unique.

• A landmark page (�L�) is reachable from all the other pages or
areas within its enclosing module (the site view or a super-area)
by means of a speci�c link pointing to that page.

Areas are associated with landmark and default properties, using the
same notations as pages (see Figure 3.7):

63

3 The Web Modeling Language (WebML)

Entity
[conditions]

Data unit Multidata unit

Entity
[conditions]

Index unit

Entity
[conditions]

Scroller unit

Entity
[conditions]

Entry unit

Figure 3.8: Graphic representation of the �ve basic units with source and
selector conditions.

• Analogous to the previous de�nition, the default area is the subarea
accessed by default when its enclosing super-area is accessed.

• A landmark area is an area implicitly reachable from all other pages
or areas of the enclosing site view or a super-area.

Areas are not meant only for structuring several pages of a site view
into conceptual hierarchies, but from an operational point of view, by
means of such hierarchies it is possible to derive a menu structure valid
for the overall site view, which permits easy access to landmark areas or
pages.

3.4.3 Units

Units are the atomic elements for specifying the content of a Web page.
WebML supports �ve types of units (cf. Figure 3.8):

• Data units, which show information about single objects.

• Multidata units, which present information about a set of objects.

• Index units, which show a list of descriptive properties of some
objects, without presenting their detailed information.

• Scroller units, which enable the browsing of an ordered set of ob-
jects, by providing commands to access the �rst, last, previous,
and next element of a sequence.

• Entry units, which model entry forms, whose �elds allow the gath-
ering of input, needed to perform searches or to feed update oper-
ations.

The �ve basic types of content units can be combined to represent Web
pages of arbitrary complexity. The �rst four units model the publication
of information to users, while entry units express the acquisition of in-
formation from users. Among the four units for information publishing,

64

3.4 Hypertext Model

Artist

ArtistDetails

FirstName: Celine
LastName: Dion
Photo:

Artist
[FirstName=”Celine”]
[LastName=”Dion”]

ArtistDetails

Figure 3.9: WebML graphic notation for data units and rendition in
HTML.

data and multidata units present the actual content of the objects they
refer to, whereas indexes and scroller units facilitate the selection of ob-
jects. Data units refer to a single object, whereas multidata, index, and
scroller units refer to a set of objects.
Data, multidata, index, and scroller units present content extracted

from the data schema; therefore, it is necessary to specify where their
content comes from. WebML uses two concepts to express the origin of
a unit's content, the source and the selector:

• The source is the name of the entity from which the unit's content
is extracted. Thus, the source entity tells the type of the objects
used to compute the unit's content.

• The selector is a predicate, used to determine the actual objects
of the source entity that contribute to the unit's content. Selec-
tors are the conjunction of elementary conditions, built from the
entity attributes, from the relationship roles in which the entity
is involved, and from constant or variable terms. Variable terms
are constructed using parameters associated with the input links
of the unit. Selectors whose conditions use parameters are called
parametric selectors.

Data Units

Data units publish a single object of a given entity. A data unit is
characterized by a user-de�ned name, a source, an optional selector, and
the set of included attributes.
Figure 3.9 shows a data unit called ArtistDetails, with its source

and selector highlighted below the icon. The unit is de�ned over the
entity Artist, and shows the speci�c object determined by evaluating

65

3 The Web Modeling Language (WebML)

MultiArtist

Artist

Artists

MultiArtist

Celine
Dion

Lenny
Kravitz

Jim
Morrison

Frank
Sinatra

Figure 3.10: WebML graphic notation for multidata units, and rendition
in HTML.

its selector, which is the conjunction of two equality-based predicates on
attributes FirstName and LastName. The visualized attributes are not
speci�ed in the graphic notation, but are declared as unit properties.
The selector of the data unit includes a conjunction of two simple

predicates. Besides conjunction, two forms of disjunction can be speci�ed
in a selector predicate:

• Value disjunction: a single attribute value is compared with a set
of values using the expression [attribute operator value1 | value2
|. . . | valueN]. This corresponds to the predicate ((attribute oper-
ator value1) OR (attribute operator value2) OR . . . OR (attribute
operator valueN)).

• Attribute disjunction: a set of attributes is compared with a single
value using the expression [attribute1 | attribute2 | . . . | attributeN
operator value]. This notation corresponds to the predicate ((at-
tribute1 operator value) OR (attribute2 operator value) OR . . . OR
(attributeN operator value)).

Multidata Units

Multidata units present multiple objects of an entity together by repeat-
ing the presentation of several data units. A multidata unit is character-
ized by a user-de�ned name, a source, an optional selector, the included
attributes, and an optional order clause. See Figure 3.10 for the graphic
notation for multidata units.

Index Units

Index units present multiple objects of an entity as a list and are typically
used to select one particular object. An index unit speci�cation includes

66

3.4 Hypertext Model

 Albums

AlbumIndex

All the way

Always

Anthology

Beginnings

Born in the USA OK

AlbumIndex

Album

Figure 3.11: WebML graphic notation for index units and rendition in
HTML.

 Albums

AlbumIndex

All the way

Always

Anthology

Beginnings

Born in the USA OK

AlbumIndex

Album

Figure 3.12: WebML graphic notation for multi-choice indexes, and ren-
dition in HTML.

the user-de�ned name, the source, the optional selector, the included
attributes, and the optional order clause. Figure 3.11 shows the graphic
notation for index units.

Multi-choice Index Unit

A �rst variant of index unit is represented by the multi-choice index unit,
in which each element of the list of entries is associated with a checkbox,
allowing the user to select multiple objects, instead of a single one. The
graphic notation for representing a multi-choice index unit and a possible
rendition are depicted in Figure 3.12.

Hierarchical Index Unit

A second variant of index unit is the concept of hierarchical index, in
which the index entries are organized in a multi-level tree. The hierarchy
is represented by a sequence of N source entities connected by N-1 rela-
tionship roles. The �rst source entity represents the instances at the top
level of the hierarchy; the second source entity, introduced in the selec-

67

3 The Web Modeling Language (WebML)

 Tracks

AlbumIndex
All the way

New day has ...

These are ...

Hits of ..

AlbumIndex

Album
NEST Track

[AlbumToTrack]

Track 1 Track 2
Track 3 Track 4
Track 5 Track 6
Track 1 Track 2
Track 3 Track 4
Track 1 Track 2
Track 3 Track 4
Track 5 Track 6
Track 1 Track 2
Track 3 Track 4

Figure 3.13: WebML graphic notation for hierarchical indexes and ren-
dition in HTML.

tor by the NEST clause, represents the instances at the second level of
the hierarchy, and so on. Each relationship role denotes the father-child
association between two entities at consecutive levels in the hierarchy.
Selector conditions can be speci�ed for the source entities at any level

of the hierarchy, and even recursive relationships de�ned over certain
entities are possible. See Figure 3.13 for an example graphic rendition
of a hierarchical index unit.

Scroller Units

Scroller units provide commands to scroll through the objects in a set,
for example to scroll over all the instances of an entity. A scroller unit
speci�cation is characterized by the user-de�ned name, the source, the
optional selector, the block factor (i.e. the number of objects that are
scrolled together), and the optional order clause.
Figure 3.14 shows the WebML graphic notation for representing a

scroller unit and a possible rendition in an HTML-based implementa-
tion. The AlbumScroll unit is de�ned over the entity Album and has
no selector; thus, it can be used for moving along the set of all albums.
In particular, it is possible to move to the �rst, previous, next, and last
album, according to the sorting clause speci�ed in the unit.

Entry Units

Entry units support form-based data entry, as exempli�ed by Figure 3.15.
They are used to gather input, which is typically employed to:

• Perform searches over the objects of an entity, for example to locate
the instances of an entity whose attributes contain a given keyword.

68

3.4 Hypertext Model

AlbumScroll

Album

Albums

AlbumScroll

Album 35 of 150

Figure 3.14: WebML graphic notation for scroller units, and rendition in
HTML.

ArtistInput

Artist

ArtistInput

FirstName:
LastName:
BirthDate:
DeathDate:

Louis

Armstrong

07-06-1971

08-04-1901

Figure 3.15: WebML entry unit, and rendition in HTML.

• Supply parameters to operations like content updates, login, and
external services.

3.4.4 Links

Neither pages nor units exist in isolation, because real-world hypertexts
are made of connected pages that contain several interrelated pieces of
content and commands permitting the user to interact with the applica-
tion. To express these features, pages and units can be linked to specify
the allowed navigation paths between pages, the selections o�ered to the
user and the e�ect of the user's interaction on the content of the units
displayed in the page.
Navigation modeling is the part of hypertext modeling that deals with

the speci�cation of the links between units and pages, and of the prop-
erties of such links. The central notions of navigation modeling are the
concepts of link, link parameters, and parametric selectors:

• A link is an oriented connection between two units or pages.

• A link parameter is the speci�cation of a piece of information,
which is transported from the source to the destination of the link.

69

3 The Web Modeling Language (WebML)

PopArtists

POP ARTISTS

Celine
Dion

John
Bon Jovi

Sting The
Beatles

PopArtistsPage

PopArtists

PopArtist

JazzArtistsPage

JazzArtists

JazzArtist

JazzArtists

JAZZ ARTISTS

Gene
Ammons

Louis
Armstrong

Miles
Davis

Frank
Sinatra

Go to JazzArtists

Figure 3.16: Non-contextual link connecting two pages.

• A parametric selector is a unit selector whose predicates contain a
reference to a link parameter.

Speci�cation of Links

Links abstract and generalize the fundamental notion of hypertexts: the
concept of anchor. An anchor is an active device, through which the
user can interact with the hypertext and which is classi�able as follows:

• Anchor tags, with an href attribute that refers to another page.

• Anchor tags, with an href attribute that refers to the same page.

• Con�rmation buttons of HTML forms used for searching.

• Con�rmation buttons of HTML forms used for sending input to
operations, for example for logging into a password-protected site.

Essentially, links (i) enable the navigation of the hypertext by letting
the user move from a source page to a destination page and (ii) transport
information from one unit to another. In the WebML terminology, links
crossing the boundaries of pages are called inter-page links, whereas links
with the source and destination inside the same page are called intra-
page; links transporting information are called contextual , in contrast
with non-contextual links, which do not transport information. Graph-
ically links are represented by oriented arcs, which connect the source
unit or page to the destination unit or page.
The example of Figure 3.16 shows an inter-page, non-contextual link.

The link connects a source page (PopArtistsPage), which includes a
multidata unit showing pop artists, to a destination page (JazzArtists-
Page), which includes a multidata unit showing jazz artists. The con-
tent of page JazzArtistsPage is independent from the content of page
PopArtistsPage, and thus the navigation of the link does not require
any information to be passed from the source to the destination page.

70

3.4 Hypertext Model

ArtistPageArtistsPage

AllArtists

Artist Artist
[OID=CurrArtist]

ArtistDetails
CurrArtist:OID

Artists

All Artists

° Andrea Bocelli
* Celine Dion
° Frank Sinatra
° The Beatles

Selected Artist

Artist Details

FirstName: Celine
LastName: Dion
Photo:

Figure 3.17: Inter-page contextual link with associated link parameter.

ArtistsPage

ArtistsMultiData

Artist
[OID IN SelArtists]

SelArtists: {OID}
ArtistMultichoice

Artist

Albums

SELECTED ARTISTS

Celine
Dion

John
Bon Jovi

The
Beatles

Frank
Sinatra

ARTISTS SELECTION

The Beatles

Sting

Frank Sinatra OK

John Bon Jovi

Celine Dion

Figure 3.18: -choice index and set-valued link parameter.

Figure 3.17 on the other hand illustrates an example of interpage con-
textual link. Page ArtistsPage contains an index unit, named AllArt-

ists, which is de�ned over entity Artist; the index unit is linked to a
data unit, named ArtistDetails, de�ned on entity Artist, and placed
in a distinct page. In this case, the content of the destination unit de-
pends on information provided in the source unit, and the transfer of
this context information is associated with the navigation of the link.

Link Parameters and Parametric Selectors

The binding between the source unit and the destination unit of the link
is formally represented by a link parameter de�ned over the link and by
a parametric selector de�ned in the destination unit.
A link parameter is a value associated with a link between units, which

is transported from the source unit to the destination unit. A parametric
selector is a unit selector whose condition mentions one or more param-
eters. An example of these concepts is shown in Figure 3.17, where the
link includes a parameter (CurrArtist) representing the object identi�er
of the artist selected from the index, and the data unit has a selector
[OID=CurrArtist], which uses the CurrArtist parameter to retrieve
and display the details of the appropriate artist.
A link parameter can be single-valued or set-valued ; for example, it

may hold the set of OIDs of the objects selected from a multichoice index
unit. Figure 3.18 gives an example of such a set-valued link parameter
associated to a contextual intra-page link.

71

3 The Web Modeling Language (WebML)

Source unit Default link parameters for outgoing links

Data unit The OID of the object displayed by the unit.
Multidata unit The set OIDs of the objects displayed by the

unit.
Index unit The OID of the single object selected from the

unit.
Hierarchical index
unit

The OID of the single object selected from the
unit. If the unit has multiple nested entities,
the OID refers to an instance of the entity at
the top of the hierarchy. Parameters associated
with the objects of entities nested at inner lev-
els must be speci�ed explicitly.

Multi-choice
index unit

The set of OIDs of the multiple objects selected
from the unit.

Scroller unit The set of OIDs of the selected block of objects,
or a single OID if the block factor is 1.

Table 3.1: Default output link parameters of units.

ArtistPage

PublishedAlbums

Album
[ArtistToAlbum]

Artist

ArtistDetails

Figure 3.19: Short notation for relationship role selectors.

To make hypertext diagrams more readable, the link parameter speci-
�cation can be omitted, when the parameters associated with the link are
deducible from the context. In this regard, Table 3.1 summarizes the de-
fault output parameters of the previously described units, and Table 3.2
reports their default selector conditions.
A very useful application of parametric selectors occurs when one unit

must display all the instances of an entity that are related to some in-
stances of another entity. In this case, a selector condition can be spec-
i�ed, which retrieves the subset of the objects of the source entity that
are connected by a speci�c relationship to the object(s) passed in input
to the unit by an incoming link. Figure 3.19 illustrates an example of
such selector condition, which exploits the relationship ArtistToAlbum

and, in addition, uses default link parameters.

72

3.4 Hypertext Model

Destination unit Default selector

Data unit OID = < link parameter of type OID of the
input link>

Multidata, index,
multi-choice index,
and scroller unit

OID IN < link parameter of the type OID of
the input link>

Hierarchical index
unit

The default selector is de�ned only for the en-
tity at the top of the hierarchy and is: OID IN
< link parameter of the type OID of the input
link>

Table 3.2: Default selector conditions of units in case of input links with-
out explicit selector conditions.

 AlbumsPage

AlbumIndex

Album
[Year = SelYear] implied

SelYear

Figure 3.20: Implied selector predicate.

A parametric selector predicate can be tagged implied, to denote that
the condition expressed by the predicate is optional. In this case, the
absence of a value for the parameter used in the predicate can be toler-
ated, and the selector is evaluated as if the predicate were not speci�ed.
For an example, please consider Figure 3.20.

Automatic and Transport Links

When a page is accessed that contains units, which depend on incoming
links activated by user-navigated intra-page links or originating in other
units of the same page, these units cannot be computed. The solution to
this problem is provided by means of an automatic link, which is a link
that is �navigated� in absence of user interactions, when the page that
contains the source unit of the link is accessed, as showed in Figure 3.21.
The provided parameter value is heuristically selected (usually the �st
available).
All the links seen so far are rendered by means of anchors or con�r-

mation buttons. However, there are cases in which a link is used only

73

3 The Web Modeling Language (WebML)

AlbumPage

AlbumIndex

Album Album

AlbumDetails

A

AlbumPage

Album Index Album Details

Title: All the way
Year: 1999
Cover:

* All the way
° Let's talk about...
° Sing-a-long
° These are ...

Figure 3.21: Example of an automatic link and its HTML rendition at
the �rst page access.

CelineDionPage

Published Albums

° All the way
° New day has come
° Hits of ...
° Colour of ...

CelineDionAlbums

PublishedAlbums

Album
[ArtistToAlbum]

Artist
[FirstName="Celine"]
[LastName="Dion"]

ArtistDetails Artist Details

FirstName: Celine
LastName: Dion
Photo:

Figure 3.22: Example of transport link.

for passing context information from one unit to another one, and thus
is not rendered as an anchor. This type of link is called transport link,
to highlight the fact that the link enables only parameter passing, and
not user navigation. Data units and multidata units, for example, do
not allow the selection of objects out of a set, and thus do not require
heuristic choices like those made by automatic links. See Figure 3.22 for
the graphic notation of transport links.

3.4.5 Global parameters

WebML o�ers the notion of global parameter to store information that
should be available to multiple pages. A global parameter is a piece of
information, either the OID of an object or a typed value, which can
be explicitly set at some point during hypertext navigation and then
retrieved to compute the content of some unit later during the naviga-
tion. The value of the global parameter is associated with the user's
session, so that distinct users may have di�erent values for the same
global parameter.
Using a global parameter requires three steps: declaring it, setting

a value, and getting the value. The declaration of a global parameter
requires the de�nition of:

• A user-de�ned name for the parameter.

• The type of the value stored in the parameter.

74

3.5 Content Management Model

22 Chapter 3 The Web Modeling Language (WebML)

 A user-defined name for the parameter.
 The type of the value stored in the parameter.
 A possible default value, which is a constant value initially as-

signed to the parameter.

The value of a parameter is assigned by means of an ad hoc
unit, called set unit. A set unit has only one input link, which is asso-
ciated with a link parameter holding the value to be assigned to the
global parameter. Since the assignment has a global side effect and
becomes visible to all the pages of a site view, a set unit is graphically
placed in the hypertext diagram outside pages.

A global parameter is retrieved by means of the get unit, which
can be considered the dual operation with respect to the set unit. A
get unit has no incoming links, and has only one outgoing link,
transporting the value of the retrieved parameter; the unit is placed
inside the page where the global parameter value is used, to show
the fact that the parameter is retrieved to help the computation of
some unit local to the page.

CountryPage

Country

CountryData SetCountry

CurrentCountry

CountryPage

Country

CountryDataGetCountry

CurrentCountry

a) b)

Figure 3.21 a) Setting global parameters. b) Using global pa-

rameters.

3.3.6 Hypertext organization
The specification of large and complex hypertexts can be organized
hierarchically, by using modularisation constructs such as site views,
areas and nested pages.

3.3.6.1 Site Views
A WebML hypertext is packaged into an application to be delivered
to users by enclosing its linked pages and units into a modularization
construct called site view.

Figure 3.23: a) Setting global parameters. b) Using global parameters.

• A possible default value, which is a constant value initially assigned
to the parameter.

The value of a parameter is assigned by means of an ad hoc unit, called
set unit (cf. Figure 3.23(a)). A set unit has only one input link, which
is associated with a link parameter holding the value to be assigned to
the global parameter. Since the assignment has a global side e�ect and
becomes visible to all the pages of a site view, a set unit is graphically
placed in the hypertext diagram outside pages.
A global parameter is retrieved by means of the get unit (cf. Fig-

ure 3.23(b)), which can be considered the dual operation with respect to
the set unit. A get unit has no incoming links, and has only one outgo-
ing link, transporting the value of the retrieved parameter; the unit is
placed inside the page where the global parameter value is used, to show
the fact that the parameter is retrieved to help the computation of some
unit local to the page.

3.5 Content Management Model

For the purpose of content management, a new kind of WebML units,
so-called operation units or operations, are placed outside of pages and
linked to other operations or to content units de�ned inside pages. Dif-
ferently from content units, operations do not display content, which
justi�es the fact that they are placed outside pages; rather, they per-
form actions. Like content units, operations may have a source object
(either an entity or a relationship) and selectors, they may receive param-
eters from their input links, and they may provide values to be used as
parameters of their output links. WebML operations obey the following
design principles:

• An operation may have multiple incoming links, providing values
for its input parameters.

• Operations can be linked to form a sequence.

75

3 The Web Modeling Language (WebML)

• Each operation has one OK link and one KO link, expressing the
operation's outcome. The former is followed when the operation
succeeds, the latter when the operation fails.

• An operation may have any number of outgoing transport links,
which are used to specify link parameters needed by content units
or other operation units.

The result of the execution of an operation can be displayed in a page
by linking an operation to an appropriate content unit that accepts input
parameters from the operation and uses them to retrieve and display the
identi�ed information.

3.5.1 Prede�ned Operations

WebML provides a number of built-in operations, whose meaning is pre-
de�ned in the language. Due to the orientation toward data-intensive
Web applications, most prede�ned operations address data-management
tasks; a few other built-in operations are provided, which o�er services of
general utility, frequently used in Web applications. They are the login
and logout operations and the send-mail operation.

Object creation

The �rst built-in operation is the create unit, which enables the creation
of a new entity instance and which we explain in greater detail. Each
create unit is characterized by a user-de�ned name, a source, and a set
of assignments, associating values to attribute names.
The input of a create unit is a set of attribute values, typically coming

from one input link exiting from an entry unit. The values are used by
the create operation to construct a new object; if some attributes have no
associated input value, they are set to null, with the exception of the OID
that is treated di�erently: if no value is supplied, a new value, unique
with respect to the entity instances, is generated by the operation. The
output produced by the create operation is the set of attribute values of
the newly created object, including the OID. The output is de�ned only
in case the operation succeeds, and thus can be meaningfully associated
as a link parameter only to the OK link, and not to the KO link. The
default output of the create unit is the value of the OID attribute, which
is assumed as the implicit link parameter of the OK link, if no parameter
is speci�ed explicitly.
The example in Figure 3.24 shows the typical usage pattern for create

operations, which consists of the combination of an entry unit (Artist-

76

3.5 Content Management Model

ArtistCreationPage

ArtistEntry CreateArtist

Artist
<FirstName := FName>
<LastName := LName>

FName:FirstName
LName: LastName

CreationResultsPage

Artist

ArtistDetails

OK

KO

CreationResults

Artist Details

FirstName: Celine

LastName: Dion

ArtistCreation

Artist Entry

FirstName:

LastName:

Press OK
to create

 Celine

 Dion

OK

OK

KO

Figure 3.24: WebML graphic notation for create units, and a possible
rendition in HTML.

Entry) providing input to a create unit (CreateArtist), creating a new
instance of an entity (Artist). In the example, the entry unit has two
�elds (FirstName, LastName), to enter the �rst name and the last name
of an artist. The values inserted by the user are associated as explicit
parameters with the link from the entry unit to the create operation.
These parameters are bound to the attributes of the artist object to be
created by means of two assignments, represented below the source entity
of the create unit. In the rendition shown in Figure 3.24, the link exiting
the entry unit is displayed as a submit button permitting the activation
of the operation. The CreateArtist operation has two output links:
the OK link points to the ArtistDetails data unit and is associated
with the default link parameter (the OID of the new object); the KO
link points back to the ArtistCreation page to let the user retry the
operation.

Object deletion

The delete unit is used to delete one or more objects of a given entity.
Each delete unit is characterized by a user-de�ned name, a source, and
a selector.
The user typically chooses at run-time either a single object, displayed

by a data unit or selected by an index or scroller unit, or a set of objects,
displayed by a multidata unit or selected by a multichoice index unit; the

77

3 The Web Modeling Language (WebML)

Albums

DeleteAlbum

Album

KO

OK

Albums

Album Index

KO

OK

Albums

Album Index

AlbumIndex

Album

All the way

Born in the USA
Anthology

Del
Del

Del

Del

Del

Del

Del

Bridges to Babylon

Let's talk ...
Imagine

Sing-a-long

Born in the USA
Anthology Del

Del

Del

Del

Del

Del

Bridges to Babylon

Let's talk ...
Imagine

Sing-a-long

Figure 3.25: WebML graphic notation for delete unit, and rendition in
HTML.

corresponding OID or set of OIDs is associated as a link parameter to
the incoming link of the delete unit, which actually deletes the objects.
Figure 3.25 shows an example usage pattern.
The same con�guration would also be valid if set values (provided,

for example, by means of a multi-choice index unit) were provided to
the delete unit, or if attribute-based selector conditions were speci�ed
(for example considering user input by means of an entry unit). The
implementation of the delete unit must preserve the referential integrity
constraint of relationships.

Object modi�cation

The modify unit is used to update one or more objects of a given entity.
Each modify unit is characterized by a user-de�ned name, a source, a se-
lector, and a set of assignments, binding the new values to the attributes
of the objects identi�ed through the selector.
A modify unit must be properly linked to other units, to obtain the

needed inputs. The OK link of a modify unit is followed when all the
objects have been successfully modi�ed. The KO link is followed when at
least one of the objects could not be modi�ed, in which case the default
outgoing parameter contains the set of OIDs of the objects that could
not be modi�ed.

78

3.5 Content Management Model

Result

ModifyArtist

BioEntry

ModifyBio

Artist
<BiographicInfo := Bio>

OK

KO

ModifyArtist

EDIT BIOGRAPHY
Celine Dion

Celine Dion was born in
1968, the youngest of
fourteen children.

OK

Result

BIOGRAPHY

OK

KO

Celine Dion
Bio: Celine Dion was born in
1968, the youngest of
fourteen children.

Artist

BioData

Bio: BiographyField

ModifyArtist

EDIT BIOGRAPHY
Celine Dion

OK

Artist

BioData

Figure 3.26: Modify unit and rendition in HTML.

The example of Figure 3.26 shows an entry unit used to supply val-
ues to a modify unit that allows users to add biographies to the artists
already existing in the application's data source.

Relationship creation

A connect unit is used to create a new instance of a relationship for each
pair of objects of a source and destination entity retrieved by evaluating
two selector conditions. The properties of the connect unit are the user-
de�ned name, the source relationship (identifying the two entities to be
connected), and two selectors, one for locating the objects of the source
entity and one for the objects of the destination entity.
Figure 3.27 shows an example of connect unit attaching a review to an

artist. The e�ect produced by the operation is to connect the selected
artist (input parameter Art) to the current review (input parameter Rev),
using the ArtistToReview relationship role. Notice the de�nition of the
two selector conditions. The �gure reports all parameter names, but
since they refer all to object identi�ers, they could also be omitted.

Relationship deletion

A disconnect unit is used to delete instances of a relationship. As for
the connect unit, the properties of the disconnect unit are the user-
de�ned name, the source relationship (identifying the two entities to be

79

3 The Web Modeling Language (WebML)

ReviewPage

 ° Beatles

 * Dion

 ° Prince

One of the most
romantic and
expressive artists
of the nineties.

Result

First name:
Celine
Last name:
Dion

OK

KO

All ArtistsNew Review Artist Details

ReviewPage

Review

NewReview

AllArtists

Artist

AssignReview

ArtistToReview
[Artist.OID = Art]

[Review.OID = Rev]

Rev: OID

Art:OID

Result

Artist
[OID = Art]

ArtistDetails

Art: Artist.OID

OK

Rev: Review.OID

Review
[OID=Rev]

ReviewDetails

Rev: Review.OID

Select an artist to assign
the review: Review:

One of the most
romantic and
expressive artists
of the nineties.

Review Details

KO

Figure 3.27: Connection unit and rendition in HTML.

disconnected) and two selectors, one for identifying the objects of the
source entity and one for the objects of the destination entity.
The operation is used similarly to the connect unit and deletes one

instance of the source relationship role for each pair of objects of the
source and destination entities identi�ed by the two selectors. Figure 3.28
shows an example where a disconnect unit is used to �detach� one album
from an artist.

3.5.2 Access Control and Mail Operations

Login and logout operations allow the designer to specify the controlled
access to the site, while e-mail sending is useful, for instance, for deliv-
ering purchase noti�cations or for sending text or documents to speci�c
recipients.

Login Operation

To implement access control and to verify the identity of a user accessing
the site, WebML provides a prede�ned operation called login. The oper-
ation has two �xed parameters (username and password), whose values
must be passed in input to the operation by a link, typically exiting from
an entry unit, as shown in Figure 3.29.

80

3.5 Content Management Model

Artist&AlbumsPage

Artist

ArtistDetails

PublishedAlbums

Album
[ArtistToAlbum]

Album

AlbumDetails

Album
Disconnect

AlbumToArtist

OK

KO

Artist&Albums

Celine Dion

° All the way
° Let's talk...
° Sing-a-long
° These are...

ALBUMS

Artist&Albums

Celine Dion

° All the way
° Let's talk...
* Sing-a-long
° These are...

ALBUMS DETAILS
Sing-a-long
1999

Press OK
to remove

OK

Artist&Albums

Celine Dion

° All the way
° Let's talk...
° These are...

ALBUMS

OK

KO

Figure 3.28: Usage of disconnect units and rendition in HTML.

Login Page

CredentialsEntry LoginOperationUName: UsernameField
Pwd: PasswordField

< UserName := UName>
< Password := Pwd>

Error Page
KO

Figure 3.29: WebML login unit preceded by an entry unit for credential
input.

81

3 The Web Modeling Language (WebML)

 Logout Page LogoutOperation

Figure 3.30: WebML logout operation unit invoked via a non-contextual
activating link.

MailSendingPage
TitleP: TitleField
TextP: TextField

SenderP: SenderField

RecipientsP: {Email} SendMail
Operation

<Sender := SenderP>
<Recipients := RecipientsP>

<Subject := TitleP>
<Body := TextP>

<Attachments := AttachmentsP>

RecipientsSelection

User

Recipients

User

AttachmentsSelection

Document

Attachments

Document

AttachmentsP:{DocumentBody}

MailData

Figure 3.31: WebML sendmail operation unit fed by an entry unit and a
data unit.

The login operation checks the validity of the identity of the user, and
if the veri�cation succeeds, forwards him/her to a default page. If the
credentials are invalid, the login operation forwards the user to the page
pointed at by the KO link.

Logout Operation

The logout operation is used to leave the session of a logged user and
to forward him to a default page with no access control. The logout
operation has no input and no output and can be invoked by a simple
non-contextual link, as shown in Figure 3.30.

Send-mail Operation

Another prede�ned WebML operation is the send-mail unit, which pro-
vides the capability to send e-mail messages. The operation has �ve
parameters: the text of the e-mail, the set of addresses of the receivers,
the address of the sender, the subject of the message, and an optional
set of attachments. Figure 3.31 shows a typical usage pattern, activating
a send-mail operation by means of an entry unit.

82

3.6 Automatic Code Generation

 Operation unit

Figure 3.32: Symbol of the WebML generic operation unit.

3.5.3 Generic Operations

In addition to the described built-in operations, WebML allows the de-
signer to de�ne generic operations, such as credit card payments or sim-
ilar. The generic operation unit has a graphic symbol shown in Fig-
ure 3.32.
A generic operation executes outside the WebML context; users may

interact with it by supplying input using an arbitrary hypertext pattern,
and possibly no longer �come back� to the WebML application. Thus, it
is perfectly legal to model an external operation with no output links.
Alternatively, an external operation may have OK and KO links. In

this case, upon completion of the execution, the operation is expected
to autonomously decide the link to follow, for example based on some
result code or exception encountered during processing. In this case, the
interaction with the WebML application restarts from the destination
page of the followed link.

3.6 Automatic Code Generation

Application development with WebML is assisted by WebRatio [2], a
commercial tool for designing and implementing Web applications. The
architecture of WebRatio (shown in Figure 3.33) consists of two layers:
a design layer, providing functions for the visual editing of speci�ca-
tions, and a runtime layer, implementing the basic services for executing
WebML units on top of a standard Web application framework.
The design layer includes a graphical user interface (shown in Fig-

ure 3.34) for data and hypertext design, which produces an internal
representation in XML of the WebML models. A data mapping module,
called Database Synchronizer, maps the entities and relationships of the
conceptual data schema to one or more physical data sources, which can
be either created by the tool or preexisting. The Database Synchronizer
can forward- and reverse-engineer the logical schema of an existing data
source, propagate the changes from the conceptual data model to the
physical data sources, and vice versa.
A third module (called EasyStyler Presentation Designer) o�ers func-

tionality for de�ning the presentation style of the application, allowing

83

3 The Web Modeling Language (WebML)

 Style sheet library

Built-in tag
libraries

HTML

Third party
authoring

tools

XML XSL

Data Mapping

Data Design Site Design Presentation

WebRatio Design Layer

Code Generator

Application Server

WebRatio Runtime Layer

Data
Sources

Unit library

Custom
components

Custom unit
library

Figure 3.33: The WebRatio Architecture.

Figure 3.34: The Graphical User Interface of WebRatio.

84

3.6 Automatic Code Generation

the designer to create XSL style sheets from XHTML mockups, asso-
ciate XSL styles with WebML pages, and organize the page layout, by
arranging the relative position of content units in each page.
The design layer is connected to the runtime layer by the WebRa-

tio code generator, which exploits XSL transformations to translate the
XML speci�cations visually edited in the design layer into application
code executable within the runtime layer, built on top of the Java2EE
platform. In particular, a set of XSL translators produce a set of dy-
namic page templates and unit descriptors, which enable the execution
of the application in the runtime layer. A dynamic page template (e.g.
a JSP �le) expresses the content and mark-up of a page in the mark-up
language of choice (e.g. in HTML, WML, etc.). A unit descriptor is
an XML �le that expresses the dependencies of a WebML unit from the
data layer (e.g. the name of the database and the code of the SQL query
computing the population of an index unit).
The design layer, code generator, and runtime layer have a plug-in

architecture: new software components can be wrapped with XML de-
scriptors and made available to the design layer as custom WebML units,
the code generator can be extended with additional XSL rules to produce
the code needed for wrapping user-de�ned components, and the compo-
nents themselves can be deployed in the runtime application framework.

85

4 Modeling Context-Aware Web
Applications

As we saw in Chapter 2, several kinds of adaptive or context-aware fea-
tures have been implemented on top of commonly used Web technologies.
However, the analysis of the most prominent model-driven design meth-
ods for Web applications also showed that the experiences from these
applications did not yield corresponding extensions for the conceptual
modeling of context-awareness, although almost all of the methods sup-
port the speci�cation of advanced personalization features or adaptivity
(cf. Section 2.4). In this chapter we propose our own model-driven ap-
proach to the design of context-aware Web applications, which, to the
best of our knowledge, represents the �rst conceptualization of such kind
of concepts in the domain of the Web. More precisely, we will show how
supporting context-awareness in the design process requires to suitably
de�ne a reference context model and to augment the expressiveness of
the underlying application model, in order to take advantage of context.
New concepts and modeling constructs are formalized as extension

of the Web Modeling Language (WebML), where the main goal during
the formalization process was to keep the consistency and continuity
with respect to the standard version of the language. In particular, the
newly introduced concepts and primitives aim to capture those novel
requirements that demand for adaptivity, i.e. adaptive behaviors during
runtime, while adaptability is already supported by WebML. In fact,
device characteristics and user preferences can be taken into account
and used during hypertext design to adapt the application front-end.

4.1 A Conceptual View over Context-Aware Web
Applications

Discussing context-awareness in Web applications �rst of all demands
for a precise de�nition of the term Web application, so as to ground
the proposed ideas and solutions on a solid technological background.
In this work, we concentrate on the �classical� three-tier architecture of

87

4 Modeling Context-Aware Web Applications
Application

Data

Page
rendering

Context Model

Hypertext
adaptation

Client-side Parameters

Context Model

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Server-side
Sensing

Context
Monitor

Application
Data

Page
rendering

Context
Model

Hypertext
adaptation

Context
attributes

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Server-side
Sensing

Context
attributes

Web Browser Presentation Tier

Web Application Logic Tier

Data Tier
DB

Application DataPage
rendering

Hypertext
adaptation

Server-side
SensingHypertext

Web Browser

Client-side
parameters

Server-side
parameters

DB updates

Client-side
Sensing

Figure 4.1: Classical three-tier architecture applied to the domain of the
Web.

Web applications, consisting of Web browser for presentation (thin client
with (X)HTML and CSS) andWeb application server and database back-
end for business logic and data management, as graphically depicted by
Figure 4.1.
We therefore assume that the core business logic of the application

resides on the server side, and that possible enhanced client-side fea-
tures (e.g. JavaScript functions or Java applets) only serve presentation
purposes. This is in line with the fact that the classical architecture is
representative of the most widespread type of Web applications. Accord-
ingly, the proposed modeling approach, at its high level of abstraction,
does not depend on any client-side logic.
Note that possible application logic required for the sensing of context

properties (on either client or server side) is not considered being part
of the Web application to be modeled.

Context-aware applications either use context or adapt to context to
achieve a context-aware feature. The use of context to deliver services
or contents occurs in a way that is analogous to the use of standard
application data. For instance, displaying context data as application
contents is analogous to publishing application data coming from the
application's data source. Adaptation to context, on the other hand,
may demand for new abilities on the part of the application, i.e. the ca-
pability to adapt the application or parts of it to varying context states.
In general, context-aware applications may thus also include adaptability
and/or adaptivity, where typically adaptability is based on device char-
acteristics and user pro�le data and preferences, and adaptivity is based
on a dynamic user model.
For the design of Web applications in general it is good practice to

adopt a strong separation of concerns between data and hypertext design
(cf. Section 2.4). The approach presented in this dissertation therefore
leverages this practice as well for the design of context-aware Web appli-

88

4.1 A Conceptual View over Context-Aware Web Applications

cations and separates the design and management of context data from
the speci�cation of the application's hypertext.
In general, the data that underlie a context-aware application can be

characterized as follows:

• Core application data. These contain the contents and meta-data
used and published by the application to reach its actual applica-
tion goal. Typically, users are interested in application data.

• User pro�le data. These are necessary for two main reasons: (i)
adaptability with respect to the pro�le, and (ii) access control with
respect to the user's identity. Access control (i.e. the identi�cation
and authentication of users) is a main feature of most modern
software systems and represents a speci�c aspect of adaptability.
Once a user's access rights are known, an application typically
allows the user only access to those resources (e.g. contents and
services) that are compatible with the user's role. Contents and
services are then adapted and presented according to his/her pro�le
and device characteristics.

• Dynamic user model data. These express a user's dynamic pro�le
data, i.e. data that may change during the runtime of the ap-
plication, such as preferences over application contents (e.g. the
preferred author of a user) or ownership relations between a user
and contents (e.g. the ownership of a comment on a blog). Data
in the dynamic user model is typically taken into account by ap-
plications through adaptivity.

• Context data. These data describe the context of the interaction
between the user and the application; typically context data change
rapidly (compared to, for example, the user model). This property
implies the need for adaptive features that are able to perform
application adaptations during runtime also according to context
data.

As in this dissertation we concentrate on the development of context-
aware Web applications, we forget for a moment about the peculiarities
of user and personalization data and consider them as part of the general
application data (we will turn back to this distinction in the next section),
so as to better focus on the characteristics of context data.
Figure 4.2 proposes a functional architecture that takes into account

the separation of data and hypertext design and highlights some issues
related to context data acquisition and the �ow of context data within
a context-aware application.

89

4 Modeling Context-Aware Web ApplicationsApplication
Data

Page
rendering

Context Model

Hypertext
adaptation

Client-side Parameters

Context Model

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Server-side
Sensing

Context
Monitor

Application
Data

Page
rendering

Context
Model

Hypertext
adaptation

Context
attributes

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Server-side
Sensing

Context
attributes

Web Browser Presentation Tier

Web Application Logic Tier

Data Tier
DB

Application DataPage
rendering

Hypertext
adaptation

Centralized
SensingHypertext

Web Browser

Client-side
parameters

Server-side
parameters

Client-side
Sensing

Figure 4.2: Context data in context-aware Web applications. Gray
shaded boxes correspond to conventional, non-adaptive
parts, white boxes correspond to extensions required to sup-
port context-awareness.

The application's data source includes both the application data (i.e.
the business objects that characterize the application domain, the user
and the preference data) and the context model, which o�ers at any
moment an up-to-date representation of the context state. The context
model captures all the context-characterizing properties (i.e. attributes
and changes in time) that enable the system's adaptation to the context.

In order to feed the context model with data and to update it on
changes, context data needs to be sensed and communicated to the Web
server that hosts the application. In our interpretation of context-aware
Web applications, there are three main communication mechanisms that
allow the sensing devices to pass context data to the application: (i) as
parameters sensed at the client side and sent to the application (i.e. to
the adaptive hypertext, which is able to interpret the incoming data);
(ii) as server-side parameters directly �lled by the centralized sensing in-
frastructure (i.e. HTTP session variables, immediately available to the
application for consumption/evaluation); and (iii) by means of direct
updates of the context model. Typically, client-side parameters are gen-
erated by the client-side sensing tools, server-side parameters are �lled
by the centralized sensing tools, and database updates may be performed
by both sensing solutions.

An application may then consist of adaptive (i.e. context-aware) and
non-adaptive parts; we call the former adaptive hypertext in Figure 4.2.
With the term adaptive hypertext we indicate all those pages of a Web
application that present some form of adaptive behavior, while the non-
adaptive hypertext collects all those pages that do not present any adap-

90

4.1 A Conceptual View over Context-Aware Web Applications

tive behavior. In a context-aware application, for adaptation purposes,
the adaptive hypertext also exploits context data during the render-
ing of the hypertext pages. Non-adaptive Web application components
are shaded in gray in the �gure, while components supporting context-
awareness are highlighted in white.

Hence, context-awareness in Web applications, according to the pro-
posed architecture, requires the following tasks to be addressed:

1. Context model de�nition and representation in an application-ac-
cessible format, as described in Subsection 2.2.3. In this task, the
main context properties required for supporting the application's
adaptivity requirements need to be identi�ed and modeled. The
modeling typically comprises both physical and logical context (cf.
Subsection 2.2.2).

2. Context model management , consisting of:

a) Context data acquisition by means of measures of real-world,
physical context properties, characterizing the usage environ-
ment. Measures may be performed at client side or by means
of dedicated, centralized sensing infrastructures. The so ac-
quired data serve to update the context state maintained in
the context model.

b) Context data monitoring to detect those variations in context
data that trigger adaptivity. Any variation may cause an au-
tomatic (context-triggered), adaptive behavior of the Web ap-
plication. Context monitoring thus typically implies translat-
ing physical context into logical context and deciding whether
detected changes demand for adaptation or not.

3. Hypertext adaptation. If context monitoring detects a situation
demanding for adaptation, suitable adaptation operations need to
be enacted, in order to translate the detected context state into
visible e�ects or operations that aim to augment the e�ectiveness
and usability of the application.

While the de�nition of the context model and the monitoring of con-
text data can easily be assisted by proper context modeling methods and
a proper runtime framework providing basic monitoring facilities, it is
not as easy to assist designers in the development of a suitable context
acquisition (i.e. sensing) infrastructure. In fact, the former two activities
can be generalized to a useful degree, while the design of the sensing in-
frastructure results to be tightly coupled with the speci�c application

91

4 Modeling Context-Aware Web Applications

requirements and the resulting technological design choices, a�ecting
both hardware and software artifacts. For this reason, an exhaustive
discussion of sensing technologies would be out of the scope of this work.
Instead, we focus our investigation on the way context data may be com-
municated to a context-aware Web application, as graphically depicted
in Figure 4.2.
Context monitoring may be performed at each user-generated naviga-

tion action that activates the application logic of the Web application
and enables the application to adapt, if required1. Due to the dynamic
nature of context, a better reactive behavior could be achieved by peri-
odically communicating fresh context data and recomputing pages; if the
evaluation of the context state demanded for adaptation, proper adap-
tivity actions might be triggered automatically, even in absence of user
interactions. Instead of polling adaptivity, the best solution would be
to have an active monitoring mechanism operating autonomously and
transparently in the background and independently from the user's in-
teractions, in order to trigger adaptivity in real time. Depending on
the individual implementation of each application, one of the previous
methods to enable the monitoring of context data can be adopted.

Hypertext adaptation, �nally, must be performed during the dynamic
computation of the hypertext interface of the application. Ideally, adap-
tations would need to be performed immediately in response to the de-
tection of a situation demanding for adaptation, but in the case of Web
applications, due to the lack of push mechanisms in traditional Web
technologies, this can only happen when computing a page. In Sub-
section 4.3.5 we will discuss in more detail when adaptations can be
performed.
As for the object of the adaptation, Brusilovsky [28] already identi�ed

the components that can be adapted in adaptive hypermedia: presen-
tation and navigation. Analogously, in context-aware Web applications,
adaptive behaviors can be applied to:

1. Contents and services delivered by accessed pages, which can be
adapted on the basis of the current context state.

2. The navigation, in form of automatic navigation actions toward
pages of the same application, which are better suited to the e�ec-
tive context conditions.

3. The whole hypertext structure to support coarse-grained runtime
adaptations (e.g. of the layout of the application), for example

1This solution is for example adopted in most of the adaptive applications and
modeling solutions described in Section 2.4.

92

4.2 Modeling Context for Adaptivity

due to changes of the user's device, role, or activity within a multi-
channel, mobile environment.

4. Presentation properties , in order to provide more �ne-grained ad-
justments of the application's appearance (e.g. referring to style
properties).

In the following sections, we will illustrate how the previous require-
ments, from context data representation and acquisition to the speci-
�cation and enactment of adaptivity actions, can be expressed in the
model-driven design language WebML. According to the WebML design
method, supporting context-awareness occurs along three dimensions:
data design, hypertext design and implementation.

4.2 Modeling Context for Adaptivity

As outlined in Section 2.2, even though there are several properties com-
monly regarded as context attributes (e.g. position, time, or device char-
acteristics), there exists no universal context model that applies to all
kinds of applications. For this reason, also in the context of WebML
we can not prescribe any precise, rigid context model for WebML appli-
cations; we rather introduce some WebML-speci�c modeling guidelines
that enable the designer to provide context-aware applications with suit-
able context meta-data.
Context data can derive from several sources integrating sensed, user-

supplied and derived information [60, 61]. While user-supplied data are
generally reliable and tend to be static, sensed data are highly dynamic
and can be unreliable due to noise and sensor errors. The problem of
unreliability has been addressed in literature, for example, by associating
context information with quality data [62]. Although we recognize the
importance of reliable context data, in this work we rather concentrate
on the exploitation of context in the design of Web applications. For
simplicity, throughout this dissertation we thus consider sensed data as
trustworthy.
As to the dynamics of context data, it is worth to note that modeling

context as relational data does not allow designers to explicitly represent
the dynamic nature of context in the context model. The dynamics of
context data, however, does not in�uence the design of adaptive WebML
hypertext schemas, as will be shown in Section 4.3; what is required,
instead, is a proper context monitoring mechanism that allows the ap-
plication to trigger adaptivity in function of the dynamics of its context.
This problem is dealt with in Section 5.3.

93

4 Modeling Context-Aware Web Applications

Logical
Context

Physical
Context

/

volatile persistent
Persistency

Context
Abstraction

Logical context
stored as data in
the context model

Physical context
for one-time

consumption only

Physical context
stored for context
sharing or tracking

purposes

Figure 4.3: Persistence of physical and logical context data.

4.2.1 Characterizing Context Data

The main goal of context modeling is the formalization and abstraction
of the context properties that a�ect the application. In this regard,
a �rst characteristic distinguishing context properties was already in-
troduced in Subsection 2.2.2, i.e. the distinction between physical and
logical context. We call physical context those properties that are im-
mediate representations (e.g. the values of an analog/digital converter)
of sensed, physical quantities, and logical context those properties that
enrich physical context with semantics and additional abstractions of the
raw sensed data (e.g. the city corresponding to physical longitude and
latitude values).
A second characteristic a�ecting the topology of the context model

is the persistence of context properties in the system, i.e. the deci-
sion whether individual context properties represent persistent data or
volatile data. Persistent data need to be stored in the application's data
source and therefore require proper data entities being modeled as part
of the context model, while volatile data do not need any storage and can
thus be omitted from the context model. The context communication
mechanisms described in Figure 4.2 enable the communication of both
persistent data (i.e. via direct database updates) and volatile data (i.e.
via client-side or server-side parameters).
Starting from these two characteristics, Figure 4.3 summarizes the

di�erent kinds of context data that in�uence the speci�cation of the
context model:

• Volatile physical context. Context communicated via client-side
parameters or via server-side session parameters represent volatile
data. They are immediately available during the execution of
the application, independently from the underlying context model.
Volatile context data do not need to be enclosed in the context

94

4.2 Modeling Context for Adaptivity

model; they might be used during runtime to query logical context
data.

• Persistent physical context. Context sharing (e.g. between mem-
bers of a same group) or tracking (e.g. to derive di�erential context
properties or to keep a context history) typically require the per-
sistent storage of data. Persistent physical context data thus need
to be included into the context model and updated according the
their dynamics.

• Persistent logical context. Logical context is stored as data in the
context model, so as to enable the data-driven transformation of
physical context into logical context. Logical context is typically
static; dynamic updates and/or extensions can, however, be sup-
ported as well.

Physical and logical context data coexist in the application's data
source. This coexistence typically requires a transformation or mapping
that translates raw data into information that can directly be used when
specifying hypertext schemas to be rendered to users. In line with the
data-driven approach that characterizes WebML, we propose a formal-
ization of such transformation at data level by means of suitable asso-
ciations representing the mapping. As typically all logical context data
are thus persistently stored in the context model, we do not expect the
use of volatile logical context.2

Summarizing, we can say that the de�nition of an application's context
model is in�uenced by the persistence requirements the application poses
to the context properties: persistent context data needs to be modeled
at data level; volatile data do not need to be represented as information
objects. They however need to be captured when modeling the behavior
of the adaptive hypertext.

4.2.2 Modeling User, System and Environment Data

According to our de�nition of context given in Section 1.4 (De�nition 1),
context data can be partitioned into user, system, and environment con-
text data:

2Remember that all context data is kept at the server side. But also in the case of
context data managed at the client-side (e.g. by means of AJAX scripts), logical
context data need to be explicitly provided and persistently stored by application
developers. Moving application logic from the server to the client does not imply
volatile logical context data.

95

4 Modeling Context-Aware Web Applications

1:N 1:N
Access

Basic user sub-schema

Position
Longitude
Latitude
Height

Activity
Name
Handycap
Description

1:1

1:1

Device
CPU
InputDevice
Display
Memory

Context Model
sub-schema

1:1 1:N
DefaultSV

Group
GroupName

SiteView
SiteViewID

Comment
Title
Body Belonging

Personalization
sub-schema

User
UserName
Password
EMail

1:1
0:N

1:N 1:N

1:1 0:N

DefaultGroup

Membership

1:1

0:N1:1

1:1

Road
Name

Server
CpuUtilization
MemoryAllocation
NumUsers

User
UserName
Password
EMail

Group
GroupName

Comment
Title
Body

SiteView
SiteViewID

Device
CPU
InputDevice
Display
Memory

Position
Longitude
Latitude
Height

City
Name
Longitude
Latitude

Activity
Name
Handycap
Description

Server
CpuUtilization
MemoryAllocation
NumUsers

Context sub-schema

Personalization sub-schema

1:1 1:N

0:N

1:N 1:N

1:N1:1
DefaultSV

Access

Default
Group Membership

1:N

0:N

1:1 1:1

1:1

0:N
1:1

1:1 1:1

Belonging

Basic user
sub-schema

Figure 4.4: Adaptation-triggering data in WebML applications, par-
titioned into basic user sub-schema, personalization sub-
schema and context sub-schema.

• User context data refer to those context properties that are directly
related to the identity of the user, e.g. the position.

• System context data contain (runtime) properties about the context-
aware system, e.g. the current workload.

• Environment context data express properties about the environ-
ment that hosts the interaction between the user and the applica-
tion, e.g. weather conditions or time.

While system and environment context data are shared among all users
of the application, user context data are individual. As a consequence,
user context data need to be considered in relation to individual users.
When modeling context data, this means that the data entities for the in-
dividual context must be connected (directly or indirectly through other
relationships) to the user, so that during application execution individual
context data can be retrieved starting from the identity of the user.

4.2.3 Example Data Schema for Adaptation in WebML

Figure 4.4 illustrates an example Entity-Relationship diagram with user
pro�le, personalization, and context data, as it could be adopted in
WebML. Each kind of data is modeled by means of a proper ER sub-
schema:

• User pro�le sub-schema. Users, groups, and site views are repre-
sented as ��rst-class citizens� in the application data source. The

96

4.2 Modeling Context for Adaptivity

entity User provides a basic pro�le of the application's users, the
entity Group associates access rights to users (i.e. a role), and the
entity Site View contains the site views that may be accessed by
the members of a group. Site views are WebML hypertext schemas
(i.e. views) over the application's data source, tailored to the needs
of the respective user group.
The many-to-many relationship Membership expresses that users
may belong to multiple groups, which in turn cluster multiple users.
The relationship Default Group connects a user to his/her default
role and, when logging into the application, by means of the re-
lationship DefaultSV, the user can be forwarded to the default
site view of his/her default group. The many-to-many relationship
Access describes which site views a speci�c group is allowed to ac-
cess. This relationship is required only in the case of context-aware
applications that may require di�erent interaction and navigation
structures for a same group, according to varying context condi-
tions. Therefore, depending on the context state, the application
is able to determine the most appropriate site view and to forward
the user accordingly.

• Personalization sub-schema. Personalization inWebML is achieved
by specifying relationships between entities of the application sche-
ma and the entity User. For instance, the entity Comment is con-
nected to the entity User by means of the relationship Belonging,
which expresses the fact that comments belong to individual users.
In general, personalization relationships between the entity User

and some other entities have the meaning that the user is the cre-
ator/owner of the speci�c object or that he/she has expressed ex-
plicit or implicit preferences over it.

• Context model sub-schema. Finally, Figure 4.4 proposes a possible
con�guration of context meta-data, as it could apply for example
to mobile and multi-channel Web applications.
The entities Device and Activity represent explicitly provided
logical context data, and the entities Position and Server repre-
sent sensed/measured physical context data, while the entity City

represents logical context data translating a physical position into
the logical concept city. Note how the user context entities Device,
Position, and Activity are associated to the entity User, while
the system context entity Server is not associated to any other
entity. The individual city of a user can be derived at runtime by
querying the entity City.

97

4 Modeling Context-Aware Web Applications

In a certain sense, also the relationship Access in the user pro�le sub-
schema could be considered part of the context sub-schema, as in WebML
multiple site views per group are only justi�ed if context conditions re-
quire the overall hypertext structure to adapt according to the context.
Users belonging to a given group might in fact operate in totally di�er-
ent contexts (e.g. expressed by the entity Activity) and might hence
require di�erent site views with di�erent hypertext structures.

4.3 Modeling Adaptive Hypertexts

While the �rst step of the WebML design method, i.e. data modeling,
does not require any extension of the modeling primitives for captur-
ing context data (the standard Entity-Relationship primitives su�ce),
hypertext modeling does require proper model extensions to cope with
adaptivity. In this section we therefore introduce the new concepts and
primitives that have been developed at the hypertext level to express
the desired adaptive behaviors. Also, we clarify how di�erent adaptivity
policies can be used to enact the adaptation of the application and how
the new paradigm impacts on the computation of hypertext pages.

4.3.1 Context-Aware Pages

Our basic assumption in the modeling of context-aware hypertexts is
that context-awareness or adaptivity is a property to be associated only
to some pages of an application (the adaptive hypertext), not necessarily
to the application as a whole. Location-aware applications, for example,
adapt �core� contents to the position of a user, and �access pages� (in-
cluding links to the main application areas) typically are not a�ected by
the context of use.
As can be seen in Figure 4.5, we tag context-aware or adaptive pages

with a C-label (standing for context-aware) to distinguish them from
conventional pages. The label indicates that an adaptivity logic is asso-
ciated with the page, and that during the execution of the application
this logic must be taken into account when computing the page. The
associated adaptivity logic may serve for adapting the page content or
for modifying the prede�ned navigation �ow.

4.3.2 Context Clouds

We call the adaptivity logic (i.e. the set of adaptivity actions attached to
a page) context cloud. As sketched in Figure 4.5, the cloud is external to
the page, and the chain of adaptivity actions it clusters is kept separate

98

4.3 Modeling Adaptive Hypertexts

Siteview

Context-aware Area

Context-aware Page

Source

Data Unit

P:
Context
Parameter

P

OID: Object
 Identifier

C

C

Conventional
Page 1

Conventional
Page 2

Figure 4.5: WebML hypertext schema with two conventional pages, one
context-aware page, and one context-aware area, together with
their context clouds. The parameter P exempli�es the propagation
of reusable context data by hierarchically passing context param-
eters from an outer area to an inner page.

from the page speci�cation. The aim is to highlight the two di�erent
logics deriving from the role played by pages and context clouds: while
the former act as providers of contents and services, the latter act as
modi�ers of such contents and services.
The context cloud is associated to the page by means of a directed

arrow, i.e. a link exiting the C-label. This link ensures the communica-
tion between the page logic and the cloud logic, since it can transport
parameters deriving from page contents, which may be useful for com-
puting actions speci�ed in the cloud. Also, on the other way around, a
link from the cloud to the page can transport context parameters or, in
general, values computed in the context cloud that might be required to
perform the adaptation of page contents to new context conditions.
Adaptation actions speci�ed in the context cloud of a C-page typically

present e�ects that are visible in the page they are attached to. The
notion of context-aware pages and context clouds therefore de�nes what
we call a localized adaptivity rule:

De�nition 9 (Localized Adaptivity Rule) The scope of a localized
adaptivity rule is strictly coupled with a �xed set of hypertext pages, where
scope refers to those (adaptive) pages to which the page's adaptivity ac-
tions are associated.

99

4 Modeling Context-Aware Web Applications

However, there might also be the need for adaptation actions with
e�ects that are spread over multiple pages. For this purpose, we exploit
the hierarchical structure of hypertexts.3

4.3.3 Structuring Context-Aware Hypertexts

The central context-aware hypertext element is the page. However, as
represented in Figure 4.5, we also propose to de�ne context-aware con-
tainers (site views and areas, in terms of WebML) as grouping facilities.
This allows the designer to insulate and to specify only once adaptivity
actions that are common to multiple C-pages in a container, and thus
to reduce the redundancy of the schema. There are in fact actions to be
evaluated for every C-page, and associating such actions to a page con-
tainer allows designers to keep the speci�cation clean and easy to read.
Context clouds associated to containers and pages are evaluated recur-
sively, starting from the outermost container and ending with the cloud
associated to the page. The notion of context-aware container allows us
to de�ne sparse adaptivity rules:

De�nition 10 (Sparse Adaptivity Rule) We talk about sparse adap-
tivity rules in those cases, where adaptivity actions are associated to con-
tainers that contain multiple pages; the scope of such actions spans over
a set of pages.

Figure 4.5 also illustrates the possibility of hierarchically passing pa-
rameters from an outer cloud to an inner one. More precisely, if the
evaluation of an outer cloud produces results to be reused at an inner
level, as it might happen in the case of context parameters, it passes
such values back to the C-label that activated the computation of the
cloud. Subsequently, such parameters can then be �consumed� in the
context clouds of the inner levels. As for context-aware pages, param-
eter passing from a container to its context cloud occurs through the
cloud-activating link. Links exiting from the last evaluated cloud, i.e. at
the end of the last adaptivity action chain, might carry parameter values
for the computation of page units.

Typical actions to be speci�ed at the container level are the acquisition
of fresh context data and the consequent updating of the context model,
e.g. if the data are to be shared or a history is to be tracked. Hence,

3We propose to structure adaptivity rules according to the hypertext structure of the
application. In AHAM [63], for example, the authors instead propose to structure
�pedagogical rules� in function of the hierarchical structure of concept components

in the domain model of an adaptive hypermedia application.

100

4.3 Modeling Adaptive Hypertexts

if persistent context data are adopted, we propose two levels for the
speci�cation of adaptivity actions:

• Actions for context model management, addressing operations for
context data acquisition and the consequent context model updat-
ing, should be associated with outer containers (site views or ar-
eas) and are inherited by inner containers (areas or pages). These
adaptivity actions need to be executed prior to the execution of any
other action possibly speci�ed in an inner context cloud, as such
�internal� actions could depend on persistent context data acquired
and stored in the data source through �external� actions.

• Actions for hypertext adaptivity, de�ning the rules for page and
navigation adaptation (and possibly depending on persistent con-
text data), should be associated with C-pages.

4.3.4 Enabling Adaptivity: Context Monitoring

In order to manifest context-aware behaviors, C-pages must be provided
with the capability to monitor the context state and to trigger their
adaptivity actions, if required.
The standard HTTP protocol underlying most of today's Web appli-

cations implements a strict pull paradigm, in which refreshes can only
occur in response to client-side generated page requests. Therefore, in
the classical Web architecture, lacking proper push mechanisms, context
monitoring can occur only when a page is computed, i.e. when a re-
spective page request has reached the Web server. Three main solutions
can be adopted to trigger the evaluation of context clouds: (i) context
evaluation on user-generated page requests, (ii) periodical, automatic
refreshes of viewed pages to enable context evaluation, and (iii) active
context evaluation to trigger context clouds in real time. The �rst solu-
tion is not able to cope with the dynamic nature of context. The periodic
refresh of context-aware pages provides a way to ensure the update of the
page even in absence of explicit user actions enabling the re-computation
of the page. In Section 5.3 we will also show an active mechanism for
triggering adaptivity, which operates independently from the user in the
background; however, this does not alter the modeling solution proposed
in this chapter.
In absence of dedicated server-side push mechanisms for delivering

updated pages, the HTML http-equiv META-option, or also JavaScript,
JavaApplets, or Flash scripts, provide valuable client-side mechanisms
to �simulate� the required active behavior. More precisely, this simula-

101

4 Modeling Context-Aware Web Applications

tion implies generating periodic HTTP requests toward the application
server, which may serve a twofold purpose:

• On one hand, they provide the necessary polling mechanism to
query the context model and trigger the context cloud attached to
the page to be refreshed, thus reacting to possible context changes.

• On the other hand, generating page requests may enable the client
to transmit client-side sensed data, thus enabling the communica-
tion of context data to the application server.

Besides the de�nition of proper context clouds, context-aware pages
are therefore also characterized by an individual refresh interval, which
can be speci�ed as property (Refresh_Interval) of the page in the
XML representation of the WebML model. Di�erently from C-pages, a
container does not require the speci�cation of any polling interval, which
is instead derived from the interval associated to the currently viewed
C-page of the container.

Page Context

In general, the state of the context is expressed by the values of all the
persistent parameters stored in the context model and of the volatile
parameters sensed at the client or server side. However, an individual
page's adaptive behavior is typically in�uenced by only a subset of the
overall context data or, more speci�cally, by a function expressed over
context data, not just by the simple values and/or dynamics of an appli-
cation's context parameters. This context data subset thus corresponds
to a page-speci�c view over the application's context data, narrowing the
focus of the context monitoring activity. This observation leads to the
de�nition of a new concept, i.e. Page context, which can be leveraged to
enhance the e�ciency of the context monitoring activity.

De�nition 11 (Page Context) The Page context of a page corresponds
to a page-speci�c view over the application's context data, capturing all
(and only) those context characteristics that e�ectively determine the
adaptive behavior of the page.

Instead of monitoring the whole state of the application's context data,
the de�nition of a Page context for each adaptive page enables the con-
text monitoring activity to focus its observation of the context state to
the only Page context. This implies, that during hypertext speci�cation
each adaptivity rule can be related to a subset of context parameters to
be controlled, so that rule conditions do not need to check the state of
the whole context model.

102

4.3 Modeling Adaptive Hypertexts

4.3.5 Adaptivity Policies

Starting from the continuous (in our case periodical) monitoring of the
context state, it is possible to de�ne two di�erent adaptivity policies for
context-aware pages, assigning di�erent priorities to users and context:

• Deferred Adaptivity : the user is granted the highest priority. There-
fore, after the user has entered the page and the page has been
rendered according to the user's selections, adaptivity only starts
after the �rst refresh interval of the page.

• Immediate Adaptivity : context is granted the highest priority. Adap-
tivity actions are therefore evaluated every time the page is ac-
cessed, prior to the actual page computation. This means that the
page is subject to adaptation each time it is rendered, even at the
�rst time the page is accessed by the user.

Consider for example a tourist guide that shows contents about the
attractions located close to the user. At a given point, the user might
want to get information about one monument located in a di�erent city
area, not related to his/her current position; this preference is typically
expressed by selecting a link to that monument from a list of city at-
tractions. In a deferred policy, the requested page shows the monument
information as requested by the user, without taking into account the
user's current location. Only after expiration of the refresh interval, the
page becomes subject to adaptivity and the contents are adapted to the
user's location. In an immediate policy, context is granted higher priority
with respect to the user and, thus, the user's request for the monument
would be overwritten by the context and the application would show
once more the monument associated to the user's current location.
Note that in addition to these adaptivity policies, we recognize that

there may be situations that demand for an explicit control of the adap-
tation dynamics by the user. Therefore, should for example a user tem-
porarily not be interested in having the contents adapted to his/her
location, he/she can simply disable/enable adaptivity at will.

Adaptivity policies can also be associated to context-aware contain-
ers. When a C-page is requested, also the possible context clouds of its
containers are evaluated recursively (from the outermost one to the in-
nermost one), according to the adaptivity policy associated to each con-
tainer. In general, a container's adaptivity policy is independent from the
policy of inner containers and pages4. Therefore, it may happen that the
4The only exception occurs when a dependency exists among clouds at di�erent
levels, i.e. due to parameter passing. This situation must be taken into account

103

4 Modeling Context-Aware Web Applications

actions in a container's context cloud are evaluated immediately, even if
the actions associated to inner containers or pages adopt a deferred eval-
uation, or vice-versa. If, for example, the adaptivity actions associated
to the container serve for tracking a context history, they could require
an immediate policy, while inner adaptivity actions keep their deferred
policy for front-end adaptations. The hierarchical de�nition of context
clouds may therefore also be considered a facility to achieve di�erent
�layers� of adaptivity actions.
In WebML, the adaptivity policy for context-aware pages and contain-

ers is declared as a property of context-aware pages and containers by
means of the Adaptivity_Policy property.

In our approach, we assume the deferred adaptivity as default pol-
icy: adaptivity is started only by automatic refreshes coming after the
user has entered the page. When a user navigates to a particular page,
the �rst generated response always produces the expected results based
on the user's selections; only afterward that page might become sub-
ject to adaptation, according to the new context. This choice aims at
minimizing application behaviors that might be perceived as invasive
or annoying by users and has been experienced as the most natural for
modeling adaptation.
However, the immediate policy could be needed for handling excep-

tional situations, as in such cases the timely reaction to context changes
could be more important than following the user's indications. We there-
fore, in general, recommend the selection of the adaptivity policy that
is appropriate to the application goals and that is able to minimize the
application behaviors that could be perceived as invasive or annoying by
the users. In order to choose the right adaptivity policy for an adap-
tive page, a developer therefore needs to predict what kind of adaptive
behavior a user will expect when accessing that page.

4.3.6 Specifying Adaptivity Actions

The main novelties for modeling context-aware pages lay in the speci�ca-
tion of suitable adaptivity actions clustered into context clouds. There-
fore, in the following we will introduce some new WebML modeling con-
cepts that ensure full coverage for the speci�cation of context model
management and hypertext adaptation. The new primitives allow de-
signers to visually specify actions for acquiring and updating context
data and to de�ne proper adaptivity rules.

by designers when associating individual policies to containers and pages.

104

4.3 Modeling Adaptive Hypertexts

Parameter
Get ClientPar

Client Parameter

@

Visual Notation Description

Input: no input

Source Parameter: parameters generated at the
client side

Output: parameter value

Figure 4.6: Visual notation of the Get ClientParameter unit.

{Entity.Attribute}Parameters
Get Data

Entity
[Selector(Parameters)]

Visual Notation Description

Input: parameters for selector condition evaluation

Source Entity: database entity from which to
extract the data rows to be filtered by the selector
condition

Output: (set of) parameters or attributes retrieved

Figure 4.7: Visual notation of the Get Data unit.

Managing Context Data

In order to support adaptivity with respect to the current context state,
the application must be able to acquire and manage context data ac-
cording to the mechanisms illustrated in Section 4.1. For this purpose,
some new WebML operations have been de�ned, which, together with
the already available operations, provide the necessary primitives for:

• Specifying the acquisition of fresh context data through client-side
parameters. A new Get ClientParameter unit (see Figure 4.6)
has been de�ned to support the retrieval of parameters generated
at the client side and communicated back to the application via
client-side parameters (e.g. parameter-value pairs attached to the
page request query string).

• Specifying the acquisition of fresh context data through server-side
parameters. Context data directly made available as HTTP session
parameters can be accessed by means of conventional WebML Get

units (see Subsection 3.4.5).

• Specifying the acquisition of context data from the context model.
In conventional applications, page computation implies retrieving
data to be published in pages from the data source. The execution
of adaptivity actions may also require the retrieval and evalua-
tion of context meta-data. For this purpose, a so-called Get Data

105

4 Modeling Context-Aware Web Applications

unit (see Figure 4.7) has been introduced, enabling the retrieval
of values (both scalars and sets) from the data source according
to a selector condition. The semantics of the Get Data unit is
similar to the one of content publishing units, with the only dif-
ference that data retrieved from the data source are not published
in hypertexts, but just used as input to subsequent units or oper-
ations. It therefore provides a means to access context meta-data
stored in the application's data source whenever no visualization
is required, for example in situations where certain data are just
needed to evaluate condition expressions.

• Updating the context model. Once fresh context parameters have
been retrieved, they can be used to update the context model at
data level. This action consists in modifying values previously
stored in the data source. In WebML, this is already facilitated
by operation units (see Section 3.5) providing support for the most
common database management operations (modify, insert, dele-
te).

Evaluating Conditions

The execution of adaptivity actions may be subject to the evaluation
of some conditions, re�ning the triggering logic for context clouds. The
most recurrent pattern consists in evaluating whether context changes
demand for adaptation.
The evaluation of conditions is speci�ed by means of two control struc-

tures, represented by the If and Switch operation units, which have been
introduced for work�ow modeling in WebML [64].

Executing Adaptivity Actions

Once the current context state has been determined, and possible condi-
tions have been evaluated, adaptivity actions can be performed to adapt
the page contents, the navigation, the current site view structure, and/or
presentation style properties. These actions are speci�ed as follows:

• Adapting Page Contents. Page contents are adapted by means of
proper data selectors, whose de�nition is based on context param-
eters retrieved from the context model or newly computed within
the page's context cloud. The use of parameterized selectors allows
for both �ltering data items with respect to the current context and
conditionally including/excluding (i.e. showing/hiding) individual
content units.

106

4.3 Modeling Adaptive Hypertexts

Parameters
KO

Change SV

Visual Notation Description

Input: identifiers of target site view and target page,
last user selections, global parameters, context
parameters

Output (KO-link): no output

Figure 4.8: Visual notation of the Change SiteView unit.

• Adapting Navigation. In some cases, the e�ect of condition evalu-
ation within the context cloud can be an automatic, i.e. context-
triggered, navigation action, causing the redirection of the user to
a di�erent page.
The speci�cation of context-triggered navigations just requires con-
necting one of the links exiting the context cloud to an arbitrary
destination page of the hypertext. Therefore, links exiting the
context cloud and directed to other pages than the context cloud's
source page represent automatic navigation actions.

• Adapting the Site View. In some cases, a context-triggered switch
toward a di�erent site view may be required. Changes in the inter-
action context may in fact ask for a coarse-grained restructuring
of the whole hypertext, for example because the user device has
changed, or because the user shifted to a di�erent activity.
To switch between di�erent site views, we have introduced a Change
Site View unit (see Figure 4.8), which takes in input the identi�ers
of the target site view and the target page, to be visualized in
case a switch toward the speci�ed site view is required. In order
to support �contextual� switching, the input link also transports
parameters characterizing the current state of interaction, i.e.:

1. The input parameters of the source page, which represent the
last selections operated by the user.

2. Global parameters, representing session data (e.g. user OID
and group OID), as well as past user selections that have been
used for the computation of the current page.

3. Client-side and server-side context parameters retrieved dur-
ing the latest performed data acquisition cycle and character-
izing the current context state.

• Adapting Presentation Style. Sometimes context changes may re-
quire only �ne-grained adaptations of presentation properties (e.g.

107

4 Modeling Context-Aware Web Applications

ChangeStyle

A A
Parameters OK

KO

Visual Notation Description

Input: filename of CSS file to be associated to
current site view

Output: no output

Figure 4.9: Visual notation for the Change Style unit.

due to varying luminosity conditions), not a complete restructuring
of the overall hypertext.
While adaptations of the page layout can be achieved by means of
the Change SiteView unit or by conditionally including/excluding
content units, we have also de�ned a Change Style unit for dynam-
ically assigning presentation style properties (see Figure 4.9). Style
properties are collected in proper .css (Cascaded Style Sheet) �les,
and the unit enables the application to change its associated style
sheet at runtime.

4.4 Computation of Adaptive Hypertexts

In addition to the extensions of the WebML hypertext model, context-
awareness in WebML also demands for a revision of the WebML page
computation algorithm [1]. Indeed, in the case of context-aware pages,
the page computation logic also needs to cope with the automatic exe-
cution of adaptivity actions associated to pages and containers.
The computation algorithm for conventional WebML pages is based

on the computation of page-internal units. It starts by computing all the
units that do not receive any link in input and, therefore, do not need
any parameter for their computation. Then, it proceeds with externally
dependent units for which, however, there are su�cient input values in
the parameters passed to the page. Hence, until all possible units inside
the page have been computed, the algorithm iteratively selects the unit
to be computed next on the basis of the following conditions:

• All mandatory input parameters of the unit must have a value.

• All units that could supply a value to an input parameter of the
unit must have already been computed.

When computing hypertext schemas supporting adaptivity, the page
logic must not only tackle the problem of how to compute the units
contained in a page, but it also must guarantee the correct activation

108

4.4 Computation of Adaptive Hypertexts

and execution of context clouds. As already expressed by Figure 4.5, this
implies recursively evaluating each context cloud before the actual page
computation, starting from the outermost one and up to the innermost
one (i.e. the cloud associated to the page to be computed). Hence,
the computation logic for ordinary pages keeps its validity, but it now
handles also possible adaptation operations by recurring over context
clouds de�ned for pages and their containers. This behavior can be
summarized by the following codeGen function, where buildContext

and buildPage perform the computation of the context cloud and the
page, respectively:

FUNCTION codeGen(C:Container)

BEGIN

IF (contextAware(C) THEN {

IF (included(C,C') AND contextAware(C')) THEN

codeGen(C');

newPage = buildContext(C);

IF (newPage != null) THEN

codeGen(newPage);

}

IF (isPage(C)) THEN

buildPage(C);

END

In particular, buildContext returns a value (stored in the newPage

variable) that, when the evaluation of the context cloud triggers an au-
tomatic navigation toward a di�erent page, represents a pointer to the
target page. This value is null if no automatic navigation is required.
The immediate or deferred activation of the context cloud computation
within the buildContext function is subject to the adaptivity policy
associated to the C-container or the C-page under evaluation.

4.4.1 Speci�city Rules

In some page con�gurations it may happen that a unit has multiple
incoming links assigning values to the same parameter. Since only one
value at a time has to be considered, the computation of the unit results
to be ambiguous. Some speci�city rules are therefore necessary to decide
which of the incoming values to use.
For ordinary pages in WebML, the speci�city of input parameters is

assessed according to the following principles [1]:

1. Values which derive from the current user's choice, expressed by
the last navigation event, are the most speci�c.

109

4 Modeling Context-Aware Web Applications

2. Values that depend on past user choices or which derive from global
parameters accessed through Get units are the second most speci�c.

3. Values heuristically deriving from the content of other units are
the less speci�c.

In case of context-aware pages, the speci�city rules are extended by
means of a further condition to be evaluated before any other rule. Such
rule states that values deriving from the computation of the page's con-
text cloud (if evaluated) are the most speci�c. The new speci�city rule
promotes context as a new actor that can cause navigation actions or
page adaptations.
Coherently with this choice, the following classi�cation shows the three

possible situations that may occur when accessing pages:

• Non-context-aware pages: the ordinary speci�city rules, not con-
sidering any adaptivity actions, apply, and units are computed as
usual.

• Access to C-labeled pages with deferred adaptivity : adaptivity ac-
tions possibly de�ned for such pages are ignored at the �rst page
access, in order to grant the user the highest priority. Possible
adaptivity actions, speci�ed for the page and its outer areas, are
evaluated in response to automatic refreshes, periodically gener-
ated after the �rst user access to the page. This may result in
overwriting previous user choices.

• Access to C-labeled pages with immediate adaptivity : the adaptivity
actions are evaluated at each page request, also including the �rst
page access through the user.

Figure 4.10 illustrates the steps required at runtime for computing
dynamic page templates, and highlights the additional computation steps
required in the case of context-aware pages.
To identify that a page has been requested by the automatic refresh

mechanism and not by the user, a proper parameter (i.e. automatic)
can be appended to the HTTP page request in case of automatic re-
quests. As the �gure shows, when the Web server receives a new page
request, it decodes the incoming request parameters and, only for C-
pages, veri�es whether adaptivity is needed. This check consists of (i)
evaluating the value assigned to the Adaptivity_Policy page property
and (ii) verifying the existence of the automatic parameter in the URL
string. Accordingly, page computation proceeds as follows:

110

4.4 Computation of Adaptive Hypertexts

Decode request parameters

[no]

Request parameters

Query results

Rendered Page

Connect to the database &
prepare and execute database

queries

Print page contents and links

Connect to the database &
execute adaptation operations
with respect to current page

[yes]

User Request

Adaptation results

[no] Automatic
navigation
needed?

[yes]

Generate new page request

Update request
parameters

Page
request

Is
Adaptivity
needed?

Ordinary
computation
steps

Additional
steps for
adaptive pages

Figure 4.10: Computation of context-aware page templates.

• If adaptivity is not required (i.e. for conventional pages or for the
�rst user access to a C-page with deferred policy), computation
proceeds along the left hand side.

• If adaptivity is required, i.e. when Adaptivity_Policy = �imme-

diate�, or when Adaptivity_Policy = �deferred� and parame-
ter automatic = �yes�, the computation proceeds along the right
hand side. Two di�erent adaptivity actions can be undertaken:

� Page adaptation: the database is accessed to read the current
state of the context, and request parameters are updated ac-
cordingly. Thus, computation proceeds as for ordinary pages.
The new values of the page parameters will cause the adap-
tation of the page.

� Navigation toward a di�erent page, within or outside the cur-
rent site view: in this case, the computation process generates
a new page request, and the page computation process starts
anew with the parameter automatic set to �no�.

It is worth noting that in�nite loops with non-terminating evaluations
of the context state could arise in the execution of chains of context

111

4 Modeling Context-Aware Web Applications

clouds. This may occur when the target page of an automatic naviga-
tion, starting from an �immediate� C-page, adopts as well an immediate
adaptivity policy, and its context cloud is in con�ict with the adaptiv-
ity actions speci�ed for the source page. This in fact could redirect the
user back to the source page, then again to the target page (due to the
immediate policy), and so on.
The problem of non-termination is well-known in active databases (see,

e.g., [65, 66, 67]) and it is not surprising to �nd it applicable to adaptive
Web computations; however, a sensible design of the Web application
should rarely cause con�icts or non-termination. Design-time techniques
can be used to check either the acyclicity of page invocation graphs (a
su�cient condition) or the lack of interference of cyclic page invocations
(based upon semantics), along the directions marked in [65].
A design guideline to prevent in�nite loops is to avoid cycles of au-

tomatic navigations involving source and target pages both with imme-
diate adaptivity. When cycles need to be de�ned, a deferred policy for
the involved pages is recommended. This ensures that the target page
is rendered to the user before considering the next adaptivity actions.
Therefore, it is always assured that the user is able to interrupt the
(possible) cycle by disabling the context-aware modality or navigating
to another page.

4.4.2 Context-Aware Page Computations

To better clarify the interleavings and cross-e�ects between user nav-
igation actions, automatically generated page requests, and adaptivity
actions, this section shows some examples of adaptive page computa-
tions. The examples show that the page modeling logic needs to be well
understood, when pages are context-aware, since (apparently) similar
con�gurations of pages and context clouds can generate di�erent, unex-
pected behaviors. The designer needs thus to carefully choose the most
appropriate modeling solution.
Consider the page Building in Figure 4.11, and assume it not to

be �context-aware�, in the sense that it does not re�ect any change of
context. Although the �gure has thus to be interpreted �without� the C-
label, the page however reads context-speci�c meta-data, as represented
by the Get User and Get Area units. The two units in fact retrieve the
current user, and its current (logical) geographical area, e.g. inside a
university campus, by navigating the User2Area relationship (we sup-
pose that it is possible to associate a building of the campus to each
area). The page can be accessed along two links. Link1 does not carry
parameters to the page, while Link2 carries a parameter containing an

112

4.4 Computation of Adaptive Hypertexts

Artwork

Artwork
[MuseumLocation2Artwork(Area)]

Artwork Details

C

Get Area

MuseumLocation
[User2MuseumLocation(User)]

Get User

CurrentUser

List of Areas

Areas

MuseumLocation

Link2
Area AreaUser

Link1

Building

Building
[Area2Building(Area)]

Building Details

C

Get Area

Area
[User2Area(User)]

Get User

CurrentUser

List of Areas

Areas

Area

Link2
Area AreaUser

Link1

Figure 4.11: Hypertext schema presenting either an adaptive or a non-
adaptive behavior at runtime. Link1 and Link2 represent
possible user navigations toward the context-aware page.

area selected by the user by means of the area index shown in page List
of Areas. The logic of the page, computed according to the �standard�
speci�city rules described by items 1�3 in Subsection 4.4.1, is to show
the details of the building of the user-selected area if the page is accessed
along Link2; otherwise the idea is to show the building details associated
to the user's current area. In particular, when Link2 is traversed, the
speci�city of the user-selected area prevails in the computation of the
Building Details unit, and the page does not adapt its content to the
current area where the user is located.
Consider then what happens if the page behaves like a context-aware

page, as it is indeed represented by the C-label in the �gure. The follow-
ing behavior occurs (independently from the chosen adaptivity policy):

• Page access along Link1. If the page is accessed along Link1,
changes to the location of the user are re�ected by a change of
the building details being displayed; the page correctly adapts its
content to the current area thanks to the Get User and Get Area

units, able to read context data. At each refresh following the �rst
user access, the page is also updated with respect to the current
context.

• Page access along Link2. If the page is accessed along Link2, then
the user-selected value (the most speci�c) prevails, and the page
does not adapt its content. This value also prevails after each
refresh.

The second behavior keeps the content of the page unchanged when
the page is initially accessed by a link carrying a user selection; the
designer could instead opt for a uniform behavior for both cases and,

113

4 Modeling Context-Aware Web Applications

Artwork

Artwork
[MuseumLocation2Artwork(Area)]

Artwork Details

C

Get Area

MuseumLocation
[User2MuseumLocation(User)]

Get User

CurrentUser

List of Areas

Areas

MuseumLocation

Link2
Area AreaUser

Link1

Get Area

MuseumLocation
[User2MuseumLocation

(User)]

Get User

CurrentUser

User

Link3

Area

Building

Building
[Area2Building(Area)]

Building Details

C

Get Area

Area
[User2Area(User)]

Get User

CurrentUser

List of Areas

Areas

Area

Link2
Area AreaUser

Link1

Get Area

Area
[User2Area(User)]

Get User

CurrentUser

User

Link3

Area

Figure 4.12: Overwriting out-of-date link parameters. Link1 and Link2

represent user-navigated accesses to page Building. Link3
transports fresh context data, retrieved in the context cloud,
which overwrite past user choices.

therefore, for a �uniform adaptivity�, regardless the navigated link. This
uniform behavior can be achieved by redesigning the page, so as to make
the retrieval of the current area an explicit context-speci�c operation.
Such evaluation should therefore be part of a context cloud, as indicated
in Figure 4.12. In this way, adaptivity actions are given a higher priority
than past user selections. Assuming a deferred adaptivity policy, the
page would be computed as follows:

• Page access along Link1. The page Building is accessed through a
link which does not carry any parameters, and the page shows the
details of the building in the area where the user is located. Being
the �rst page access, this user-navigated link does not activate the
adaptivity actions in the context cloud. Context data are however
retrieved by means of the Get Area unit inside the page.

• Page access along Link2. The page Building is accessed through
a link providing the area selected by the user. As in the previous
case, this link does not trigger the context cloud. The page does not
adapt its contents at all, because the parameter of Link2 prevails
over the Area parameter produces by the Get Area unit.

• Page access through refresh. The context cloud actions are exe-
cuted. As a result, the current user area is passed in input to the
unit Building Details by using Link3. For the data unit to be

114

4.5 Discussion

computed, three values of the Area parameter are now available:
the last user-selected area OID provided by Link2, the area OID
retrieved by means of the Get Area unit internal to the page, and
the area OID retrieved by the context cloud and provided by Link3.
According to the speci�city rules, values generated in the context
cloud prevail over user-generated values; thus Link3 �overwrites�
Link2, regardless of the initial access to the page.

In case of an immediate adaptivity policy, values generated in the
context cloud always prevail, because the context cloud is evaluated at
each page access, regardless of the navigated link and the actor of the
navigation (user versus automatic refresh).

The modeling examples discussed in this section show three possible
types of context-awareness: static (for conventional pages, making use
of Get units for retrieving the current values for context data), dynamic
with distinct refresh semantics based on the initial access as described in
Figure 4.11, and dynamic with uniform refresh semantics as modeled in
Figure 4.12.

4.5 Discussion

In this chapter we extended the WebML method to support the modeling
of context-aware and adaptive Web applications. The extended visual
language allows designers to specify context-aware Web applications in
complete accordance with the conventional WebML design style, since
the introduction of the new features and primitives does not entail any
new modeling formalism or paradigm. This is one of the main di�erences
between the approach proposed in this dissertation and other conceptual
modeling approaches, which prevalently base their adaptivity features on
proper new rule languages (e.g. [44]). Also, existing WebML solutions,
such as content and operation units, can be fully leveraged for the spec-
i�cation of adaptive behaviors and, therefore, seamlessly extend from
non-adaptive to adaptive hypertext speci�cations.
WebML already supports the adaptability of WebML applications to

di�erent delivery channels (i.e. devices) and user preferences. The in-
troduction of adaptivity into WebML on one hand enables designers to
model features that could not be speci�ed before and, on the other hand,
also allows users to take advantage of WebML's adaptability capabilities
during runtime (e.g. by means of the Change SiteView or Change Style

units), thereby blurring the borders between adaptability and adaptivity
as intended, for example, by Frasincar et al. [8].

115

4 Modeling Context-Aware Web Applications

It is worth noting that, although at a �rst glance it seems that the
described extension was achieved mainly by developing new, context-
speci�c units, the actual novelty is represented by the interpretation
of context as autonomous actor over the application's hypertext front-
end. This feature and the possibility to hierarchically structure adap-
tivity actions into context-aware areas and site views required a revision
of the computation logic for context-aware pages, as discussed in Sec-
tion 4.4. On top of this new execution framework it is now possible to
easily de�ne additional new context-speci�c units or operations address-
ing possible new requirements of individual applications or of speci�c
application domains. The introduced modeling solution thus guaran-
tees the extensibility and customizability that characterizes the WebML
modeling approach in general.

116

5 Implementing Adaptivity and
Context-Awareness

The research described in this dissertation has been conducted in the
context of the Italian research project MAIS (Multichannel Adaptive In-
formation Systems [68, 69]), during which also two prototypes were de-
veloped. Prototype development proceeded in two complementary steps:
the �rst step produced a proof-of-concept demo application based on an
external implementation of the adaptivity features (i.e. without alter-
ing the WebML runtime environment); the second step resulted into an
extension of the WebRatio CASE tool [2].
In this chapter we brie�y describe the two prototype implementations.

We in particular concentrate on how the modeling concepts presented in
Chapter 4 have been implemented as extension of the WebRatio CASE
tool. Such an extension enables the tool-assisted speci�cation of context-
aware Web applications and, consequently, the automatic generation
of the application code, starting from the extended WebML schemas.
Therefore, the resulting model-driven approach almost entirely covers
the whole development process � from data design to implementation.
In this chapter we also propose a possible further extension enabling

context monitoring in the background (i.e. without using continuous
refreshes for context monitoring), thus avoiding unnecessary page re-
computations that could be perceived as intrusive by end users.

5.1 Pre-Processing of Page Requests

In order to show the implementability of the new concepts introduced
at the conceptual level (i.e. at the data and hypertext level), we have
developed a �rst prototype [70] on top of the existing WebML runtime
environment that consists in a demonstration application. The prototype
adopts an external solution for the implementation of the context-aware
features described in the previous chapter, as it does not require any
modi�cation to the existing runtime environment of the WebRatio tool
and instead is based on a pre-processing mechanism: page requests ar-

117

5 Implementing Adaptivity and Context-Awareness

HTTP
response

HTTP
request

HTTP
server

Servlet container

Controller
(Servlet)

Model

View
(JSP templates)

Actions

State
objects

Client
(Browser)

Figure 5.1: The MVC architecture applied to Web applications.

riving at the Web server are interpreted and � if necessary � adapted,
before the actual request is passed to the WebML runtime environment
for page computation. The runtime environment is therefore completely
unaware of the adaptivity to be provided.
Figure 5.1 graphically depicts the MVC (Model-View-Controller) de-

sign pattern applied to the domain of the Web and adopted by the
WebML runtime environment1: the Model contains the business logic
of the application (i.e. the WebML unit and page logics), the View con-
tains the presentation logic to create proper user interfaces (i.e. a set of
JSP �les) and the Controller manages the interactions triggered by the
users' actions. According to this internal architecture of WebML appli-
cations, the pre-processing of page requests can be achieved by extending
the Controller with adaptive logic.
The addition of adaptive logic (according to the context clouds in

the extended WebML schemas) to the Controller enables the Controller
to accept arbitrary HTTP requests and to check whether they refer to
context-aware pages (as indicated by the presence of the automatic pa-
rameter � see Subsection 4.4.1) or to conventional ones. In case of re-
quests for conventional pages, the Controller simply forwards the request
to the Model for page computation; in case of context-aware pages, the
Controller �rst performs the possibly associated adaptivity actions, mod-
i�es the request string to re�ect possibly new computed page parameters
(e.g. as required in the case of adaptive page contents) and, then, for-
wards the request to the Model for computation.
The external solution fully re�ects the new page computation logic

1More speci�cally, WebML is implemented in the J2EE/Struts MVC framework [71]

118

5.2 Implementing Context-Awareness in WebRatio

outlined in Figure 4.10 and takes full advantage of the existing WebML
runtime environment. Controller and adaptivity actions are hand-coded
and allow the application to manage (i) the access to context data, (ii) the
adaptation of page contents by overwriting request parameters, and (iii)
the automatic navigation to other pages of the application by redirecting
page requests. Although Controller logic and page-speci�c adaptation
logic are intermixed and hardwired (i.e. they lack support for visual
design and automatic code-generation), this �rst proof-of-concepts pro-
totype has allowed us to assess the feasibility of the proposed conceptual
modeling solution and to set up an experimentation environment for sim-
ulating and testing its viability. The prototype showed us that in prin-
ciple the introduced ideas are applicable in practice, independently from
the chosen conceptual modeling method (if any), and that the desired
features can be implemented by means of standard Web technologies.

5.2 Implementing Context-Awareness in
WebRatio

The second prototype [72] addresses the shortcomings of the �rst pro-
totype and provides an extension of the WebRatio CASE tool to fully
re�ect the proposed visual design method. The implementation exploits
WebRatio's native extension mechanism [73] that allows developers to
add new features by means of so-called custom units, a mechanism that
already has demonstrated its power when extending the CASE tool
to support communications with Web services [58] and the design of
work�ow-driven hypertexts [64].
In particular, the implementation of this second prototype has oc-

curred along two complementary dimensions: the �rst dimension has
concerned the introduction of context-aware pages as described in Sub-
section 4.3.1, the second dimension has referred to the adaptivity actions
described in Subsection 4.3.6 and to be applied in the context cloud.
Implementing context-awareness in WebRatio thus requires a good un-
derstanding of the software architecture of WebML applications and of
WebRatio's code generation logic.

5.2.1 The Architecture of WebML/WebRatio Applications

All the applications generated with WebRatio share the same software
architecture, which is a classical three-tier architecture taking advantage
of the MVC design pattern; Figure 5.2 graphically depicts the internal
architecture of automatically generated WebML applications. Each page

119

5 Implementing Adaptivity and Context-Awareness

Business logic

Controller
(Servlet)

Model

Actions

State
objects

Client
(Browser)

Page actions

Operation actions

Form beans

Unit beans

State objects

Configuration file:
- Action mappings

Servlet container

Page services

Unit services

Operation services

Validation services

 Data tier

HTTP
response

HTTP
request

HTTP
server

View
(JSP templates)

HTML +

custom tags

Descriptors

Auxiliary services

Figure 5.2: The runtime architecture of a WebML application automat-
ically generated with WebRatio [73].

of an application consists of four elements: (i) a page action in the Model;
(ii) a page service in the business tier; (iii) a JSP template in the View;
and (iv) a page action mapping in the Controller's con�guration �le.
The page action is an instance of a Java class, which is invoked by

the Controller when the user requests the page; the page action class
extracts the input from the HTTP request and calls the page service in
the business tier, passing to it the needed parameters. When the page
processing terminates, the page action noti�es the Controller that the
page content is ready to be displayed.
The page service is a business function supporting the computation

of the content of a page. It exposes a single function computePage(),
invoked by the page action to carry out the parameter propagation and
unit computation process. At the end of the page service execution, a set
of Java objects storing the content of the page units (called unit beans)
is available to the View.
The page template is a JSP template, which computes the HTML page

to be sent to the user, based on the content of the Model. It contains the
static HTML needed to de�ne the layout where the units are positioned,
and custom tags implementing the rendition of the content of units.
Finally, the action mapping is a declaration placed in the Controller's

con�guration �le that ties together the user's request, the page action,
and the page template.

Each WebML content unit maps into two components of the MVC
architecture: a unit service in the business layer and a set of custom tags
in the View. WebML operation units map into three components of the

120

5.2 Implementing Context-Awareness in WebRatio

1.2 - Overview of the WebRatio architecture

Figure 1.1: Overview of the WebRatio architecture

The development of a custom unit will take you through all the components of WebRatio, because
the definition and the execution of a unit requires addressing both design-time and run-time issues.

Adding a custom unit to WebRatio will require:

• Adding a unit definition to the unit library (mandatory). You will need to write some XML
documents and XSLT rules, which instruct WebRatio to build the proper commands for placing
the custom unit in the hypertext diagram, linking it to other units, and defining the coupling of
input and output parameters.

• Adding a set of XSLT rules for validating the usage of the custom unit in the hypertext diagram,
and for producing error and warning reports (optional).

• Adding a set of XSLT rules for documenting the usage of the custom unit in the WebMLDoc
project documentation (optional).

You will also be able to extend the WebRatio code generator to handle custom units by:

• Adding a set of XSLT rules for producing the runtime XML descriptors associated with the
custom unit (optional).

• If the custom unit is a content unit, adding one or more EasyStyle unit cores, which are XSLT
rules for producing the server-side tags or scripting instructions to be inserted in the page
templates (mandatory).

Finally, deploying a custom unit into the WebRatio Runtime will require implementing a runtime
class, which actually performs the business service for which the unit is designed.

page 10 of 176 The WebRatio team

Figure 5.3: Overview of the WebRatio modeling environment and code
generation process [73].

MVC architecture: an operation action in the Model, which is similar to
a page action, an operation service in the business layer, which is similar
to a content unit service, and an action mapping in the Controller's
con�guration �le, which dictates the �ow of control after the operation
action completes the execution.

5.2.2 Extending the WebRatio CASE Tool

The extension of the WebRatio design environment, i.e. the develop-
ment of custom units, takes the developer through all the components
of WebRatio, because the de�nition and the execution of a unit requires
addressing both design-time and run-time issues, as graphically summa-
rized in Figure 5.3.
Adding a custom unit to the design environment may require:

121

5 Implementing Adaptivity and Context-Awareness

• Adding a unit de�nition to the unit library (mandatory). This en-
ables WebRatio to place the custom unit in the hypertext diagram,
link it to other units, and de�ne the coupling of input and output
parameters.

• Adding a set of XSLT rules for validating the usage of the custom
unit in the hypertext diagram and for producing error and warning
reports (optional).

• Adding a set of XSLT rules for documenting the usage of the custom
unit in the WebMLDoc project documentation (optional).

Adding new units to WebRatio also requires enabling the WebRatio
code generator to handle custom units by:

• Adding a set of XSLT rules for producing the runtime XML de-
scriptors associated with the custom unit (optional).

• If the custom unit is a content unit, adding one or more unit presen-
tation cores2, which are XSLT rules for producing the server-side
tags or scripting instructions to be inserted in the page templates
(mandatory).

Finally, deploying a custom unit into the WebRatio runtime environ-
ment requires implementing a runtime Java class, which actually per-
forms the business service to be provided by the new unit. During run-
time, the generated unit descriptors are used to instantiate the Java class
for page computation.

5.2.3 Implementation

The new concepts introduced in Section 4.3 do not all boil down to
the implementation of new custom units. For instance, the new page
logic to be adopted when computing adaptive pages, or the possibility
to add context clouds as well to areas and site views, not just to pages,
would require extensions to the WebRatio environment that could only
be achieved by signi�cantly altering the source code of the tool. The
implementation of the adaptivity ideas presented in this dissertation rep-
resents a compromise between the conceptual extension of the WebML
language and the native extensibility of the WebRatio design environ-
ment. More precisely:

2Please refer to the EasyStyle User and Reference Guide for a in-depth explanation
about the de�nition of new unit cores [74].

122

5.3 Enabling Background Context Monitoring

• The implementation of the new page logic and the tagging of con-
text-aware pages with the C-label is implemented by means of a
new content unit, the so-called Context unit; the unit is used in
place of the C-label and enables the triggering of the adaptivity
actions speci�ed in the context cloud during the computation of
the page. The unit also contains the parameter passing logic and
manages the polling mechanism, granting the context cloud control
when required and according to the chosen adaptivity policy.

• The Get ClientParameter unit is implemented as content unit
to be placed inside a page, but without visual rendering in the
page, because only content units have access to page parameters
(operation units are executed in an isolated fashion).

In the prototype implementation, the communication of client-side
sensed data occurs by appending parameters to the request string
of the page request (i.e. the query of the URL). Other communica-
tion mechanisms, e.g. based on the SOAP communication protocol,
are under investigation.

• The Get Data, Change Site View and Change Style units are
implemented as standard operation units.

The screenshot in Figure 5.4 refers to the extended visual WebRatio
environment and shows a WebML model fragment of the application
discussed in Chapter 6. The context-aware page Buildings contains the
aforementioned Context unit (placed in the upper right corner of the
page), which takes in input the client-side parameters longitude and
latitude, accessed by means of the two Get ClientParameter units,
and forwards them to the context cloud. The context cloud associated
to the page consists of the three units GetArea, GetBuild and GetRoad.
The link directed from the GetBuild unit to the Building unit inside the
page represents an automatic adaptation of the page content, while the
link exiting the GetRoad unit and directed to the unit inside the other
page represents an automatic navigation action. The reader is referred
to Chapter 6 for a more detailed description of the modeling example.

5.3 Enabling Background Context Monitoring

So far the concept of active context-awareness was based on the idea
of periodically refreshing a viewed page, so as to grant the application

123

5 Implementing Adaptivity and Context-Awareness

Figure 5.4: Screenshot of the extended visual environment of the WebML
CASE tool.

the possibility to monitor context data3 (i.e. check for changes and
evaluate possible conditions). The periodic refresh of a page, however,
also implies the new rendering of the page in the client browser, which in
general is perceived as annoying by users viewing the page. To overcome
this ergonomic shortcoming, in the following we describe a background
context monitoring solution that has been developed as extension of the
previous prototype implementations.
Context monitoring in the background (i.e. without the user observing

any unwanted rendering activity) enables the application to limit the use
of the refresh to those situations that really ask for adaptation and to
perform context monitoring without any visual e�ect for users.

5.3.1 Context Monitor

Figure 5.5 shows a functional architecture for adaptive Web applications
that extends the described architecture of WebML applications (see Fig-

3This solution is driven by the peculiarities of Web applications, where the applica-
tion is �active� only during the computation of a page, as opposed to traditional
desktop applications, which are in continuous execution.

124

5.3 Enabling Background Context Monitoring

Client Brower

HTML Document Application
Data

Context
Model

Web Server

Trigger ClientCM Client

Trigger ServerCM Server

Client-side
Sensing Module

Centralized
Sensing Module

Adaptive
Web Application

Adaptive
Web Application

Figure 5.5: Functional architecture for background context monitoring.

ure 5.2) with a new client-server module, called Context Monitor (CM),
providing the necessary context monitoring logic. As further depicted by
the �gure, in case of client-side context sensing, the CM module also en-
ables the communication of client-side sensed context parameters, which
could be required at the server side to evaluate context changes and/or
conditions over context parameters.

The CM consists of two separate modules, one on the client side and
one on the server side. The CM Client module is a piece of business logic
embedded into the page's HTML code and executed at the client side
(e.g. a JavaScript function, a Java applet, or a Flash object), while the
CM Server module works in parallel to the Web application on the same
Web server. The CM Client is in charge of periodically monitoring the
context state and deciding whether possibly occurring context variations
demand for the adaptation of the currently viewed page.

In order to be able to take a decision about whether adaptivity actions
are to be triggered or not, the CM Client is assisted by the CM Server,
which has full access to the context model of the application maintained
at the server side. In response to the polling executed by the CM Client,
the CM Server queries the context model and provides the CM Client
with an updated picture of the e�ective context state. By comparing the
state of the (server-side) context model acquired by the current polling
with the one acquired by the last polling (or the state at page compu-
tation time), the CM Client knows whether the state has changed. If
the state has changed, the CM Client asks the Web application for a
refresh of the currently viewed page, i.e. the adaptation; if the state has
not changed, the CM Client proceeds with the monitoring of the context
state.

125

5 Implementing Adaptivity and Context-Awareness

5.3.2 Page Context Parameters

In line with the idea of Page context (cf. Subsection 4.3.4), the CM
focuses its attention only to the subset of context data in the context
model that really determines the adaptive behavior of the viewed page.
While the (abstract) de�nition of Page context primarily was intended
to support the design phase of context-aware applications, the CM aims
to support the context monitoring activity during runtime. This implies
explicit knowledge about the pages' Page context, which can be achieved
by de�ning proper Page context parameters for each context-aware page:

De�nition 12 (Page Context Parameter) Page context parameters
de�ne the view over the context model that captures all the static and dy-
namic properties of a page's Page context by means of suitable queries
over the context model.

This de�nition implies that each change to a Page context parameter
e�ectively corresponds to the need to adapt the page. The granular-
ity of the values of Page context parameters must thus be chosen in a
way that each change of a parameter value translates into the trigger-
ing of the page's adaptivity rule. Each C-labeled page in the adaptive
hypertext model is thus associated with an individual Page context by
means of proper page parameters stored in the textual representation of
the WebML schema, as they are not conveniently expressible in a visual
manner. Page Context parameters are expressed by means of parametric
queries over the context data, where the parameters correspond to client-
or server-side context parameters.

5.3.3 Context Digest

In oder for the CM to be able to decide whether adaptivity is required,
changes to the Page context (i.e. the Page context parameters) must be
communicated from the CM Server to the CM Client.
In order to enhance the e�ciency of the overall context monitoring

activity, the state of the Page context is not communicated from the CM
Server to the CM Client in form of the set of Page context parameters,
but instead it su�ces to transmit and compare a numeric digest com-
puted over the respective Page context parameters, as each change to
the values of the Page context parameters also results in a change of the
numeric digest. We call such a numeric digest Context digest :

De�nition 13 (Context Digest) The Context digest corresponding to
the Page context of a page is the numeric checksum computed over the
ordered list of Page context parameters.

126

5.3 Enabling Background Context Monitoring

Client Browser Client Sensing Mod.CM Client CM Server Web Application

Generate
user request

Compute page

Render page
Instantiate
CM Client

Sense new
context data

Ask for
Context Digest

Compute
Context Digest

Generate
autom. request

Wait context
polling interval

Compute
adapted page

new digest <>
old digest

new digest =
old digest

client-side sensing

no
client-side

sensing

Figure 5.6: Background context monitoring for active context-awareness
(with client-side context sensing): communicating context
data and triggering adaptivity.

The context digest is the basis for the decisions to be taken by the
CM Client: its values identify variations in the Page context, which
correspond to the need to adapt the page. The decision is based on the
comparison of the current Context digest with the last Context digest;
the �rst Context digest, i.e. when the user accesses the page, is initialized
with the Context digest valid during page computation.
Note that, as already hinted at in Subsection 5.3.1, sending requests

for fresh Context digests to the CM Server also enables the CM Client to
transmit fresh client-side sensed context data, which can be used during
the computation of the parametric Page context queries and, thus, for
the computation of the Context digest.

Figure 5.6 details the resulting �ow of activities enabling the active
behavior of the application and shows how the single modules cooperate
in order to determine whether adaptivity is required or not. The diagram
has one start node (Generate user request), which corresponds to the
user's navigation to a C-page, and no end node, since the cycle in the

127

5 Implementing Adaptivity and Context-Awareness

lower part of the diagram is only interrupted by an explicit user naviga-
tion leading the user to another C-page (which corresponds to starting
again from the start node of the diagram and to monitoring the Page
context of the new page) or to a conventional page (which does not cause
any context monitoring activity).
Note that the client-side sensing module and the sending of fresh con-

text data only apply to applications that sense context data at the client
side; if only a centralized or server-side sensing mechanism is adopted,
the step Sense new context data and the possible communication of
fresh context data are omitted. For example, a centralized, RFID-based
sensing infrastructure directly updating the context model does not re-
quire any transportation of context parameters from the client to the
server.
The described mechanism assumes that connectivity is available dur-

ing the viewing of a C-page in order for the CM client to be able to
communicate with the CM server. In case of intermittent connectivity,
which is a very frequent situation in mobile environments, the CM client
keeps working by periodically polling the CM Server, despite the absence
of connectivity. The CM Client is however programmed to manage pos-
sible lacks of connectivity and therefore does not generate errors, with
the only side e�ect that adaptivity is suspended until the connectivity is
restored.

5.3.4 Context Monitor Implementation

The CM is implemented as a client-server module, completely indepen-
dent from the implementation of the Web application. Despite its inte-
gration into the WebML runtime environment as described in this work,
its function is general in nature and, given access to the context model,
only demands for explicitly invokable page adaptation operations (e.g.
via HTTP).
In our current implementation, the CM Client is a Macromedia Flash

object4. Its con�guration is performed directly within the HTML code
sent to the client browser and mainly consists in the speci�cation of the
context parameters to be sensed at the client side, as well as a suitable
polling interval.
The CM Server, on the other hand, is implemented as a Java servlet

4Other client-side solutions have been investigated as well: JavaScript does not allow
reading from the local hard disk for accessing client-side sensed context data; Java
applets do provide access to local resources, but loading the Java Virtual Machine
noticeably delays the execution of applets, especially on small devices such as
PDAs.

128

5.3 Enabling Background Context Monitoring

Client Browser

HTML Document

Application
Data

Context
Model

Web Server

Trigger Client
CM

Flash Script

Remoting
Gateway

Trigger
Server
CM

Servlet

Local Shared Object
(PDA File System)

HTTP

AMF

Client-side
Sensing Module

Centralized
Sensing Module

WebML Runtime
Environment

WebML Runtime
Environment

Figure 5.7: Context Monitor Implementation.

communicating with the CM Client via the Flash Remoting Gateway 5.
The CM Server generates the digests representing the �ngerprint of the
current Page context state corresponding to the currently viewed page.
For each context-aware page, an XML con�guration �le contains:

1. The set of Page Context parameters required for computing the
context digest.

2. For each Page Context parameter, the query for extracting the
speci�ed context parameter values from the context data. If client-
side or server-side parameters are available, they may be used for
formulating selection conditions.

The con�guration of the CM Server module thus consists in the dec-
laration of the Page Context parameters that are used to compute the
context digest and in the speci�cation of the respective DB queries that
associate a value to each parameter. At the current state of the work,
this con�guration still needs to be hand-coded by designers, but we envi-
sion a visually assisted speci�cation (e.g. by means of a proper wizard)
of Page Context parameter queries. A similar approach is for example
already supported by WebRatio for the speci�cation of derived relation-
ships between data entities.
Figure 5.7 graphically depicts the described implementation of the

Context monitor. The adaptive and non-adaptive hypertext pages, as
well as the adaptivity actions speci�ed in the previous section, are hosted
and executed by the WebML runtime environment [2, 71] described in

5Flash Remoting is an essential part of Macromedia's approach toward Rich In-

ternet Applications. Flash Remoting for J2EE consists in a single servlet acting
as gateway toward the application server's resources, and serves the purpose of
de-serializing the proprietary Macromedia AMF (Active Message Format).

129

5 Implementing Adaptivity and Context-Awareness

Subsection 5.2.1. Chapter 6 provides some more details about the con-
�guration of the Context monitor by discussing a case study.

5.4 Discussion

Potentially, each conceptual application model (i.e. data and hyper-
text schemas) could be hand-coded by programmers on top of di�erent
Web architectures and by using di�erent technologies and programming
languages, but the existence of a powerful CASE tool, such as the Web-
Ratio tool suite [2], signi�cantly facilitates the automatic code genera-
tion of WebML applications for the J2EE/Struts framework. The two
described prototype implementations developed in the context of the
MAIS project demonstrate the consistent implementability of adaptive
hypertext schemas and the suitability of the newly introduced modeling
constructs also for automatic code generation.
Due to some restrictions of the current implementation of the runtime

environment, it was not yet possible to implement context-aware con-
tainers, i.e. areas or site views. However, in the current extension of
WebRatio typical area-level adaptivity actions (e.g. accessing volatile
context data and/or storing persistent context data) can be speci�ed as
page-level adaptivity actions. Although this solution may augment the
redundancy of adaptive hypertext schemas, it allows functionalities that
typically would be provided by context-aware containers to be speci�ed
at page level. Support for context-aware containers is planned for future
prototype versions.
With respect to the �rst proof-of-concept prototype, the second pro-

totype implementation has allowed us:

• To support the design of arbitrary context-aware Web applications
and the automatic generation of the respective program code.

• To almost entirely re�ect the adaptive design method proposed in
Chapter 4 (context-aware containers are not supported).

• To capitalize on the WebML CASE tool and runtime environment.

In addition to the automatic code generation of adaptive hypertext
schemas, also the background context monitoring solution implemented
in the Context monitor module can be automatically included into the
JSP page templates of adaptive pages and (partially) con�gured during
the code generation phase. This allows designers to augment the us-
ability of adaptive Web applications with little additional development
e�ort.

130

5.4 Discussion

Since code generation starts from WebML schemas, only WebML-
related concepts can be automatically coded. The automatic generation
of the context sensing logic or the supply of proper universal software
modules, which would allow the extended CASE tool to cover the whole
development process of context-aware applications, is not feasible, due
to the high heterogeneity of both hardware and software aspects of the
sensor devices as well as to the high dependency from the individual ap-
plication domain. To assist application designers in this task, however,
three easy to use interfaces for communicating sensed context data to the
application have been de�ned: (i) direct updates of the context model
by means of conventional SQL statements, (ii) a simple shared �le to
exchange client-side context parameters between the client-side sensing
software and the CM Client module, and (iii) HTTP session parame-
ters for server-side context parameters. Using these interfaces allows the
designer of the sensing infrastructure to disregard how the application
manages context parameters and to focus on the development of the
sensing software.

131

6 Case Study

The MAIS project, in the context of which the ideas elaborated in this
dissertation have been developed, was o�cially concluded in June 2006
with a publicly accessible demo and presentation day held at the Po-
litecnico di Milano, Italy. To demonstrate the conceptual extension of
WebML to model context-aware Web applications and the extension
of the WebRatio CASE tool, we implemented a proper context-aware
demo application (called PoliTour), supplying location-aware informa-
tion about the roads, buildings, and classrooms in the Politecnico univer-
sity campus. The event was held in one of the arcades of the Politecnico
campus, which for the event had been covered with a WiFi connection.
By means of this WiFi connection, the PoliTour application could be ac-
cessed through a PDA device equipped with a GPS receiver for (outdoor)
location sensing. During the workshop day, the demo was complemented
with a poster of the overall methodology for the development of context-
aware Web applications.
In this chapter we build on this demo application to exemplify the

concepts introduced in the previous chapters and to highlight how the
design of the context model impacts also on the design of the adaptive
hypertext.

6.1 Conceptual Design

The PoliTour application leverages two di�erent pieces of context infor-
mation to support the context-aware delivery of application contents:
(outdoor) user position and WiFi connection quality . Sensed context
data are thus the geographical longitude and latitude for user positioning
and the signal strength of the available WiFi connection; both position
and signal strength are sensed at the client side. Position data is used to
provide users with location-aware data, i.e., as the user moves around the
campus, the application publishes location-aware details about nearby
buildings and roads. The connection quality is used to alert users of
low connectivity conditions, i.e., when the user is about to leave the
WiFi-covered area.

133

6 Case Study

Basic user sub-schema

Area
MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context sub-schema

0:1

0:1

1:N

1:N Road
Name
Description

Building
Name
Description
Image

Classroom
Name
Description

0:N

1:1

1:N 1:N
Access

1:1 1:N
DefaultSV

Group
GroupName

SiteView
SiteViewID

User
UserName
Password
EMail

1:1
0:N

1:N 1:N

DefaultGroup

Membership

0:N

0:N

Figure 6.1: PoliTour data model when using volatile context parameters.

The former adaptivity implies the automatic adaptation of visualized
contents and automatic navigation actions, while the latter is achieved by
appropriately changing the CSS style sheet associated to the application
(in our case, by changing the application's background color).
In the following, we �rst describe how these requirements can be mod-

eled as data, then we show how the adaptive hypertext schemas can be
modeled on top of these data.

6.1.1 Data Modeling

As discussed in Section 4.2, context data can be modeled in di�erent
�avors, where one of the most interesting decisions to be taken � also
impacting hypertext design � is whether individual context parameters
are to be modeled as volatile or as persistent context data. While the
former do not require any explicit de�nition in the context model, the
latter do require a proper de�nition as context data.
To show the implications of these alternative design choices, in this

case study we discuss both, and treat position and connectivity data
once as volatile data, once as persistent data. More precisely, the de-
cision impacts on the design and use of the client-side sensed context
parameters longitude, latitude and RSSI (Received Signal Strength
Indicator).

Volatile Parameters

Figure 6.1 illustrates the data schema of the PoliTour application in
case of volatile context parameters to be used in the hypertext model.

134

6.1 Conceptual Design

The entities User, Group, and Site View represent the basic user model
for WebML applications. Since the sensed physical context parameters
are volatile, the context sub-schema in the �gure only contains logical
context data.
In order to translate the physical longitude and latitude into mean-

ingful location information that can be used to determine the adaptive
behavior of the application, we divide the campus area into a set of
contiguous, rectangular areas. We then map roads and buildings onto
these areas. Reading a user's current longitude and latitude allows then
the application to associate an area to the user's position, which, on
the other hand, allows the application to identify the closest building or
road. The almost exact west-east orientation of the Politecnico campus
eases the de�nition of the elementary areas: four attributes characterize
the entity Area: min and max longitude, and min and max latitude.
The entities Road and Building provide a further level of logical con-

text data. Navigating from the Area entity to these two entities enables
the application to derive the actual building or road to be visualized.
The entity Classroom is not part of the context model, as the appli-

cation does not react to position changes at that level of granularity. It
rather represents core application data. The entities Road and Building

can as well be interpreted as application data, as they contain the actual
core contents of the application, underlining the di�culty that may arise
when one tries to strictly separate context data from (pure) application
data.

Persistent Parameters

Figure 6.2 instead shows how the context model could be modi�ed to
capture the case of persistent context properties to be used in the hyper-
text model. The only di�erence with respect to Figure 6.1 is the addition
of the two entities Connectivity and Position.
The entity Position contains for each user his/her personal longitude

and latitude. The entity directly stores the physically sensed values.
Users are not associated with areas, buildings, or roads at the data level;
this association can be computed at runtime by querying the context
model.
The entity Connectivity, on the other hand, also incorporates a

translation of the physically sensed (continuous) RSSI value into a dis-
crete WiFi connection quality, expressed by qualitative levels (i.e. �Low�
and �High�). The entity is constituted by the three attributes Level,
minRSSI, and maxRSSI, which allow the application to associate at run-
time a suitable level to each user.

135

6 Case Study

Position
Longitude
Latitude

Connectivity
Level
MinRSSI
MaxRSSI

1:N 1:N
Access

Basic user sub-schema

Area
MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context sub-schema

1:1 1:N
DefaultSV

Group
GroupName

SiteView
SiteViewID

User
UserName
Password
EMail

1:1
0:N

1:N 1:N

DefaultGroup

Membership

0:1

0:1

1:N

1:N

Classroom
Name
Description

0:N

1:1

0:1 0:1

1:11:1
Road

Name
Description

Building
Name
Description
Image

1:1

0:N

Figure 6.2: PoliTour data model when leveraging persistent context data.

6.1.2 Hypertext Modeling

While the di�erence between volatile and persistent context data is easily
expressed by including or excluding proper entities in respectively from
the context model, the two modalities sensibly di�er when it comes to
hypertext design. In the following we thus propose two di�erent hyper-
text schemas, one for each approach, and show how the two modalities
in�uence hypertext design. Before that, however, we describe the ba-
sic hypertext structure of the PoliTour application, so as to ease the
comprehension of the subsequent discussion of the adaptivity features.
Figure 6.3 shows a conventional (i.e. non-adaptive) WebML hyper-

text schema, consisting of one site view and three pages, two of which
are landmark pages, always accessible through the application's menu.
In the home page Buildings the user may select a building from the
BuildingsIndex unit, which causes the application to display the de-
tails of the selected building in the BuildingData unit and to provide
the list of classrooms of that building in the ClassroomsIndex unit. If
the user selects one of the classrooms, he/she navigates to the Classroom
page, which shows the respective details. If instead the user accesses the
Roads page through the menu, he/she is provided with the list of roads.
Again, if he/she selects a road, the page displays the details and also pro-
vides the list of buildings associated to that road. Selecting a building

136

6.1 Conceptual Design

PoliTour

Buildings

Building

BuildingData

Classroom

Classroom

ClassroomData
ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Roads

Road

RoadDataNearby Buildings

Building
[Road2Building]

RoadsIndex

Road L

L

H

Figure 6.3: The non-adaptive hypertext model of the PoliTour applica-
tion.

from the list, leads the user to the Buildings page.
The hypertext in Figure 6.3 does not present any adaptive behavior,

as there are neither C-pages nor context clouds. Note that, consequently,
this hypertext schema can be de�ned on top of each of the previous data
models. Context-aware behaviors are introduced in the following.

Volatile Parameters

The hypertext schema in Figure 6.4 extends the one presented in Fig-
ure 6.3 and shows a possible solution to the modeling of the adaptivity
requirements of the PoliTour application. Again, we have one site view
and three pages, two of which are now tagged as context-aware pages,
i.e. page Buildings and page Roads. The site view as well is context-
aware and gathers adaptivity actions that are common to all contained
context-aware pages.

The pages Buildings and Roads share the same adaptivity actions (i.e.
the same context cloud) providing location-awareness to the displayed

137

6 Case Study

Buildings

B
uilding

B
uildingD

ata

C

C
lassroom

C
lassroom

C
lassroom

D
ata

G
et Longitude

Lon

@

G
et Latitude

Lat

@

C
lassroom

sIndex

C
lassroom

[B
uilding2C

lassroom
]

BuildingsIndex

B
uilding

G
et Area

A
rea

[M
inLongitude<Lon<M

axLongitude]
[M

inLatitude<Lat<M
axLatitude]

G
et Building

Building
[A

rea2B
uilding]

G
et R

oad

R
oad

[A
rea2R

oad]

R
oads

R
oad

R
oadD

ata

C

N
earby Buildings

B
uilding

[R
oad2B

uilding]

R
oadsIndex

R
oad

L

L H

O
K

[result = false]

[result = true]

C

G
et R

S
S

I

R
S

S
I

@

C
hangeStyle

IF

R
SS

I<alertLevel

[result = true]

[result = false]
css = default

css = w
arning

O
K

O
K

O
K

Lon

Lat

A
rea

A
rea

B
uilding,
A

rea

P
oliTour

B
uilding != null

IF

Building

F
igure

6.4:
P
oliT

our
hyp

ertext
m
odel

based
on

volatile
physical

context
param

eters.

138

6.1 Conceptual Design

contents. The chain of operations starts with two Get ClientParameter

units accessing the user's longitude and latitude, which are then used by
the Get Area unit to associate a logical area the the user's position. A
further Get Data unit (the Get Building unit) then tries to retrieve a
building for the identi�ed area. If a building could be retrieved, the
If unit sends the user to the Buildings page, providing updated page
parameters. If instead no building could be retrieved (e.g. because the
user is located in the center of a road or not close enough to a building),
the If unit forwards the Area identi�er to the Get Road unit, which
retrieves the road associated to the current position.
If the user views page Building while walking around the campus,

the application automatically updates the contents published each time
a new building can be found. If only the road can be identi�ed, the
application performs an automatic navigation action toward the Roads

page, where the described adaptive behavior starts again, possibly caus-
ing the adaptation of contents or automatic navigation actions. Only if
the user navigates to page Classroom, no adaptations are performed, as
this page is not tagged as context-aware.

The adaptivity actions associated to the surrounding site view specify
the desired alert to be sent to users who are about to leave the WiFi-
covered area. The Get RSSI unit accesses the volatile RSSI parameter
sensed at the client side, and the If unit compares the retrieved value
with a prede�ned level (alertLevel), below which the connectivity is
considered low. In case of low connectivity, the style sheet warning

is adopted, otherwise the default style sheet is adopted. For sake of
simplicity, we therefore model the alert of low connectivity conditions by
means of a Change Style unit. Under low connectivity conditions the
application is rendered with a red background, under normal conditions
the application is rendered with a gray background.
We recall that actions associated to containers are evaluated/executed

before any action at the page level is started. Hence, in Figure 6.4
the actions associated to the site view are executed before the actions
associated to the pages Buildings and Roads.

Persistent Parameters

Figure 6.5 shows an extension of Figure 6.3, which is based on the use of
persistent context data. Although in the case of the PoliTour application
persistent context data do not provide any additional bene�t to users,
the application scenario allows us to describe how the hypertext model
must change in order to support persistent context data. As the careful
reader will have noticed, in Figure 6.5 we added a new container: at

139

6 Case Study

P
oliTourBuildings

B
uilding

B
uildingD

ata

C

C
lassroom

C
lassroom

C
lassroom

D
ata

C
lassroom

sIndex

C
lassroom

[B
uilding2C

lassroom
]

B
uildingsIndex

B
uilding

G
et A

rea

A
rea

[M
inLongitude<Lon<M

axLongitude]
[M

inLatitude<Lat<M
axLatitude]

G
et B

uilding

B
uilding

[A
rea2B

uilding]

G
et R

oad

R
oad

[A
rea2R

oad]

R
oads

R
oad

R
oadD

ata

C

N
earby Buildings

B
uilding

[R
oad2B

uilding]

R
oadsIndex

R
oad

L

L H

IF

B
uilding != null

O
K

[result = false]

[result = true]

C

C
hangeS

tyle
IF

Level=’Low
’

[result = true]

css = default

css = w
arning

O
K

O
K

G
et U

ser

C
urrentU

ser

G
et C

onnectivity

C
onnectivity

[U
ser2C

onnectivity]

G
et U

ser

C
urrentU

ser

G
et P

osition

P
osition

[U
ser2P

osition]

O
K

A
rea

A
ssistant

C

G
et R

SS
I

R
S

S
I

@

G
et U

ser

C
urrentU

ser

C
onnect

U
ser2C

onnectivity(U
ser)

<M
inR

S
S

I<R
S

S
I<M

axR
S

S
I>

G
et Longitude

Lon

@

G
et Latitude

Lat

@

M
odify

P
osition

[U
ser2P

osition(U
ser)]

<Longituge := Lon>
<Latitude := Lat>

R
S

S
I

U
serU

ser
Lat

Lon

Lon,
Lat

A
rea

Building,
A

rea
A

rea

Building

Level

F
igure

6.5:
P
oliT

our
hyp

ertext
m
odel

based
on

p
ersistent

context
param

eters.

140

6.1 Conceptual Design

the site view level we now store the volatile client-side parameters in the
context model in order to transform them into persistent data, while the
previous site view has been substituted with an area (area Assistant).
Adaptivity is thus speci�ed by means of a three-layered hierarchy.

More precisely, the adaptivity actions associated to the site view imple-
ment the necessary logic to update the personal context data of each user
in the context model. Therefore, the operation chain starts with a Get

unit that accesses the current user's identi�er and a Get ClientParamter

unit that accesses the RSSI parameter. The retrieved values are used to
connect the user to a suitable logical connectivity level modeled by the
Connectivity entity in Figure 6.2. We suppose that two di�erent levels
of connectivity are de�ned, i.e. �Low� and �High�, although the context
model would also allow the de�nition of �ner granularity levels.
From the Connect operation we pass the User identi�er to the Modify

operation, which also takes in input the longitude and latitude values re-
trieved by means of the two Get ClientParameter units. The operation
modi�es the stored position data in the Position entity of the extended
context model in Figure 6.2. From this point on, the speci�cation of
the actual adaptivity actions to be associated to the inner pages and the
inner area is based on the use of the data stored in the context model
and no longer on the use of volatile context parameters.

The two chains of adaptivity actions associated to the Buildings and
Roads pages and to the context-aware area are analogous to the ones
already seen in Figure 6.4, with two small di�erences: �rst, the Get

RSSI unit used to access the RSSI value in the context cloud associated
to the area is substituted with a Get unit to access the current user's
identi�er and a Get Data unit to navigate the context model and retrieve
the logical connectivity level associated to the user. Second, the two Get

ClientParameter units used to access the longitude and the latitude
in the context cloud inside the area are substituted with a Get unit to
access the user's identi�er and a Get Data unit to extract the longitude
and latitude parameters from the context model (i.e. from the entity
Position).

Comparing the hypertext in Figure 6.4 with the one in Figure 6.5 al-
lows one to identify some di�erences between the use of volatile parame-
ters and the use of persistent parameters. Typically, the solution adapt-
ing volatile parameters yields less intricate hypertext schemas, while the
solution with persistent parameters � according to our modeling guide-
lines � requires one more hierarchy level, i.e. the outermost level in
charge of storing fresh context data into the context model. In the spec-
i�cation of the adaptivity actions, one can further see how in the case

141

6 Case Study

of only persistent context data, access to individual (user) context data
is achieved by navigating the data source from the entity User to the
respective context entity. In the hypertext schema this is represented by
the Get units that access the CurrentUser session parameter.

An Example Usage Story

Figure 6.6 exempli�es a possible interaction with the PoliTour appli-
cation; both aforementioned hypertexts support the same application
features and can be considered equivalent from the interface/interaction
point of view.
We assume the Politecnico campus is organized as represented in Fig-

ure 6.6(a), and that the user wants to move from location 1 to location
3, as highlighted on the map. Figure 6.6(b) shows the respective screen-
shots. The user starts from the central garden in the campus, moves to
a nearby road and, �nally, enters building C. The application automat-
ically adapts the published contents accordingly. Once in the building,
the user selects one of the classrooms of the building (see screenshot 4),
thus he/she accesses the non-adaptive page Classroom. Turning back
to one of the two context-aware pages Buildings or Roads would again
enable the automatic adaptation of contents. Note that the only navi-
gation action performed by the user in the described interaction is the
selection of the classroom, while the adaptations of the page contents
and the automatic navigation actions are context-triggered.

6.2 Implementation and Deployment

For the MAIS demo day, a hypertext solution similar to the one de-
scribed in Figure 6.4 was adopted and implemented. The underlying
data and context models were an intermediate version of the two mod-
els described in Subsection 6.1.1, where the entity Connectivity was
explicitly modeled to highlight the translation of physical context data
into logical context data. In addition, the background monitoring mech-
anism described in Section 5.3 was used to prevent unnecessary page
refreshes. This solution further required the de�nition of suitable Page
context parameters for the two pages Buildings and Roads.

6.2.1 Background Context Monitoring

The con�guration of the Context Monitor module for the PoliTour ap-
plication was performed as described in the following.

142

6.2 Implementation and Deployment

Automatic
navigation

FI

G

N

Ret Seg

S CG

CD

CECI

C

1
2

3

N

Ret Seg

S

 FI

CE

CG

CD

CI

C

1
2

3

1 2

43

Au
to

m
at

ic

na
vi

ga
tio

n

Manual
navigation

(a) Main campus of Politecnico di Milano.

Automatic
navigation

1 2

34

Au
to

m
at

ic

na
vi

ga
tio

n

Manual
navigation

(b) Screenshots of a typical use of the application.

Figure 6.6: The running PoliTour application.

143

6 Case Study

Con�guration of the CM Client

The CM Client con�guration was achieved by means of the following
(HTML) code lines added to the rendering of C-pages:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

id="CMClient">

<param name="movie" value="CMClient.swf">

<param name="flashvars"

value="gatewayURL=

http://dblambs.polimi.elet.polimi.it/

demogpspoli/gateway&refresh=5&userOID=1

¤tURL=

http://dblambs.polimi.elet.polimi.it/demogpspoli/

page4.do&contextParams=longitude;latitude;RSSI">

</object>

As described in Subsection 5.3.4, due to the client-side sensing, client
con�guration requires to specify the context parameters (contextParams)
to be sensed at the client side, i.e. longitude, latitude, and RSSI, and
the polling interval (refresh), i.e. 5 seconds. These parameters are
automatically con�gured at design time through the WebRatio visual
environment. The CM Client con�guration requires also other parame-
ters in order to work properly: gatewayURL represents the URL of the
Flash Remoting Gateway, userOID represents the user identi�er, and
currentURL represents the currently requested page. These parameters
are automatically con�gured at runtime by the execution environment.

Con�guration of the CM Server

The following XML code presents the CM Server con�guration �le for
page Buildings and page Roads:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ConfigElements>

<CAPage id="Buildings">

<PageContextParams number="2">

<param>

<name>buildingOID</name>

<query>

select BUILDING.OID

from BUILDING, AREA

where AREA.toBUILD=BUILDING.OID

and AREA.MINLONGITUDE<?longitude?

and AREA.MAXLONGITUDE>?longitude?

144

6.2 Implementation and Deployment

and AREA.MINLATITUDE<?latitude?

and AREA.MAXLATITUDE>?latitude?

</query>

</param>

<param>

<name>connLevel</name>

<query>

select CONNECTIVITY.LEVEL

from CONNECTIVITY

where CONNECTIVITY.MAXRSSI>?RSSI?

and CONNECTIVITY.MINRSSI<?RSSI?

</query>

</param>

</PageContextParams>

</CAPage>

<CAPage id="Roads">

<PageContextParams number="2">

<param>

<name>roadOID</name>

<query>

select ROAD.OID

from ROAD, AREA

where AREA.toROAD=ROAD.OID

and AREA.MINLONGITUDE<?longitude?

and AREA.MAXLONGITUDE>?longitude?

and AREA.MINLATITUDE<?latitude?

and AREA.MAXLATITUDE>?latitude?

</query>

</param>

<param>

<name>connLevel</name>

<query>

select CONNECTIVITY.LEVEL

from CONNECTIVITY

where CONNECTIVITY.MAXRSSI>?RSSI?

and CONNECTIVITY.MINRSSI<?RSSI?

</query>

</param>

</PageContextParams>

</CAPage>

</ConfigElements>

In more detail, the code fragment contains the following con�gurations:

• The context digest of page Buildings is computed over the buil-
dingOID and connLevel values, while the context digest of page

145

6 Case Study

Roads is computer over the Page context parameters roadOID and
connLevel.

• The value of buildingOID and the one of roadOID are extracted
through parametric queries that use the longitude and latitude

values provided by the CM Client1 and retrieve the building re-
spectively road associated to the current user location. In case the
queries do not return any result, the value associated to the Page
context parameters is null.

• The value of connLevel is extracted using the RSSI value provided
by the CM Client. In case the query does not return any result,
the value associated to connLevel is null.

With this con�guration, the CM module is fully con�gured to work
with the hypertext model described in Figure 6.4.

6.2.2 Automatic Code Generation

The (adaptive) hypertext and the CM Client con�guration was automat-
ically generated with the extended WebML code generator described in
Section 5.2 and deployed on top of a J2EE platform. The con�gura-
tion of the CM Server and the interaction with the sensing devices was
coded manually. Its use is possible through PDA devices with wireless
Internet access, using Pocket Internet Explorer with Flash plugin (for
the CM module). The communication between the GPS module and
the CM Client is implemented using the Chaeron GPS Library [75]; the
WiFi received signal strength indicator (RSSI) is acquired on the PDA
using Place Lab [76]. A demo of the PoliTour application is available at
http://dblambs.elet.polimi.it/politour/.

6.3 Discussion

This case study allowed us to show how the modeling of context-aware
Web applications can be performed in WebML and how design deci-
sions regarding the context model impact on the design of the adaptive
hypertext. The two discussed modeling examples represent two di�er-
ent levels of persistence of context data deriving from the use of either
only volatile context parameters or only persistent context parameters.
There are, of course, also intermediate modeling solutions that make use

1Variables expressed as ?name? refer to either client-side sensed context data pro-
vided in input by the CM Client at each request for a new context digest, or to
server-side session parameters available in the runtime environment.

146

http://dblambs.elet.polimi.it/politour/

6.3 Discussion

of both volatile and persistent context data in the speci�cation of the
adaptive behavior of the application (e.g. persistent data only for history
purposes and volatile data for feeding adaptivity actions), but these are
not further elaborated in this dissertation, as � once the two described
examples have been understood � they result to be quite intuitive.
Instead of always accessing client-side context parameters by means

of the Get ClientParameter unit, it would also be possible to pass the
respective values from the outermost context cloud to the inner ones
by means of server-side parameters that can be read with conventional
Get units. This however always requires the hierarchical speci�cation of
adaptivity and rather leads to a duplication of (volatile) context data.
Passing parameters from one cloud to another is particularly powerful in
those cases where the outermost cloud computes values that are reused
in the inner cloud.
As for the con�guration of the Context Monitor module, introduced

to enhance the usability of context-aware hypertexts, this case study
con�rms its general nature. Independently from the particular hypertext
model adopted, the Context Monitor only requires the de�nition of the
Page context for each of the context-aware pages of the application and
the de�nition of the client-side sensed context parameters to be sent from
the client to the server, all properties of general validity in the design of
context-aware Web applications, not deriving from the use of WebML as
conceptual modeling language.

However, regardless of the level of persistence chosen for context pa-
rameters and, thus, regardless of the hypertext model that suits the cho-
sen persistence level, the user remains completely unaware of whether
volatile or persistent context parameters are adopted (provided that the
possible hypertext models implement the same context-aware function-
ality). This observation underlines that the nature of the context model
is hidden to the user, and that the user only perceives the e�ects of
possible adaptations.

147

7 Exploitation and Evolution of
Results

Throughout the entire de�nition process of the new features and prim-
itives, the realization of context-awareness and adaptivity in WebML
aimed at the development of a set of new concepts to be introduced
in the language. The �nal goal was the extension of WebML to allow
the modeling of context-aware Web applications in a fashion as aligned
as possible with the preexisting modeling method. Context modeling
and adaptivity modeling thus needed to be expressed in WebML terms,
possibly requiring only a minimal set of new concepts.
Also, throughout this research, extensibility was always a concern dur-

ing the extension of the modeling language, as extensibility facilitates the
exploitation and the evolution of the proposed approach, also in light of
parallel research topics that were tightly connected to the research de-
scribed so far.
In this chapter we describe three di�erent research areas in which the

results stemming from the research described in this dissertation have
been applied successfully: In the �rst place, the described research was
performed in the context of the Italian research project MAIS [68], which
was a joint research e�ort by several di�erent research units from Ital-
ian universities and companies that collaborated in the development of
a framework for multichannel, adaptive information systems. In this re-
gard, the solutions described so far have been adapted to support the
integration with other research groups. Next, we discuss an extension
that we have built on top of the approach described in the previous chap-
ters in order to support the design of behavior-aware Web applications.
Last, we propose an evolution of the conceptual modeling approach for
adaptivity and context-awareness, in order to overcome an intrinsic lim-
itation: its pure design time applicability. Therefore, we outline our
work on the development of a detached rule engine for runtime adap-
tivity management through event-condition-action rules. The �rst two
sections thus prove the scienti�c validity of the outlined ideas, while the
last section opens up new room for additional improvements and new
research challenges.

149

7 Exploitation and Evolution of Results

Data Design

Data Design

Testing and Evaluation

Maintenance and Evolution

Business Requirements

Requirements Specification

Implementation

Data Design

Hypertext Design

Architecture Design

WebML

SAF, M3L, DPM

Figure 7.1: Design phases of multichannel or multimodal, adaptive Web
applications. The labels of the dashed boxes highlight the
design instruments adopted in the MAIS project.

7.1 Multichannel and/or Multimodal Adaptive
Information Systems

Figure 7.1 shows how our results were integrated with the results from
other two MAIS research teams1, in order to provide application de-
signers with both methodological and technological instruments for the
design of multichannel and/or multimodal adaptive Web applications.
More precisely, the �gure shows that WebML, that is, the extension

introduced in the previous chapters, is adopted for the conceptual data
design and hypertext design. Architecture Design (and Implementa-
tion), on the other hand, does not solely rely on the WebRatio tool and
its code generator, but instead also leverages three di�erent frameworks
(i.e. SAF, M3L, and DPM) developed by the project partners: SAF
(Situation-Aware Framework) leverages the context-aware extension of
WebML to provide context-aware features at the presentation level; the
DPM (Dynamic Presentation Manager) supports the automatic adap-
tation of contents to di�erent delivery channels; and M3L (MultiModal
Markup Language) supports the delivery of multimodal contents.

1Our group tightly worked together with Cefriel (Consorzio per la formazione e la
ricerca in Ingegneria dell'Informazione), a Milan-based IT research consortium,
and Engineering, a Palermo- and Rome-based IT company.

150

7.1 Multichannel and/or Multimodal Adaptive Information Systems

7.1.1 Adaptivity for the Presentation Layer

Cefriel developed the Situation Aware Framework (SAF [77, 68]) for the
design, the delivery, and the execution of context-aware Web applications
by means of adaptations in the presentation layer of the Web application.
SAF is a complementary step in the design of adaptive Web applications
with respect to the extensions of WebML described in this dissertation.
The kinds of adaptation supported by SAF are:

• Layout : adaptation of the arrangement of objects in the page space.

• Presentation: adaptation of color schema, font type, and font size.

• Entity instance selection: selection of a speci�c instance of an en-
tity.

• Attribute selection: selection of the attributes to be shown by an
entity.

In SAF, context-awareness is managed through a declarative approach
in the document format generated starting from the models developed
during conceptual application design. A context-aware SAF application
can be modeled with WebML, using properties2 that express declara-
tively the adaptation behavior to be performed by the delivery platform.
Declared properties are propagated by the code generation process from
the hypertext model to the JSP templates, where they are interpreted
by means of proper adaptation rules in the SAF platform during the
execution of the application.
Two di�erent approaches can be used to determine the adaptation

behavior of the SAF platform:

• Explicit : the service designer must explicitly declare the kind of
desired adaptation using properties and/or rules.

• Implicit : this kind of adaptation is performed automatically by
the framework according to a set of prede�ned rules. For exam-
ple, if the system knows that the user's current activity is walk-
ing/running, the SAF can automatically switch the layout to a one
column mode, and, e.g., the font size can be set to a larger size.

Figure 7.2 shows an overview of the architecture of the SAF frame-
work and of its components. The left-hand side of the �gure describes

2Each WebML construct can be associated with one or more user-de�ned properties.
This feature is also supported by the WebRatio design environment.

151

7 Exploitation and Evolution of Results

Figure 7.2: The SAF architecture [77].

the design-time components. The context manager designs the context
model and speci�es the set of properties and values used to describe the
interaction context. The service designer models the application using
the extended WebML model and explicitly de�nes the adaptation be-
havior of the system by tagging adaptive elements (i.e. content units)
with proper parameters.
The right-hand side of the �gure shows the run-time components.

The context-aware module is responsible for taking decisions about the
adaptation actions to be performed. According to the rules that have
been de�ned or that are available as prede�ned rules and to the state of
the context model, the rule engine decides which adaptation actions to
perform. Actions are performed by means of a so-called Delivery Driver,
used to set the delivery environment con�guration, �nally performing
the actual adaptation of the pages to be delivered to the users.

7.1.2 Multichannel Delivery

Engineering developed the Dynamic Presentation Manager (DPM [77,
68]), a software module for adaptive, multichannel delivery of Web appli-
cations. While the SAF concentrates on runtime adaptivity of presenta-
tion elements, the DPM concentrates on runtime adaptability to di�erent
delivery channels (i.e. (X)HTML or WML) and/or device characteristics

152

7.1 Multichannel and/or Multimodal Adaptive Information Systems

Figure 7.3: The DPM architecture [77].

(i.e. PC, PDA or mobile phone).

In MAIS, the DPM is used to adapt pages designed with WebML
and generated by means of the WebML code generator, which produces
WebML applications adhering to the MVC (Model View Controller) de-
sign pattern. In this context, the DPM module is located in the View
layer, leveraging the separation of concerns o�ered by the MVC pattern.

The actual application data to be published in pages are produced by
the application's business logic and depend on the speci�c application
domain. Application data can be adapted by means of the extended
WebML environment based on user pro�le or context data. The DPM
does not include the adaptation of contents but concentrates on �look
and feel� and layout aspects.

Figure 7.3 shows a functional architecture of the DPM module with
its main components. In DPM terminology, context data consists of
situational data and application data, where the three main conceptual
entities are: the user pro�le (the subject), hardware and software device
features (the tool), and application data (the object). A typical context
state interpreted by the DPM could, for example, be: screen resolution
= 1024 × 768, battery level = high, memory amount = 512 MB, and
CPU power = 1GHz.

The Rule Engine component uses proper presentation rules to deter-
mine the appropriate XSL (eXtensible Stylesheet Language [78]) �le to
be passed to the XSL Engine component. Presentation rules are writ-
ten using the JESS (Java Expert Shell System [79]) language and are
structured as condition → action rules. In DPM, the condition is re-
placed by a particular context instance and the term action is replaced
by the selection of an XSL �le. The selection of the appropriate XSL �le
is based on the context data. The XSL Engine component contains an

153

7 Exploitation and Evolution of Results

XSL transformer, which performs a document transformation using the
XSL �le selected by the Rule Engine. The starting document contains
the application data, serialized in a convenient and transformable form.
The result of the transformation is an adapted page to be presented to
the �nal user in an appropriate markup language (i.e. (X)HTML or
WML).
The Rules Repository contains the presentation rules, and the XSL

Repository contains the set of available XSL �les.
As in the case of SAF, also the DPM uses user-de�ned properties to be

added to WebML hypertext elements, so as to support rule evaluation.
After page generation, the properties can then be found in the JSP tem-
plates of the View in the MVC architecture. This allows the integration
of the DPM into the WebML runtime environment in order to support
multichannel content delivery.

An Example Multichannel Delivery

In the context of the MAIS project, the DPM approach yielded a pro-
totype implementation that allowed the veri�cation and test of the de-
scribed approach by means of a proper example application [70], referring
to a tourism scenario. Data, hypertext and presentation model were de-
veloped by means of the extended WebML/WebRatio environment, and
the application code was generated automatically with the WebML code
generator. The system can be accessed from three di�erent kinds of
devices: PCs, PDAs, and mobile phones, as showed in Figure 7.4.
The implemented application and the presentation rules for the tourist

scenario use an XSL �le for each channel/device and support the follow-
ing adaptation features:

• replacement of widgets (e.g. images, buttons, etc.);

• resizing of page fonts;

• adjustment of the page layout.

Widget replacement is important for improving the usability on di�er-
ent delivery channels and devices with limited hardware resources (i.e.
mobile phones). The e�ects of the replacement are, for example, that
images on devices with small screen dimensions are replaced by textual
items, and GUI elements such as combo boxes, buttons, and window
menus are replaced by lists of items.
Page font resizing is used to present information with varying font

sizes. This type of resizing is used to provide easier readable information,
for example in the case of disabled users.

154

7.1 Multichannel and/or Multimodal Adaptive Information Systems

Figure 7.4: Multidevice access from various devices: PDA, PC, and mo-
bile phone [77].

Adjustments to the page layout are used to emphasize presentation
and customization aspects.

7.1.3 Multimodal Deployment of Adaptive Applications

Cefriel also developed the M3L (MultiModal Markup Language [77, 68])
framework, designed to support the multimodal delivery of contents by
synchronizing (in both input and output) a vocal and a visual interaction
mode. The two modes were chosen by considering the capabilities and
characteristics of the devices available on the market.
The design of the M3L framework is based on the extension of the

WebML language. To design multimodal WebML applications, addi-
tional information is needed. For every hypertext component of the
page it is necessary to specify the interaction modes that can be used,
for both input and output. The standard WebML hypertext schemas are
thus enriched with properties associated to the single WebML units. Hy-
pertext models are translated into M3L-coded pages, and multimodality
properties are translated into speci�c M3L attributes.

155

7 Exploitation and Evolution of Results

Figure 7.5: M3L framework architecture [77].

The resulting M3L framework is able to manage di�erent devices at
the same time, to synchronize them, and to o�er a coherent view of the
same contents on the two supported channels. By using both channels
simultaneously, the user has the impression that he/she is interacting
with a single integrated service, even if information is transmitted and
delivered through di�erent physical channels. The use of the M3L lan-
guage requires applications to be coded/generated only once, while at
the same time providing the advantages of two communication channels.

The M3L language is de�ned as a pair of XHTML modules [80]: the
multimodal forms (used to structure the M3L document) and M3L forms
(speci�c to user input) modules. The two modules, together with the
XHTML framework, constitute the M3L framework. M3L conforms to
the XHTML Host language speci�cation.

The multimodal and M3L form modules de�ne new elements and at-
tributes that enable the management of input (especially for data col-
lected through forms) and output synchronization. Attributes allow the
developer to choose the best interaction mode for output data, and they
allow the developer to select a preferred (or compulsory) input mode.
More precisely, the out attribute speci�es which modes can be used to
deliver the content of an element to the user. This attribute is available
in any tag that contains content information to be presented to the user.
If, for example, the tag <p> has its out attribute set to visual, the text
contained is delivered only through the visual mode (i.e. (X)HTML).
The mode attribute, on the other hand, speci�es the modes that a user
can use to input data. This attribute is associated with form �elds and
may have three possible values: text to indicate that the user can use
a keyboard, voice to indicate that the user may use his/her voice, and
all to say that both input modes may be used.

156

7.1 Multichannel and/or Multimodal Adaptive Information Systems

Adaptive WebML
Conceptual design

Multimodal
deployment

Visual
representation

XML
representation

Automatic code generator

SAF
framework

DPM-extended WebML
runtime environment

M3L
framework

Context-aware
presentation

Multichannel
deployment

Hand-coding

M3L JSP + SAF JSP + DPM

Figure 7.6: Integration of the MAIS development instruments.

Figure 7.5 displays the main components of the architecture of the M3L
framework. The Multimodal integrator is the core of the multimodal
framework. It manages the overall operation logic of the system and
integrates the inputs coming from the various connected channels and
modes. The integrator determines the outputs to be sent to the user and
manages the synchronization between the channels. The M3L repository
is the container for the multimodal applications and contents delivered
through the Multimodal integrator.
The Voice gateway is the component that manages the vocal com-

munication between the user and the application. It receives in input
VoiceXML documents generated by the Multimodal integrator, inter-
prets them and manages the vocal interaction with the user. A TTS
(Text-To-Speech) unit is used to generate the voice provided to the user,
and an ASR (Automatic Speech Recognition) unit is used to manage
the user's vocal input. The Voice gateway enables the vocal interaction,
allowing the transmission of voice over ordinary PSTN or GSM net-
works. As an alternative, it is possible to send VoiceXML �les directly
to the user in those cases where he/she is equipped with a suitable voice
browser.

7.1.4 Discussion

Figure 7.6 summarizes the integration of the instruments developed in
conjunction with Cefriel and Engineering. Starting point for the result-
ing design method for multichannel/multimodal adaptive information
systems is the context-aware extension of the WebML language, which
serves for the conceptual modeling of the application. The SAF and

157

7 Exploitation and Evolution of Results

DPM approaches leverage as well the automatic code generation feature
of WebML, while the M3L approach, due to its divergent document for-
mat and execution logic, relies on a hand-coded implementation of the
hypertext schemas. However, with little more e�ort, also M3L could be
fully integrated into the visual WebRatio environment and the automatic
code generator.
The smooth integration of the di�erent research results, even if still

at a prototype level, con�rmed the viability of the conceived adaptive
modeling solutions and of the WebML modeling language.

7.2 Capturing Complex User Behaviors: the Web
Behavior Model

Throughout this dissertation, we have seen that there are several tech-
niques that aim at augmenting the e�ciency of navigation and content
delivery in (Web) applications. Content personalization, for example,
allows contents and services to be tailored to the users of the application
by taking into account prede�ned roles or proper user pro�les. Adaptive
or context-aware Web applications aim at personalizing application con-
tents, layout and/or presentation properties not only with respect to the
identity of users, but also by taking into account the context of the inter-
action involving users and applications. Along a somewhat orthogonal
dimension, work�ow-driven Web applications [81] address the problem
of showing the right information at the right time by explicitly modeling
the (sometimes hidden) process structure underlying some usage scenar-
ios, especially in business-oriented domains. Eventually, usability studies
and Web log analyses [82] investigate the usability and ergonomics of
Web applications by means of an ex-post approach with the purpose of
deriving structural weaknesses, checking assumptions made about ex-
pected user navigations, and mine unforeseen navigation behaviors for
already deployed Web applications.
In this section we describe an extension of the research described in the

previous chapters and propose a new approach for triggering application
adaptations. More precisely, we combine an adaptive and a process-
centric perspective with the aim of supporting the design of behavior-
aware Web applications , which allow actions to be performed in response
to a user's ful�llment of prede�ned navigation patterns. Such patterns
are modeled by means of WBM (Web Behavior Model), a simple and
intuitive new formalism for specifying navigation goals, and enable the
creation of high-level Event-Condition-Action rules for expressing novel
adaptation requirements. The proposal adopts WebML for hypertext

158

7.2 Capturing Complex User Behaviors: the Web Behavior Model

[1] and adaptation [83] design, but the proposed approach is of general
validity and can be applied to arbitrary Web applications.
In this section, we �rst introduce the Web Behavior Model (Subsec-

tion 7.2.1), then we combine it with WebML for de�ning proper adapta-
tion rules (Subsection 7.2.3). In Subsection 7.2.4 we illustrate a practical
example, and in Subsection 7.2.5 we describe a prototype architecture
and discuss our experiences gained so far with the prototype implemen-
tation. In Subsection 7.2.6, �nally, we draw some conclusions for the
proposed extension.

7.2.1 The Web Behavior Model

The Web Behavior Model (WBM [84, 85]) is a timed state-transition
automaton for representing classes of user behaviors on the Web. WBM
does not serve for deriving runtime navigation behaviors, but instead
allows the description of navigation patterns (at design time) without
requiring a profound knowledge of the actual application structure.
Graphically, WBM models are expressed as labeled graphs, providing

an easily comprehensible syntax (cf. Figure 7.7). A state represents
the user's inspection of a speci�c portion of hypertext (i.e. a page or
a collection of pages). State labels are mandatory and correspond to
names of pages or page collections. A transition represents a navigation
from one such portion to another and, thus, the evolution from one state
to another. Each WBM speci�cation, called script , has at least one
initial state, indicated by an incoming unlabeled arc, and at least one
accepting state, highlighted by double border lines. Initial states cannot
at the same time be accepting states. Each transition from a source to
a target state may be labeled with a pair [tmin, tmax], expressing a time
interval within which the transition must occur in order to satisfy the
time constraint. Either tmin or tmax may be missing, indicating open
interval boundaries. If a transition does not �re within tmax time units,
it can no longer occur; on the other hand, navigation actions that occur
before tmin are lost.
One important aspect of WBM models is that not all navigation alter-

natives must be covered. As the aim of WBM is to capture a concise set
of user interactions, describing particular navigation goals and respective
�milestones�, even a subset of all possible navigation alternatives may be
enough to express the navigation path to be monitored. Typically, Web
sites make heavy use of so-called access pages that serve the purpose
of providing users with browsable categories for retrieving the actual
contents o�ered; also, Web sites usually provide several di�erent access
paths toward their core contents. Therefore, by concentrating only on

159

7 Exploitation and Evolution of Results

Page1 Page2

Page3

[tmin,tmax]

Initial state
indicator

Transition

State

Accepting
page states

Time constraint

Page4

Figure 7.7: Example of WBM script with state, link, time constraints
and multiple exiting transitions from one state.

those interactions that really express navigation goals, WBM allows de-
signers both to abstract from unnecessary details and to de�ne small
and easily comprehensible speci�cations. Only performing speci�ed tar-
get interactions � in the modeled order � may thus cause transitions in
a WBM model.
Figure 7.7 shows an example WBM script. The initial state corre-

sponds to Page1. The transition from the �rst state to the second state
occurs only if the user requests Page2 within tmin and tmax time units
from the moment the script has been initiated, otherwise the script ig-
nores the navigation and remains in its current state. The script in
Figure 7.7 also shows two transitions exiting from state Page2. The
states labeled Page4 and Page3 are �competing�, as a browsing activity
in Page2 may lead to either Page4 or Page3.
In WBM it is further possible, and sometimes convenient, to use over-

lapping states, i.e. states corresponding to overlapping portions of hy-
pertext. If two competing states are overlapping, two transitions may
trigger simultaneously.

WBM Formal Model

WBM belongs to the class of timed �nite state automata. Starting from
this class of automata, as discussed in [86, 87], and from the concepts
previously introduced, we now give a formal and concise de�nition of
WBM as timed �nite state automaton. Step by step we will enrich the
formal de�nition of �nite state automata with novel concepts to fully
re�ect the semantics of WBM.

De�nition 14 (Finite State Automaton) A �nite state automaton
is a tuple F = (Σ, S, S0, SF , E), where: Σ is a �nite set of input symbols;
S is a �nite, nonempty set of states; S0 ⊆ S is a nonempty set of starting

160

7.2 Capturing Complex User Behaviors: the Web Behavior Model

states; SF ⊆ S is a nonempty set of �nal states, such that S0 ∩ SF = ∅;
E ⊆ S × S × Σ is a set of transitions or edges.

A timed �nite state automaton can be de�ned as a �nite state automa-
ton with transitions constrained in time. Thus, De�nition 14 needs to be
extended with a clock and the relative de�nition of time constraints. We
here use a discrete-time model; we therefore use the set of nonnegative
integer numbers, N, as time domain.

De�nition 15 (Time Sequence) A time sequence τ = τ1τ2 . . . is an
in�nite sequence of time values τi ∈ N with i ≥ 1, satisfying the following
constraints:

1. Monotonicity: τi < τi+1 for all i ≥ 1.

2. Progress: For every t ∈ N there is some i ≥ 1 such that τi > t.

A timed word Σt over an input set of symbols Σ is a pair Σt=(σ, τ) where
σ = σ1σ2 . . . is an in�nite word over Σ and τ is a time sequence.

If a timed word Σt=(σ, τ) is used as input to an automaton, then the
time τi represents the time of the occurrence of the symbol σi.
Now, according to [86], we extend the �nite state automaton to inter-

pret timed words and associate a clock to the automaton. A clock is a
variable with values in N. Given that all time values are relative to state
transitions, for simplicity in our automaton the clock is reset to zero at
each state-transition. The absolute values of time events can be com-
puted by summing the absolute time of the last state transition to the
relative time of the given event. Before �nally de�ning the automaton,
we also need to formalize time constraints over transitions:

De�nition 16 (Time Constraint) Given a clock x, a time constraint
δ is de�ned inductively by δ := x ≥ c||x ≤ c||c1 ≤ x ≤ c2, where
c, c1, c2 ∈ Q+ and c1 < c2.

According to the previous de�nitions, timed �nite state automata can
be de�ned as follows:

De�nition 17 (Timed Finite State Automaton) A timed �nite state
automaton is a tuple F = (Σt, S, S0, SF , E, x), where: Σt is a timed word
of input symbols; S,S0,SF are de�ned in De�nition 14; x is the automa-
ton clock; E ⊆ S × S × Σt × Φ is the set of transitions, with Φ being a
set of time constraints δ over the clock x. An edge (s, s′, σ, δ) represents
a transition from state s to state s′ on input σ ∈ Σ and subject to the
clock constraint δ over x.

161

7 Exploitation and Evolution of Results

Although till now in this dissertation we have been using the term
hypertext in an intuitive fashion, in order to describe user behaviors by
means of a timed �nite state automaton, we now introduce a minimal
and generic de�nition of hypertext.

De�nition 18 (Hypertext) A hypertext is a couple H = (P,L) where
P is a set of pages and L ⊆ P × P is a set of links, such that every link
in L connects two and only two pages in P .

Given the de�nitions above, we can now de�ne the Web Behavior
Model (WBM).

De�nition 19 (Web Behavior Model) Given a hypertext H = (P,L)
and an timed �nite state automaton F = (Σt, S, S0, SF , E, x), a Web Be-
havior Model is a couple WBM(H,F) = (Pl, Ll) where:

- Pl : S → P ∪ Pc ∪ {∗} ∪ WBMi(H,Fi) is a function that maps
any state s ∈ S to a page p ∈ P of the hypertext H, or to a
collection of pages Pc ⊆ P(P), or to the special symbol ∗ denoting
any page of the hypertext H, or to any other Web Behavior Model
WBMi(H,Fi) de�ned over the hypertext H.

- Ll : T → L ∪ {∗} is a function that maps any transition e ∈ E
to a link of the hypertext H, or to the special symbol ∗, denoting
an unconstrained navigation between the pages corresponding to the
two states connected by the transition e.

This formal de�nition of WBM is based on the assumption that the
automaton does not terminate after receiving unexpected input symbols,
and instead keeps its current state, while waiting for a valid input symbol
without resetting its clock. Also, as the careful reader may have noticed,
WBM models can be described recursively, which allows complex behav-
iors to be represented by means of sub-models.

7.2.2 WBM and WebML

In this work we use WebML for the modeling of adaptive Web applica-
tions. Given the intrinsic semantics of WebML hypertext models, ex-
ploiting some structural peculiarities of WebML-based applications al-
lows us to further re�ne the WBM transition constraints introduced in
the previous section. In addition to time constraints, in this section we
thus de�ne so-called state constraints and link constraints to augment
the expressive power of WBM models.

162

7.2 Capturing Complex User Behaviors: the Web Behavior Model

User
UserName
Password
EMail

Group
GroupName

SiteView
SiteViewID

0:N

1:N 1:N

1:N1:1
DefaultSV

Access

Default
Group Membership

1:N

Personalization sub-schema

Answer
Body

Course
Title
Category
Body

ExpertiseLevel
Level
Description

Question
Body

Subscription
Date

1:1 1:N

1:1

0:N
1:N
1:1

1:11:N

1:N
1:1 1:1

1:1

Basic user
sub-schema

Application data

Correct
Answer1:1

0:N

0:N 0:N

1:1 0:N

Figure 7.8: An example of Entity-Relationship schema for an e-learning
application.

For a better comprehension of the bindings betweenWBM andWebML,
we start with a short description of a reference application scenario, and
then we introduce the new concepts.

An E-Learning Application Scenario

Throughout this section we will make use of design examples referring to
an e-learning reference scenario introduced in the following. The idea of
the application is to provide users with courses (i.e. detailed descriptions
of particular subjects) and the possibility to test their knowledge of the
respective subjects by means of proper test forms to be �lled out. Each
course has several knowledge or expertise levels associated, each with a
di�erent set of questions, in accordance with the di�culty of the user's
ascertained expertise level. Passing a test of a speci�c course increases
the user's respective expertise level. As for now, the reference application
does not provide any adaptivity features, which will be introduced in the
next subsection.
Figure 7.8 depicts the ER schema underlying the e-learning applica-

tion: the data schema can be partitioned into the basic user sub-schema,
a personalization sub-schema, and the actual application data. Since
adaptivity will be triggered through the execution of WBM scripts, the
data source does not need any context sub-schema.
The personalization sub-schema consists of the entity Subscription,

which allows the association of users, courses and expertise levels (i.e. the
entity represents a ternary relationship). The relationship User2Course

is derived from the two relationships User2Subscription and Subscrip-

163

7 Exploitation and Evolution of Results

H
om

eG
et U

ser

C
urrentU

ser

U
ser

U
ser D

etails

Test

U
ser’s C

ourses

C
ourse

[U
ser2C

ourse]

Q
uestions

Q
uestion

[E
xpertiseLevel2Q

uestion]

A
nsw

ers

A
nsw

er
[Q

uestion2A
nsw

er]

C
alc E

xpertise

G
et U

ser

C
urrentU

ser

A
vailable C

ourses

C
ourses

C
ourse

C
reate S

ubscrip.

S
ubscription

<U
ser.O

ID
=C

urrentU
ser>

G
et U

ser

C
urrentU

ser
C

onnect

S
ubscription2C

ourse

C
ourse.O

ID
,

S
ubscription.O

ID

L

L H

G
et E

xpertise

S
ubscription

<U
ser.O

ID
=C

urrentU
ser>

<C
ourse.O

ID
=C

ourse>

E
xp

C
onnect

S
ubscription2E

xpertiseLevel
<Level=0>

C
ourse.O

ID C
ourse

C
ourse

C
ourse D

etails

G
et U

ser

C
urrentU

ser

E
xpertise

E
xpertise

G
et Expertise

S
ubscription

<U
ser.O

ID
=C

urrentU
ser>

<C
ourse.O

ID
=C

ourse>

O
K

O
K

O
K

O
K

C
ourse

C
ourse

C
ourse

C
ourse.O

ID
,

S
ubscription.O

ID

F
igure

7.9:
T
he

W
ebM

L
m
odel

of
the

prop
osed

educational
W
eb

site.

164

7.2 Capturing Complex User Behaviors: the Web Behavior Model

Operation
Page

or collection
of pages

Area

Figure 7.10: WBM extended set of symbols.

tion2Course and provides direct access to the courses a user is sub-
scribed to.
In the core application data we can see that each course may have dif-

ferent expertise levels, which are associated to a set of questions. Ques-
tions are associated with a set of answers. The relationship CorrectAn-
swer associates a correct answer to each question.
The WebML hypertext model of the e-learning application is depicted

in Figure 7.9. After logging in to the application, the Home page pub-
lishes personalized data about the user (User Details unit) and the list
of courses the user is subscribed to (User's Courses unit). The Get

User unit provides the user's identi�er for content personalization. By
selecting one of the listed courses, the user can either inspect the de-
tails of the selected course (i.e. he/she navigates to the Course page),
or he/she can directly start a test by invoking the Test page. But the
user can also decide to add a new course to his/her list by accessing
the Available Courses landmark page, which allows him/her to select
a course of interest from the Courses index unit. This �rst creates a
new subscription and connects the user with the new course and its low-
est level of user expertise, and then forwards the user to the respective
course details.
Course details can be browsed in the Course page, which also shows

the user's current expertise level for the viewed topic (the Get Expertise

unit gets the respective identi�er from the database). From this page,
at any time the user can start a test to demonstrate that he/she has
increased the knowledge of the topic. Tests are �lled out in the Test

page, which shows a set of questions and possible answers corresponding
to the user's expertise level and the selected course. After the submission
of a �lled answer form, the Calc Expertise operation unit computes the
(possibly) new level of expertise, updates the underlying database tables
and redirects the user back to the Course page (through the OK link).

Referencing WebML in WBM

WebML hypertext schemas are based on three core elements: areas,
pages and units. As shown in Figure 7.10, taking them into account by

165

7 Exploitation and Evolution of Results

means of new WBM state symbols enables easier and more expressive
model de�nitions. Furthermore, contents are published by so-called con-
tent units, bound to data entities that can be �queried� to retrieve details
about the navigated contents. For this purpose, we also introduce WBM
variables, assignments and predicates.

• Variables (<variable name>) are untyped and named by alphanu-
merical character sequences, beginning with a character.

• Assignments are formulas of the form <variable name>:=<term>,
where the <term> is an arithmetic expression using either constant
values, functions, or variables.

• Predicates are Boolean expressions of the form <term1> <comp>

<term2>, where <term1> and <term2> are arithmetic expressions
using either constant values, functions, or variables; and <comp> is
one of the comparators =,≤,≥,6=,< or >. Predicates can be com-
pound to form complex expressions: <pred> <logicomp> <pred>,
where a <logicomp> is one of the two logic operators ∧ (AND), ∨
(OR).

To specify state constraints over contents and store variable values,
four basic functions can be used in predicates and assignments:

Display(<Data unit name>,<Attribute name>)

Selected(<Data unit name>,<Attribute name>)

Entry(<Entry unit name>,<Form element>)

Parameter(<Operation unit name>,<Attribute name>)

The Display function applies either to data units, returning the value
of an attribute of the displayed entity, or to multi data and index units,
returning the set of values of an attribute of the displayed entities. Ag-
gregation functions (such as SUM, MIN, MAX, AVG, COUNT) can be ap-
plied to sets of values in order to compute scalar values. The Selected

function applies to index units only, returning the attribute value of the
entity that has been selected by the user. The Entry function applies to
entry units and returns the value of one form �eld entered by the user.
The Parameter function applies to operation units, returning the value
of one of the parameters assigned in the operation call.
Referring to the Course page of our e-learning application, the assign-

ment

x := Display(Course, OID)

166

7.2 Capturing Complex User Behaviors: the Web Behavior Model

Home
Display(Age,User

Data)<20

Calc
ExpertiseTest

[0,180]

*oln1

Figure 7.11: A WBM script with an operation, link constraints and pred-
icates.

assigns the OID attribute of the item being displayed by the Course data
unit to the variable x. Likewise, the predicate

Display(Course, Category) = "Web"

veri�es whether the Category attribute of the item being displayed by
the Course data unit equals the string �Web� or not. A predicate is
satis�ed, whenever the expressed condition evaluates to true.

Link constraints are based on WebML link identi�ers and allow de-
signers to restrict WBM transitions to explicitly speci�ed links. Link
constraints are expressed by labeling transitions with link identi�ers.
For distinguishing between entering and exiting links, the following syn-
tax can be adopted: a * near the begin of a transition arc constrains the
link to be an outgoing link; a * near the end of a transition arc constrains
the link to be an incoming link; if a * is speci�ed on both sides of an
arc, the relative link must connect directly the two pages or operations;
when the * is omitted, the transition refers to any path containing the
speci�ed link.
The WBM script in Figure 7.11, based on our reference scenario, illus-

trates the novel concepts. The depicted script aims at identifying newly
registered users that are younger than 20 years and take less than 180
seconds to answer the proposed questions. The script starts when enter-
ing the Home page, displaying a User Data unit with Age attribute less
than 20. The transition to the second state is enabled only if the user
reaches the page Test through an incoming OK link, we suppose the link
be denoted by the WebML identi�er oln1. Finally, the accepting state
is reached when the user requests the Calc Expertise operation unit
within 180 seconds from the activation of the previous state.
WBM has been designed to describe navigation behaviors on top of

arbitrary hypertexts. The use of WebML for specifying hypertexts in
this section and the introduction of WebML-speci�c extensions to WBM
enable the speci�cation of advanced constraints and to address a �ner
granularity in the speci�cation of the navigation behavior. However,
other conceptual models, providing constructs that express the structure

167

7 Exploitation and Evolution of Results

of the application and the organization of contents, could be adopted as
well to specify state and link constraints.

7.2.3 Reacting to User Behaviors

In order to be able to react to observed behaviors and to adapt the run-
ning application, we now combine WebML and WBM. For this purpose,
we transform the context-triggered adaptivity mechanism introduced
Chapter 4 into a WBM-triggered mechanism. Consequently, adaptiv-
ity occurs in reaction to the ful�llment of entire WBM scripts, which
can be derived from the users' navigation behavior, as outlined in the
previous section. According to Subsection 4.3.6, possible reactions in
WebML comprise:

• Adaptation of contents published by speci�c pages.

• Automatic execution of navigation actions toward other pages.

• Adaptation of presentation/style properties.

• Adaptation of the overall hypertext structure.

• Automatic execution of operations or services.

Although independent from one another, expressing adaptation as a
combination of WBM scripts and WebML adaptivity primitives intrin-
sically leads to a high-level ECA paradigm for specifying adaptivity.
Commonly, ECA rules respect the general syntax

on event if condition do action

where the event part speci�es when the rule should be triggered, the
condition part assesses whether given constraints are satis�ed, and the
action part states the actions to be automatically performed if the condi-
tion holds. When specifying behavior-aware Web applications, the event
consists of a page or operation request, the condition requires the ful-
�llment of a prede�ned navigation pattern (expressed as WBM script),
and the action part speci�es some adaptivity actions to be forced on the
Web application and expressed as a WebML operation chain.
While the progression of activated WBM scripts takes into account

all navigations performed by a user, the evaluation of entire rules is re-
stricted to a subset of the application's pages. This subset determines
the so-called scope of the rule and is speci�ed by labeling adaptive pages
with an A-label in the WebML hypertext model and explicitly associat-
ing those pages to the rule's WBM script. Accordingly, events for one

168

7.2 Capturing Complex User Behaviors: the Web Behavior Model

Event Condition Page1 Page1Page2 ActionPage A ParametersChain of adaptation operations Page request WBM script WebML hypertext model
Figure 7.12: High-level ECA rule components.

speci�c rule are generated only when a user requests a page within the
scope of that rule. As a consequence, also the condition of a rule (i.e. the
termination of the WBM script) is evaluated only after proper events of
the respective rule have been generated. In the case of script termina-
tion, the operations indicated by the link exiting the page's A-label are
executed.
Figure 7.12 graphically summarizes the outlined rule construct: the

rule reacts to a user's visit to Page1 followed by a visit to Page2 at some
stage after his/her visit to Page1. The expressed rule condition thus
only holds when the script gets to the accepting state Page2. Once the
accepting state is reached and the user navigates one of the pages within
the rule's scope, the operations associated to that page (abstracted as
the cloud in Figure 7.12) are executed and possible adaptations may be
performed.

Pages may have several competing rules associated and may thus be
part of the scopes of di�erent rules. To resolve possible con�icts among
concurrently activated rules (each rule may have di�erent associated ac-
tion parts), proper rule priorities enable the selection of the rule with
highest priority. Due to the fact that executing the actions of one rule
may alter the overall hypertext structure and thus invalidate the se-
mantics of the other simultaneously activated rules, their actions are
discarded. Rules are in total priority order, based on explicit numbering
or implicit rule creation time.
When considering priorities as properties of rules, rules can be de-

scribed by the following 4-tuple:

〈Navigation(Scope), [WBM Script,]WebML Operations[,Priority]〉

where the Scope represents the extent (pages, areas, or site views) within
which the rule reacts to navigation events. The WBM Script describes
the condition part of the rule, and the WebML Operations specify the
action part. When the optional WBM Script component is omitted, the
condition part of the rule always evaluates to true and possible adap-

169

7 Exploitation and Evolution of Results

Condition Action

WBM script WebML HT model

Course
x:=Display

(Course,OID)

Course
y:=Display

(Course,OID)
x!=y

Course
z:=Display

(Course,OID)
z!=x && z!=y

[*,180][*,180]
*

[*,180]

Course A

Get Unit

CurrentUser

Test

Get Exp

Subscription
<User.OID=CurrentUser>

<Course.OID=Course>

Course

Course
x:=Display

(Course,OID)

Course
y:=Display

(Course,OID)
x!=y

Course
z:=Display

(Course,OID)
z!=x && z!=y

[*,180][*,180]
*

[*,180]

Figure 7.13: A WBM script for triggering the evaluation of a student's
knowledge level.

Condition Action

WBM script

Course
x:=Display
(Course,
Category)

Course
y:=Display
(Course,

Category)
x=y

Course
z:=Display
(Course,

Category)
z=x

[*,*]

WebML hypertext model

Get WBM var

x

W
Get Unit

CurrentUser

Connect

Subscription2ExpertiseLevel
<User.OID=CurrentUser>
<Course.OID=Course>

<Level=Level-1>

[*,*]

Course A

Condition

Action

WBM script

Course
x:=Display
(Expertise,

Level)

Test
Course
y:=Display
(Expertise,

Level),
y=x

[1800,*]

WebML hypertext model

[*,*]

Course A

Get Unit

CurrentUser

Level, Course

OK

* * * *

Course
x:=Display
(Expertise,

Level)

Test
Course
y:=Display
(Expertise,

Level),
y=x

[1800,*][*,*]
* * * *

Figure 7.14: A WBM script to penalize unprepared users.

tation operations are executed at page access. Finally, Priority is an
optional integer expressing the rule's priority with respect to others.

7.2.4 The E-Learning Case Study

By leveraging the described rule model, we now describe two examples
that show how proper adaptation operations can be added to the e-
learning Web application. Modeled adaptation operations thus extend
the already described hypertext model.

Evolving the Level of User Expertise

Figure 7.13 models a WBM script to redirect the user to the Test page
for the current experience level if he/she has visited 3 di�erent courses
(i.e. 3 di�erent instances of Course pages), spending less than 3 minutes
over each page. Instead of just browsing the topics, the user should be
encouraged to read and deepen the presented contents. The * in the
�nal state of the WBM script speci�es the acceptance of any arbitrary
page.
The hypertext model of the e-learning application extended with the

necessary adaptivity actions for redirecting the user is depicted in Fig-
ure 7.15. The Get Expertise unit associated to the Course page by
means of the link exiting the A-label implements the logic for retrieving
the user's current expertise level and for forwarding him/her to the Test
page. The activating link also provides in input the Course parameter,
which is an identi�er retrieved during page computation. The adapta-
tion may be performed when the user asks for a Course page and the
script in Figure 7.13 has terminated.

170

7.2 Capturing Complex User Behaviors: the Web Behavior Model

H
om

e G
et

 U
se

r

C
ur

re
nt

U
se

r

U
se

r

U
se

r D
et

ai
ls

Te
st

U
se

r’s
 C

ou
rs

es

C
ou

rs
e

[U
se

r2
C

ou
rs

e]

Q
ue

st
io

ns

Q
ue

st
io

n
[E

xp
er

tis
eL

ev
el

2Q
ue

st
io

n]

A
ns

w
er

s

A
ns

w
er

[Q
ue

st
io

n2
A

ns
w

er
]

C
al

c
E

xp
er

tis
e

G
et

 U
se

r

C
ur

re
nt

U
se

r

A
va

ila
bl

e
C

ou
rs

es

C
ou

rs
es

C
ou

rs
e

C
re

at
e

S
ub

sc
rip

.

S
ub

sc
rip

tio
n

<U
se

r.O
ID

=C
ur

re
nt

U
se

r>

G
et

 U
se

r

C
ur

re
nt

U
se

r
C

on
ne

ct

S
ub

sc
rip

tio
n2

C
ou

rs
e

C
ou

rs
e.

O
ID

,
S

ub
sc

rip
tio

n.
O

ID

L

LH

G
et

 E
xp

er
tis

e

S
ub

sc
rip

tio
n

<U
se

r.O
ID

=C
ur

re
nt

U
se

r>
<C

ou
rs

e.
O

ID
=C

ou
rs

e>

E
xp

C
on

ne
ct

S
ub

sc
rip

tio
n2

E
xp

er
tis

eL
ev

el
<L

ev
el

=0
>

C
ou

rs
e.

O
ID C

ou
rs

e

C
ou

rs
e

C
ou

rs
e

D
et

ai
ls

G
et

 U
se

r

C
ur

re
nt

U
se

r

E
xp

er
tis

e

E
xp

er
tis

e

G
et

 E
xp

er
tis

e

S
ub

sc
rip

tio
n

<U
se

r.O
ID

=C
ur

re
nt

U
se

r>
<C

ou
rs

e.
O

ID
=C

ou
rs

e>

O
K

O
K

O
K

O
K

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e.

O
ID

,
S

ub
sc

rip
tio

n.
O

ID

G
et

 E
xp

er
tis

e

Su
bs

cr
ip

tio
n

<U
se

r.O
ID

=C
ur

re
nt

U
se

r>
<C

ou
rs

e.
O

ID
=C

ou
rs

e>

A

C
ou

rs
e,

Le
ve

l

C
on

ne
ct

Su
bs

cr
ip

tio
n2

E
xp

er
tis

eL
ev

el
<U

se
r.O

ID
=C

ur
re

nt
U

se
r>

<C
ou

rs
e.

O
ID

=C
ou

rs
e>

<L
ev

el
=L

ev
el

-1
>

O
K

C
ou

rs
e

C
ou

rs
e

C
ou

rs
e

Le
ve

l

F
ig
ur
e
7.
15
:
T
he

ad
ap
ti
ve

W
eb
M
L
hy
p
er
te
xt

m
od
el
of

th
e
e-
le
ar
ni
ng

si
te

(c
f.
F
ig
ur
e
7.
9)
.

171

7 Exploitation and Evolution of Results

Penalizing Slow, Failed Tests

If we suppose that typically test forms do not required more than 15-20
minutes to be �lled out by users, we could be interested in penalizing
users who take more than 30 minutes (1800 seconds) to �ll out a test
and, nonetheless, fail. Figure 7.14 shows a possible WBM script for this
purpose: starting from the Course page, the user needs to go directly
to the Test page (note the use of the * symbols on transitions) and to
complete the test in more then 1800 seconds; if the user fails the test,
this can be seen in the expertise level of the newly accessed Course page,
which will not change with respect to its last value. The variables x and
y allow this comparison.
The adaptivity action that penalizes the user is represented by the

Connect unit in Figure 7.15. The link connecting the A-label of the
Course page with the Connect unit carries two parameters (i.e. Course
and Level) required to perform the association of the user with a lower
level of expertise. For the sake of simplicity, we suppose level 0 to be the
lowest level of expertise, automatically restrained.
The activating link of this adaptation is performed only if the user

accesses the Course page and the WBM script in Figure 7.14 has termi-
nated. To prevent possible con�icts with the previously de�ned adap-
tivity rule for the Course page, we associate a lower priority to the
penalizing rule.

7.2.5 System Architecture

In addition to the standard WebML runtime environment, executing
behavior-aware Web applications requires proper runtime support for
WBM scripts. As illustrated in Figure 7.16, this task is addressed by a
suitable WBM Engine, which manages WBM scripts based on tracked
HTTP requests. More precisely, HTTP requests are automatically for-
warded to the WBM engine by the WebML runtime environment, which
hosts the actual application. Users interact only with the Web applica-
tion itself and are not aware of the WBM engine behind it.
TheWBM engine collects and evaluates tracked, user-generated HTTP

requests for (i) instantiating new scripts at runtime, and (ii) enhancing
the states of possible running WBM scripts, as well as (iii) communi-
cating possible script terminations. Script instantiation is managed by
a proper Script loader module based on tracked page requests and the
scripts' starting pages (those indicated by their initial states). The set of
scripts that can be instantiated for a particular application is retrieved
from a Script Repository. A dedicated WBM Execution Environment

172

7.2 Capturing Complex User Behaviors: the Web Behavior Model

Script Repository

WBM Engine

Script LoaderWBM
Execution
Environment

DB

User

HTTP
Request

HTTP
Response

WebML Runtime
Environment HTTP

Request

Script Termination

WBM Variables

Figure 7.16: Functional architecture of the overall behavior-aware sys-
tem.

is in charge of progressing instantiated, running scripts. Each user has
his/her own set of scripts, which are executed in a completely inde-
pendent way. Once a script reaches its accepting state, the execution
environment communicates the successful termination to the Web appli-
cation by modifying suitable data structures within the shared database.
Those data structures also hold the values of possible WBM variables
used during script execution. After successful termination of a WBM
script, the Web application possesses all the necessary data for execut-
ing the possibly associated adaptation actions.
As soon as a user requests one of the pages within the scope of the high-

level rule whose condition is satis�ed by the terminated WBM script, the
Web application executes the adaptation operations associated to the re-
quested page (cf. the extended page computation logic for context-aware
pages summarized in Figure 4.10). For this purpose, page computation
starts by checking whether scripts connected to the page have termi-
nated or not, before proceeding with the actual rendering of the page.
If there are terminated scripts for that page, one or more rules could be
executed. In case of multiple candidate rules, rule priorities help deter-
mining the rule with highest priority. Thus, computation proceeds with
the determined adaptation operations, producing e�ects as described in
Subsection 7.2.3. Only afterward and in the case of no automatic naviga-
tion actions, computation continues with the actual page and a suitable
HTML response is produced.

Adaptivity Policies

According to the adaptivity policies introduced in Subsection 4.3.5, the
WBM engine supports a synchronous and an asynchronous rule execu-
tion model.

173

7 Exploitation and Evolution of Results

In the synchronous case, the page request is immediately forwarded
to the WBM engine when a user requests a page inside the scope of a
rule, and page computation proceeds only after receiving a respective
status noti�cation from the WBM engine. In this way, possible WBM
scripts are updated before page computation, and possible script ter-
minations are enabled to immediately cause an execution of adaptivity
actions. This, however, implies that the speed of page computations
heavily depends on the performance of the WBM engine.
When adopting an asynchronous con�guration, page requests are sat-

is�ed immediately and forwarded only after page computation. Possible
adaptations are performed after the prede�ned refresh/polling interval
by automatically refreshing the page or by means of the background
monitoring mechanism described in Section 5.3. The asynchronous con-
�guration allows a better parallelization of the Web application and the
WBM engine, as well as short response times.

WBM Engine Implementation

The implementation of rule engines for active databases is a well known
and studied topic in the literature on database systems. Our problem
of handling user sessions and WBM scripts resembles to the problem
of handling transactions and rules in active databases, wherefore the
implementation of the WBM Engine [84, 85] has been inspired by the
Starbust Active Database [65].
More precisely, the developed rule engine maintains a catalog of WBM

scripts, where each script has associated the collection of user sessions
that activated the script. As the number of instances of user sessions
in a heavily used Web application is much bigger than the number of
de�ned WBM scripts, it is more e�cient to associate user sessions to
scripts than running scripts to each single user session. This reduces the
e�ort needed to maintain the data structures in memory and improves
the overall system performance. The WBM engine thus inserts tokens
representing single user sessions into the scripts' runtime data structures.
Tokens advance according to script state changes and are removed when
entering an accepting state. Removing a token implies communicating
the successful termination of the respective script to the database, thus
the Web application.
However, user sessions are not permanent objects. Due to the HTTP

protocol, it is not possible to establish when exactly a user session ter-
minates. This may cause a high number of running WBM scripts poten-
tially never reaching an accepting state. To solve this problem and to
handle WBM time constraints, the WBM Engine makes use of a garbage

174

7.2 Capturing Complex User Behaviors: the Web Behavior Model

collector, which performs cyclic checks and clean-ups of activated scripts
with inactive sessions, where inactivity implies no user navigations for a
prede�ned interval of time.
In order to guarantee the consistency of user click streams, tracked

page requests are stored in a chronologically ordered queue. The de-
scribed tracking process thus requires in input the complete URL nav-
igated by the user, the timestamp of the request, an identi�er of the
user (e.g. the session identi�er), as well as the identi�er of the Web
application itself3.

Prototype Experiments

A �rst prototype of the presented WBM engine has been developed and
tested by implementing the behavior-aware e-learning Web application
used throughout this section. We have fully implemented link and time
constraints as well as most of the mechanisms required by WBM state
constraints. Results from experiments are quite positive: experiments
proved the viability of the approach, and the use of the asynchronous
execution model e�ectively avoids WBM engine response times to impact
too much on the user experience.
Experiments, however, revealed a performance problem to be solved in

the next version of the prototype: we observed an excessive lag between
the start of a noti�cation of a page request and the �nal computation
of the new state by the WBM engine (around 2.5 seconds to manage
100 user requests4). Further studies proved that the bottleneck of the
system was not the WBM engine (a stand-alone version of the engine
processes the same 100 requests in less than 60 milliseconds, and can
e�ciently support WBM scripts of greater complexity than the ones
described in this section). Rather, the bottleneck could be detected
in the generation of SOAP messages by the Web application, as the
communication between the Web application and the WBM engine is
currently implemented by means of Web services.

7.2.6 Discussion

In this section we have proposed a further extension to the modeling
of adaptive or context-aware Web applications, i.e. a general purpose
approach for building behavior-aware Web applications. Our proposal

3This information could be reconstructed as well from the requested URL.
4Experiments were realized using an AMD AthlonXP 1800+, 512MB of RAM and
with Tomcat as Web server.

175

7 Exploitation and Evolution of Results

combines the context-aware extension of WebML and WBM into a vi-
sual ECA paradigm that allows one to associate the adaptive features
described in the previous chapters to structured navigation patterns.
When combined, WebML and WBM yield a very powerful model,

with adequate expressive power to capture highly sophisticated Web dy-
namics. WBM enables the monitoring of behaviors ranging from rather
coarse to very detailed event sequences; the binding of WBM predi-
cates to WebML enables the speci�cation of events in terms of hyper-
text elements (pages and links) and of the application content. While
the combined expressive power is quite strong, we also believe that the
two models should be kept distinct, so as to enable the speci�cation
of WebML applications that are totally independent from WBM and
of WBM scripts that can be progressively re�ned and �nally bound to
WebML concepts.

7.3 Enabling Runtime Adaptivity Management

As is the nature of the Web engineering discipline, the conceptual mod-
eling approaches to adaptability, context-awareness, and adaptivity pri-
marily focus on the de�nition of design processes to achieve adaptation,
thereby providing e�cient methods and tools for the design of such a
class of applications. For instance, model-driven methods [8, 88], object-
oriented approaches [43], aspect-oriented approaches [46], and rule-based
paradigms [44, 89] have been proposed for the speci�cation of adaptation
features in the development of adaptive Web applications (see also Sec-
tion 2.4 for a detailed discussion of the approaches). The resulting spec-
i�cations facilitate the implementation of the adaptation requirements
and may also enhance code coherence and readability. Unfortunately, in
most cases, during the implementation phase all formalizations of adap-
tivity requirements are lost, and the adaptivity features become buried in
the application code. This aspect implies, that changes and evolutions of
adaptive behaviors after the deployment of the application are di�cult,
unless a new version of the application is implemented and released.
Based on the experience gained with the model-driven design of adap-

tive and/or context-aware Web applications as described in this disser-
tation, we believe that another interesting area of investigation in this
research �eld is the support of the dynamic management of adaptiv-
ity features: on one hand, this will require proper design time support
(e.g. languages or models), on the other hand, this will require suit-
able runtime environments, where adaptivity speci�cations can be easily
administered.

176

7.3 Enabling Runtime Adaptivity Management

In [90] we outlined our �rst ideas on this topic and described a pos-
sible conceptual framework for the approach. In this section we focus
on the evolution of that work, describing in more detail a rule-based
language (ECA-Web) for the speci�cation of adaptive behaviors, orthog-
onally to the application design, and its concrete implementation. The
resulting framework provides application designers with the ECA-Web
language and application administrators with the possibility to easily
manage ECA-Web rules (inserting, dropping, and modifying rules), even
after the implementation and the deployment of the application, i.e. at
runtime. As envisioned above, with the described approach we enable
the decoupled management of adaptivity features at both design time
and runtime.
This section is organized as follows. Section 7.3.1 introduces the ECA-

Web rule language for the speci�cation of adaptive behaviors for Web
applications and, then, shows how ECA-Web rules can be executed by a
proper rule engine and integrated with the execution environment of the
adaptive Web application. Section 7.3.2 discusses a prototype of adaptive
Web application supported by ECA-Web rules and shows the usage of
the active rule language. Section 7.3.3 describes the implementation of
the overall system and reports on �rst experiences with the rule-based
adaptivity speci�cation and the runtime management of adaptivity rules.
Finally, Section 7.3.4 concludes the section.

7.3.1 Enabling Dynamic Adaptivity Management

In following we introduce the design component (the ECA-Web lan-
guage) and the runtime component (the rule execution environment)
that enable the dynamic administration of adaptivity features.

ECA-Web

ECA-Web is an XML-based language for the speci�cation of active rules,
conceived to manage adaptivity in Web applications. The syntax of the
language is inspired by Chimera-Exception, an active rule language for
the speci�cation of expected exceptions in work�ow management systems
[91]. ECA-Web is an evolution of the Chimera-Web language we already
proposed in [90], and it is equipped with a proper rule engine for rule
evaluation and execution.
The general structure of an ECA-Web rule is summarized in Fig-

ure 7.17. A typical ECA-Web rule is composed of �ve parts: scope,
events, conditions, action, and priority. The scope de�nes the binding of
the rule with individual hypertext elements (e.g. pages, links, contents

177

7 Exploitation and Evolution of Results

<rule name="showBuilding">
 <scope>
 <page>/politour/building.jsp</page>
 </scope>
 <events>
 <event>
 <class>bellerofonte.events.DataEvent</class>
 <params>
 <param name="type">modify</param>
 <param name="table">Position</param>
 <param name="attr">latitude</param>
 </params>
 </event>
 ...
 </events>
 <conditions>
 <object>
 <name>P</name>
 <type>Position</type>
 <requirements>
 <eq><value>user_id</value><value>Rule.currentUser</value></eq>
 </requirements>
 </object>
 <object>
 <name>A</name>
 <type>Area</type>
 <requirements>
 <lt><value>MinLatitude</value><value>P.Latitude</value></lt>
 <gt><value>MaxLatitude</value><value>P.Latitude</value></gt>
 <lt><value>MinLongitude</value><value>P.Longitude</value></lt>
 <gt><value>MaxLongitude</value><value>P.Longitude</value></gt>
 </requirements>
 </object>
 <notnull>
 <value>A.building_id</value>
 </notnull>
 </conditions>
 <action>
 <class>bellerofonte.actions.Showpage</class>
 <params>
 <param name="redirectURI">building.jsp?id=<value>building_id</value></param>
 </params>
 </action>
</rule>

Binding of the rule to the Building page

The rule may be triggered by two data events,
i.e. the modification of the current user’s latitude
or longitude. For presentation purposes, we only
show the event related to the latitude parameter.

The specification of the rule’s
condition requires the definition of two
data objects for the construction of the
database query: the first one (P)
extracts the current user’s position by
means of the Rule.currentUser
environment variable; the second one
(A) extracts the area associated to the
user’s current position. Finally, the
<notnull> condition allows us to check
the presence of a building in the
identified area.

The adaptation of the page
contents requires the invocation
of the Showpage action with
suitable parameters computed
at runtime.

<rule name="...">
 <scope>

...
 </scope>
 <events>

...
 </events>
 <conditions>

...
 </conditions>
 <action>

...
 </action>
 <priority>

...
 </priority>
</rule>

Optional binding of the rule to hypertext elements. If no
scope is defined, the rule is considered of global scope
and thus applied to all hypertext pages.
Mandatory specification of the events that trigger the
rule (Web events, data events, temporal events and
external events).

Optional condition to check the status of session
variables or database content.

Mandatory action to be enacted to adapt the application
in response to the event that triggered the rule.

Optional priority to resolve conflicts among
concurrently actived rules over the same scope.

Specification of the events
rule. For presentation purp
the definition of the data ev
change of the latitude; the
applies to the monitor chan

The specification of the ru
condition requires the defi
data objects for the constr
database query: the first o
extracts the current user’s
means of the Rule.current
environment variable; the
(A) extracts the area asso
user’s current position. Fin
<notnull> condition allows
the presence of a building
identified area.

The definition of the action
enacted requires the
specification of the respecti
Java class and of the
parameters to be passed in
input to the class.

Figure 7.17: Structure of ECA-Web rules.

inside pages). By means of events we specify how the rule is triggered in
response to user navigations or changes in the underlying context model.
In the condition part it is possible to evaluate the state of application
data (e.g. database contents or session variables) to decide whether the
action is to be executed or not. The action speci�es the adaptation of
the application in response to a triggered event and a true condition.
The priority de�nes an execution order for rules concurrently activated
over the same scope; if not speci�ed, a default priority value is assigned.
More details on the rule speci�cation by means of ECA-Web are given
in the next section, where we discuss the architecture of the runtime
environment for rule execution. An example of ECA-Web rule will then
be shown in Subsection 7.3.2.

The Integrated Runtime Architecture

The execution of ECA-Web rules demands for a proper runtime sup-
port. Figure 7.18 summarizes the functional architecture of the sys-
tem, highlighting the two main actors: the Rule Engine and the Web
Server hosting the Web application. The Rule Engine is equipped with
a set of Event Managers to capture events, and a set of Action Enac-
tors to enable the execution of actions. The communications among the
single modules are achieved through asynchronous message exchanges
(Message-Oriented Middleware).

Event Managers. Each type of ECA-Web event is supported by a suit-
able event manager (i.e., Web Event Manager, Data Event Manager,
Temporal Event Manager, and External Event Manager). Event man-
agers and ECA-Web provide support for the following event types:

178

7.3 Enabling Runtime Adaptivity Management

Rule Engine

Message
Oriented

Middleware

Rule EngineRule EngineRule Evaluator Rule Registry

Data
Event

Manager

Data
Action

Enactor

D
B

M
S

External
Action

Enactor

External
Event

Manager

Temporal
Event

Manager

Web Server

Web

Web
Event

Manager

Web
Action

Enactor

 Web App.

Services
API

Rule Repository

Rule
Administration

Panel

Figure 7.18: Functional architecture of the integrated execution environ-
ment for adaptive Web applications.

• Data events refer to operations on the application's data source,
such as create, modify, and delete. In adaptive Web applica-
tions, such events can be monitored on user, customization, and
context data to trigger adaptivity actions with respect to users and
their context of use. Data events are managed by the Data Event
Manager, which runs on top of the application's data source.

• Web events refer to general browsing activities (e.g. the access to a
page, the submission of a form, the refresh of a page, the download
of a resource), or to events generated by the Web application itself
(e.g. the start or end of an operation, a login or logout of the user).
Web events are risen in collaboration with the Web application and
captured by the Web Event Manager. Since adaptivity actions are
typically performed for each user individually, Web events are also
provided with a suitable user identi�er.

• External events can be con�gured by a dedicated plug-in mech-
anism in form of a Web service that can be called by whatever
application or resource from the Web. When an external event

179

7 Exploitation and Evolution of Results

occurs, the name of the triggering event, and suitable parameters
are forwarded to the rule engine. External events are captured by
means of the External Event Manager.

• Temporal events are subdivided into instant, periodic, and interval
events. Interval events are particularly powerful, since they allow
the binding of a time interval to another event (anchor event). For
example, the expression ��ve minutes after the access to page X�
represents a temporal event that is raised after the expiration of 5
minutes from the anchor event �access to page X�. Temporal events
are managed by the Temporal Event Manager, based on interrupts
and the system clock.

The managers for external and temporal events are general in nature
and easily reusable. The Data Event Manager is database-dependent5.
The Web Event Manager requires a tight integration with the Web ap-
plication.

Action Enactors. Actions correspond to modi�cations to the Web ap-
plication or to executions of back-end operations. Typical adaptation
actions are: adaptation of page contents, automatic navigation actions,
adaptation/restructuring of the hypertext structure, adaptation of pre-
sentation properties, automatic invocation of operations or services. Ad-
aptations are performed according to the user's pro�le or his/her context
data.
While some actions can easily be implemented without any explicit

support from the Web application (e.g. the adaptation of page contents
may just require the setting of suitable page parameters when accessing
the page), others may require a tighter integration into the application's
runtime environment (e.g. the restructuring of the hypertext organiza-
tion). The level of application support required for the implementation
of the adaptivity actions thus heavily depends on the actual adaptivity
requirements. However, application-speci�c actions can easily be inte-
grated into the ECA-Web rule logic and do not require the extension
of the syntax of the rule language (an example of the use of actions is
shown in Figure 7.23).
As depicted in Figure 7.18, the execution of adaptivity actions is per-

formed by means of three action enactors: Web Action Enactor , Exter-
nal Action Enactor , and Data Action Enactor . Web actions need to
be provided by the application developer in terms of Java classes; they

5In our current implementation we support PostgreSQL. Modules for other database
management systems are planned for future releases.

180

7.3 Enabling Runtime Adaptivity Management

Rule Engine

Message
Oriented

Middleware

Rule EngineRule EngineRule Evaluator Rule Registry

7: Action

1: Event
2: Event 3: Get rule(s)

by event

4: Rule(s) by priority

5: Condition evaluation

6: Action

Figure 7.19: The rule engine: internal rule execution logic.

are performed by the Web Action Enactor, which is integrating into the
application's runtime environment, in order to guarantee access to the
application logic. External actions are enacted through a dedicated Web
service interface. Data actions are performed on the database that hosts
the application's data source.
The enactor for external actions is general in nature and easily reusable,

the Data Action Enactor is database-dependent, theWeb Action Enactor
is integrated with the Web application.

Rule Engine. In the architecture depicted in Figure 7.18, the Rule En-
gine is in charge of identifying the ECA-Web rules that correspond to
captured events, of evaluating conditions, and of invoking action enactors
� in case of true conditions.
In the rule engine, a scalable, multithreaded Rule Evaluator evaluates

conditions to determine whether the rule's action is to be performed
or not, depending on the current state of the application. In ECA-
Web, conditions consist of predicates over context data, application data,
global session variables, and/or page parameters. For example, in the
condition part of an ECA-Web rule it is possible to specify parametric
queries over the application's data source, where parameters can be �lled
with values coming from session variables or page parameters.
The rule engine also includes a Rule Registry for the management of

running, deployed ECA-Web rules. Deployed rules are loaded into the
Rule Registry, a look-up table for the e�cient retrieval of running rules,
starting from captured events. The internal execution logic of a triggered
rule is graphically summarized in Figure 7.19.

ECA-Web Rule Management

While the Rule Registry contains only deployed rules for execution, the
Rule Repository o�ers support for the persistent storage of rules. For
the management of both Rule Registry and Rule Repository, we provide

181

7 Exploitation and Evolution of Results

Figure 7.20: The current Web interface for the runtime rule management.

a Rule Administration Panel that allows application designers to easily
view, add, remove, activate, and deactivate rules. Figure 7.20 shows a
screenshot of the Rule Administration Panel.

Deploying ECA-Web Rules

Activating or deploying an ECA-Web rule is not a trivial task and, de-
pending on the rule speci�cation, may require to set up a di�erent num-
ber of modules. During the deployment of an ECA-Web rule, the XML
representation of the rule is decomposed into its constituent parts, i.e.
scope, events, conditions, action, and priority, which are then individ-
ually analyzed to con�gure the system. The scope is used to con�gure
the Web Event Manager and the Web Action Enactor. The events are
interpreted to con�gure the respective event managers and to set suit-
able triggers in the application's data source. The conditions are trans-
formed into executable, parametric queries in the Rule Registry. The
action speci�cation and the rule's priority are as well fed into the Rule
Registry. Each active rule in the system is thus represented by an in-
stance in the Rule Registry, (possibly) by a set of data triggers in the
database, and by a set of con�gurations of the event managers and the
action enactors.
The registry allows the concurrent access by multiple Rule Evaluators.

Priorities are taken into account in the action enactor modules, which

182

7.3 Enabling Runtime Adaptivity Management

select the action to be performed for the page under computation (the
scope) from the queue of possible actions, based on rule priorities.
During the deployment of an ECA-Web rule, con�ict resolution and

termination analyses will be performed in line with the methods con-
ceived and implemented for the Chimera-Exception language [91].

Enacting Adaptivity

External and data actions can be executed immediately upon recep-
tion of the respective instruction from the rule engine. The enaction
of Web actions, which are characterized by adaptations visible on the
user's browser, is possible only when a �request for adaptation� (a page
request) comes from the browser. In fact, only in presence of an explicit
page request, the Web application is actually in execution and, thus,
capable to apply adaptations. This is due to the lack of suitable push
mechanisms in the standard HTTP protocol.
In order to provide the application with active/reactive behaviors, in

our previous works we therefore studied two possible solutions: (i) peri-
odically refreshing the adaptive page currently viewed by the user [88],
and (ii) periodically monitoring the execution context in the background
(e.g. by means of suitable Rich Internet Application � RIA � technolo-
gies) and refreshing the adaptive page only in the case adaptivity actions
are to be performed [92, 90]. Both mechanisms are compatible with the
new rule-based architecture and enable the application to apply possible
adaptivity actions that have been forwarded to the Web Action Enactor
by the Rule Engine.

7.3.2 Case Study

As a case study, in the following we re-consider the PoliTour application
already discussed in Chapter 6. More precisely, in the following we use
the WebML notation for two distinct purposes: (i) to easily and intu-
itively describe the reference application, and (ii) to highlight how the
active rules to be introduced may take advantage of a formally de�ned,
conceptual application model for the de�nition of expressive adaptivity
rules. The approach we propose in the following, however, is not tightly
coupled to WebML and can be used in the context of any modeling
methodology upon suitable adaptation.
It is worth noting that the approach based on ECA-Web described

in this section is not to be considered an alternative solution to the
conceptual design approaches so far proposed in the literature for Web
application modeling. Rather, we believe that the best expressiveness

183

7 Exploitation and Evolution of Results

User
Model

Road
Name
DescriptionLocation

MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context Model

User
UserName
Password
EMail

Building
Name
Description
Image

Classroom
Name
Description

0:1

0:N

0:1

0:1

1:N

1:N
0:N 1:1

1:1

0:N

Basic user sub-schema

Area
MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context Model sub-schema

0:1

0:1

1:N

1:N

Position
Longitude
Latitude

Connectivity
Level
MinRSSI
MaxRSSI

Road
Name
Description

Building
Name
Description
Image

Classroom
Name
Description

0:N 1:1

Area
MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context Model sub-schema

User
UserName
Password
EMail

0:1

0:1

1:N

1:N Road
Name
Description

Building
Name
Description
Image

Classroom
Name
Description

0:N

1:1

0:1 0:1

1:11:1

1:N 1:N
Access

1:1 1:N
DefaultSV

Group
GroupName

SiteView
SiteViewID

User
UserName
Password
EMail

1:1
0:N

1:N 1:N

DefaultGroup

Membership

Figure 7.21: Relational data model of the PoliTour application.

and a good level of abstraction for the illustrated adaptivity speci�ca-
tion language will be achieved by complementing the current modeling
and design methods (such as WebML, Hera, OO-H, or OOHDM). In fact,
in this section we hint at the speci�cation of ECA-Web rules on top of
WebML (both data and hypertext models), just like SQL triggers are de-
�ned on top of relational data models. This consideration is in line with
the proposal by Garrigós et. al [89], who show how to apply their PRML
rule language to several di�erent conceptual Web application models.
The conceptual model of the application serves as terminological and

structural reference model for the speci�cation of adaptivity rules and,
thus, allows application developers to keep the same level of abstraction
and concepts already used for the design of the main application. In
terms of WebML, for example, this could mean to restrict the scope of
individual rules to speci�c hypertext elements like content units, pages,
or areas, or to relate events to speci�c links or units. The same holds
for actions, which could for example be applied to single units or even
attributes.

Application Design with WebML

Figure 7.21 depicts a simpli�ed version of the data schema underlying
the PoliTour application. Five entities compose the context model, upon
which the context-aware features of the application are speci�ed. The
entities Connectivity and Position are directly connected to the entity
User, as they represent context data which are individual for each user of
the system. Position contains the latest GPS coordinates for each user,
Connectivity contains a set of discrete connectivity levels that can be
associated to users, based on their current RSSI. GPS coordinates and
RSSI are sensed at the client side and periodically communicated to the

184

7.3 Enabling Runtime Adaptivity Management

PoliTour

Buildings

Building

BuildingData

Classroom

Classroom

ClassroomData
ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Roads

Road

RoadDataNearby Buildings

Building
[Road2Building]

RoadsIndex

Road L

L

H

Figure 7.22: Simpli�ed hypertext model of the PoliTour application. H

stands for Home page; L stands for Landmark page.

application server in the background [92]. The entities Area, Building,
and Road provide a logical abstraction of raw position data: buildings and
roads are mapped onto a set of geographical areas inside the university
campus, which enables the association of a user with the building or road
he/she is located in based on the GPS position. The entity Classroom

is located outside the context model, as the application is not able to
react to that kind of granularity, and the respective data is considered
additional application content.

For a better comprehension of the following discussion, Figure 7.22
re-proposes the non-adaptive hypertext schema of Figure 6.3, already
described in Subsection 6.1.2. At this point, we just recall the two
adaptivity requirements posed to the application: (i) provide users with
location-aware information on buildings and roads inside the university
campus, and (ii) alert users about low connectivity conditions.

185

7 Exploitation and Evolution of Results

De�ning an ECA-Web Rule

The full speci�cation of the application's adaptivity requires several dif-
ferent ECA-Web rules to manage the adaptation of the contents in the
pages Buildings and Roads, and to alert the user of low connectivity
conditions. Figure 7.23 shows the ECA-Web rule that adapts the content
of the page Buildings to the position of the user inside the university
campus.
The scope of the rule binds the rule to the Buildings page. The

triggering part of the rule consists of two data events, one monitoring
modi�cations to the user's longitude parameter, one monitoring the
user's latitude parameter. In the condition part of the rule, we check
whether there is a suitable building associated to the user's current
position (<notnull> condition), in which case we enact the Showpage

adaptivity action with new page parameters, suitably computed at run-
time; otherwise, no action is performed. In the action part of the rule
we link the bellerofonte.actions.Showpage6 Java class, which con-
tains the necessary logic for the content adaptation action. The variable
building_oid has been computed in the condition part of the rule and
is here used to construct the URL query to be attached to the automatic
page request that will cause the re-computation of the page and, thus,
the adaptation of the shown content.
It is worth noting that the scope of the previous rule is limited to one

speci�c hypertext page (the Buildings page). There might be situations
requiring a larger scope. For example, the rule for alerting users about
low connectivity is characterized by a scope that spans all the applica-
tion's pages; in terms of WebML, binding an ECA-Web rule to all pages
means to set the scope of the rule to the site view, i.e. a model element
(see site view PoliTour in Figure 7.22). The scope of the rule is speci�ed
as follows:

<scope>

<siteview>PoliTour</siteview>

</scope>

As for the dynamic management of adaptivity rules, we could for ex-
ample be interested in testing the two adaptivity features (location-aware
contents and the low connectivity alert) independently. We would thus
�rst only deploy the rule(s) necessary to update the contents of the
Buildings and Roads pages and test their functionality without also
enabling the alert. Then we could disable this set of rules and enable

6Bellerofonte is the current code name of the rule engine project.

186

7.3 Enabling Runtime Adaptivity Management

<rule name="showBuilding">
 <scope>
 <page>/politour/building.jsp</page>
 </scope>
 <events>
 <event>
 <class>bellerofonte.events.DataEvent</class>
 <params>
 <param name="type">modify</param>
 <param name="table">Position</param>
 <param name="attr">latitude</param>
 </params>
 </event>
 ...
 </events>
 <conditions>
 <object>
 <name>P</name>
 <type>Position</type>
 <requirements>
 <eq><value>user_id</value><value>Rule.currentUser</value></eq>
 </requirements>
 </object>
 <object>
 <name>A</name>
 <type>Area</type>
 <requirements>
 <lt><value>MinLatitude</value><value>P.Latitude</value></lt>
 <gt><value>MaxLatitude</value><value>P.Latitude</value></gt>
 <lt><value>MinLongitude</value><value>P.Longitude</value></lt>
 <gt><value>MaxLongitude</value><value>P.Longitude</value></gt>
 </requirements>
 </object>
 <notnull>
 <value>A.building_id</value>
 </notnull>
 </conditions>
 <action>
 <class>bellerofonte.actions.Showpage</class>
 <params>
 <param name="redirectURI">building.jsp?id=<value>building_id</value></param>
 </params>
 </action>
</rule>

Binding of the rule to the Building page

The rule may be triggered by two data events,
i.e. the modification of the current user’s latitude
or longitude. For presentation purposes, we only
show the event related to the latitude parameter.

The specification of the rule’s
condition requires the definition of two
data objects for the construction of the
database query: the first one (P)
extracts the current user’s position by
means of the Rule.currentUser
environment variable; the second one
(A) extracts the area associated to the
user’s current position. Finally, the
<notnull> condition allows us to check
the presence of a building in the
identified area.

The adaptation of the page
contents requires the invocation
of the Showpage action with
suitable parameters computed
at runtime.

<rule name="...">
 <scope>

...
 </scope>
 <events>

...
 </events>
 <conditions>

...
 </conditions>
 <action>

...
 </action>
 <priority>

...
 </priority>
</rule>

Optional binding of the rule to hypertext elements. If no
scope is defined, the rule is considered of global scope
and thus applied to all hypertext pages.
Mandatory specification of the events that trigger the
rule (Web events, data events, temporal events and
external events).

Optional condition to check the status of session
variables or database content.

Mandatory action to be enacted to adapt the application
in response to the event that triggered the rule.

Optional priority to resolve conflicts among
concurrently actived rules over the same scope.

Specification of the events
rule. For presentation purp
the definition of the data ev
change of the latitude; the
applies to the monitor chan

The specification of the ru
condition requires the defi
data objects for the constr
database query: the first o
extracts the current user’s
means of the Rule.current
environment variable; the
(A) extracts the area asso
user’s current position. Fin
<notnull> condition allows
the presence of a building
identified area.

The definition of the action
enacted requires the
specification of the respecti
Java class and of the
parameters to be passed in
input to the class.

Figure 7.23: The ECA-Web rule for checking the user's current position
and updating page contents.

187

7 Exploitation and Evolution of Results

the rule for the alert and test it. If both tests are successful, we �nally
could enable both adaptivity features in parallel and test their concurrent
execution.

7.3.3 Implementation

The proposed solution has been developed with scalability and e�ciency
in mind. The Web application and the rule engine are completely de-
coupled, and all communications are based on asynchronous message
exchanges based on JMS (Java Message Service). The di�erent mod-
ules of the proposed system can easily be distributed over several server
machines. The overhead introduced into the Web application is reduced
to a minimum and only consists of (i) forwarding Web events and (ii)
executing adaptivity actions. These two activities in fact require access
to the application logic. In fact, depending on the required adaptivity
support, event mangers and action enactors may require di�erent levels
of customization by the Web application developer. The customization
consists in the implementation of the application-speci�c events and of
the actions that are to be supported by the adaptive application.
In order to perform our �rst experiments with ECA-Web and the rule

engine, we have adapted the PoliTour application, which we already
extensively tested when developing our model-driven approach to the
design of context-aware Web applications [92]. As for now, our exper-
iments with a limited number of rules have yielded promising results.
Experimentations with larger numbers of active rules, di�erent adaptive
Web applications, and several users in parallel are planned.
Also, to really be able to take full advantage of the �exibility provided

by the decoupled adaptivity rule management, a set of suitable adaptiv-
ity actions needs to be implemented. Our current implementation pro-
vides support for data actions and a limited set of Web actions (namely,
ShowPage for adapting page contents, and ChangeStyle for adapting
presentation style properties). Data actions are currently applied only
to entities and attributes that are directly related to the user for which
the action is being executed. Also, condition evaluation is automatically
con�ned to those context entities and attributes that are related to the
user for which the rule is being evaluated. We are already working on
extending condition evaluation to any application data, coming from the
data source as well as from page and session parameters.
In the context of WebML, the provision of a set of prede�ned adaptiv-

ity actions will lead to a library of adaptivity actions, possibly integrated
into the WebML runtime environment. In the case of general Web ap-
plications, the rule engine can be used in the same fashion and with the

188

7.4 Conclusion and Future Works

same �exibility, provided that implementations of the required adaptiv-
ity actions are supplied.

7.3.4 Discussion

We believe that the decoupled runtime management of adaptivity fea-
tures represents an important area of investigation in adaptive Web ap-
plications. In this section we have therefore shown how to empower
design methods for adaptivity with the �exibility provided by a decou-
pled environment for the execution and the administration of adaptivity
rules.
The development of Web applications in general is more and more

based on fast and incremental deployments with multiple development
cycles. The same consideration also holds for adaptive Web applications
and their adaptivity requirements. Our approach allows us to abstract
the adaptive behaviors, to extract them from the main application logic,
and to provide a decoupled management support, �nally enhancing the
maintainability and evolvability of the overall application.

7.4 Conclusion and Future Works

In this chapter we described two di�erent areas where the results from
Chapter 4 and Chapter 5 have been applied successfully. We then iden-
ti�ed a limitation that in general characterizes conceptual modeling ap-
proaches, i.e. the focus on design time support, and we outlined a pos-
sible solution to this shortcoming.
While the MAIS project was concluded in June 2006, the research

on WBM (Section 7.2) for behavior-aware Web applications and the
research on ECA rules for the runtime management of adaptivity (Sec-
tion 7.3) is still ongoing and leaves room for improvements:

• In our future work on WBM, we plan to extend our initial proto-
type to support more sophisticated policies for dealing with prior-
ities and con�icts. Currently, we adopt the simple policy of always
choosing the rule of highest priority for execution. Furthermore,
we did not yet consider the problems of rule termination, which
might arise when rules trigger each other. Thanks to the strict
relation between WBM and WebML we believe that some termi-
nation problem can be detected at design time, but it is neither
possible nor useful to constrain rule sets at design time so as to
avoid any cyclic behavior. Therefore, we will need to support mon-
itoring of nonterminating behaviors at runtime. Also, the dynamic

189

7 Exploitation and Evolution of Results

activation and deactivation of rules and of rule groups is already
under consideration, and the current prototype includes a prelim-
inary version of such features. Our �rst prototype demonstrates
the applicability of our approach, as it supports complex rules and
enables the design of complex, behavior-aware applications.

• In our future work ECA-Web we will focus on the extension of
the ECA-Web language to fully take advantage of the concepts
and notations that can be extracted from conceptual Web applica-
tion models (i.e. in our case, from WebML models). We will also
investigate termination, complexity, and con�uence issues, trying
to apply Chimera-Exception's Termination Analysis Machine [91]
to ECA-Web. Extensive experimentations are planned to further
prove the advantages deriving from the decoupled approach.

190

8 Conclusion

In this dissertation we have considered two relevant aspects of mod-
ern Web applications, i.e. context-awareness and adaptivity, and we
have shown how such aspects require increasing the expressive power of
Web application models so as to incorporate changes in the page gen-
eration logic that support adaptation. The proposed approach, based
on WebML, enables the automatic generation of adaptive Web applica-
tions, starting from properly extended WebML models and supported
by a suitably adapted runtime environment.
The solutions described in this dissertation have been extensively tested

in the context of the Italian research project MAIS by altering the run-
time component of the WebRatio tool and by developing a context-aware
prototype application. These activities allowed us to prove that the pro-
posed solution is feasible and meets an important customer demand.

8.1 Results and Contributions

The results that have been achieved in the context of the research de-
scribed in this dissertation can be summarized as follows:

• Concepts and techniques from the �elds of context-aware com-
puting, context modeling, ubiquitous and/or pervasive computing
have been applied successfully to the domain of the Web.

• The novel ideas have been appropriately formalized by extending
a well-known conceptual modeling language/method for the design
of Web applications, i.e. WebML [83, 88, 92], keeping the intuitive,
visual modeling paradigm that characterizes the language.

• The extended modeling method has yielded the realization of a
proper modeling instrument by adapting the visual CASE tool for
WebML. The tool is equipped with a powerful automatic code gen-
erator that enables the fast and e�cient implementation of adap-
tive Web applications [88]. The strong compliance with WebML
and WebRatio maximizes the extensibility of the developed solu-
tion.

191

8 Conclusion

• The proposed modeling method has been adopted as conceptual
basis for a set of correlated research activities:

� The method has been adopted in the MAIS project and has
been the basis for the activities of other involved partners.
The joint work led to the development of two prototype ap-
plications [70, 72, 93], which allowed us to perform further
experimentations.

� The instrument and its extensibility have been leveraged for
the experimentation of behavior-aware Web applications to
enable the use of composite navigation events. Composite
events are expressed by means of WBM (Web Behavior Model)
and trigger adaptivity [94, 84, 85, 95].

� The experimentations have yielded the idea of a further ex-
tension of the proposed solution to also support the runtime
management of adaptivity. For this purpose, the adoption of
a decoupled rule engine has been proposed [90, 96].

Table 8.1 summarizes the features of the proposed model according to
the dimensions used to compare the level of adaptivity support present
in other conceptual design methods. With respect to such dimensions,
we can state that our method covers the most relevant features.

Starting from these results, we can summarize the contributions to the
Web Engineering research �eld contained in this dissertation. We have
shown the feasibility and viability of context-aware solutions also in a
�non-traditional� �eld, such as the one represented by Web applications.
In fact, till now context-awareness has mainly been studied in the �elds
of ubiquitous or pervasive computing, and typical mobile applications
(e.g. GPS navigator systems) have been primarily based on proprietary
client-side solutions. In this regard, the presented approach is one of the
�rst attempts to enlarge the applicability of adaptive application features
in the Web from �adaptive hypermedia systems� to �context-aware Web
applications�. While the former typically are based on dynamically up-
dated user pro�les based on the user's browsing activities, the latter may
be based on more complex context models and active, context-triggered
application features, e.g. supporting mobile applications.
We have provided a conceptualization of the issues that may arise

when introducing context-awareness to the discipline of Web engineer-
ing, and, along with this conceptualization, we have extended the ter-
minology used to describe adaptive or context-aware Web applications.
The terminology used in similar modeling approaches shows that there

192

8.2 Limitations

Method Dimension Evaluation

WebML Adaptability This dissertation shows how adaptability to
user preferences and device characteristics is
supported by WebML.

Adaptivity This dissertation introduces support for run-
time adaptation into the conceptual modeling
method.

Context-
Awareness

This dissertation further shows how context
can be modeled and promotes active context-
awareness.

Modeling
Paradigm

This dissertation introduces context-
awareness and adaptivity in a WebML-
consistent visual fashion.

Tool Support This dissertation provides an extension of the
WebRatio CASE tool, that allows the fully vi-
sual design and the automatic generation of
the application code.

Table 8.1: Positioning of the extended WebML design method with re-
spect to the comparison dimensions introduced to compare the
support for adaptation of other conceptual modeling methods
(see Section 2.4 and Table 2.1 for the comparison).

are still subtle di�erences and, also, in the solutions proposed. We hope
that this dissertation also contributes to make a small step forward to-
ward a common terminological framework in the area of adaptive and/or
context-aware Web applications.
Although our conceptualization and terminology are applied to the

WebML development method, the proposed design primitives and ideas
are general in nature, and may thus be easily applied to other Web design
methods as well.

8.2 Limitations

Although we have tried to cover the most salient aspects of adaptivity
in the Web, our approach has some limitations:

• We have not yet considered adaptive link hiding or showing, based
on the state of context or user pro�le data, which is an interesting
and characterizing feature of adaptive Web applications.

• Due to our initial assumption about the use of traditional Web
technologies and the classical three-tier architecture, the smallest

193

8 Conclusion

object of adaptation in this dissertation is the page, i.e. adaptivity
is possible only by re-computing an entire page.

• The tool support for the visual modeling solution described in this
dissertation could only be partially implemented as extension of the
WebRatio CASE tool, i.e. the hierarchical distribution of adaptiv-
ity actions by means of adaptive/context-aware containers could
not be supported. However, this does not limit the actual adaptiv-
ity features supported, as actions that would have been speci�ed
at container level can equally be speci�ed at page level.

• We have not yet been able to perform an exhaustive usability study
with big numbers of users, so as to check the interweaving of user-
and context-driven adaptations.

• Despite the bene�ts of the visual modeling paradigm, the speci�-
cation of large sets of adaptivity actions attached to single pages
may cause an overloading of the otherwise intuitive visual hyper-
text schemas.

• The decision to focus on the delivery of context-aware features to
thin clients requires us to maintain the context model at server
side, where also the necessary adaptation logic resides (i.e. speci-
�ed in the adaptive hypertext). This prevents the current solution
from delegating, for example, context data transformations to the
client.

8.3 Ongoing and Future Work

As a continuation of this research, we are planning to address some of the
restrictions described in the previous section and a few new issues that
we believe are of particular interest for context-awareness and adaptivity
in Web applications. In particular, our planned ongoing and future work
addresses the �rst four of the described limitations and also focuses on
a few new aspects:

• We will investigate mechanisms for adaptive link hiding and show-
ing and, more in general, for adaptation of presentation properties.
For this purpose we will study the potential of post-processing
mechanisms.

• We are planning to investigate how the adoption of technologies for
Rich Internet Applications (RIAs [97, 98]) may enable adaptations

194

8.3 Ongoing and Future Work

to address a �ner granularity, shifting adaptive behaviors from en-
tire pages to single page components, such as individual content
units or links.

• Concerning the current implementation, we will try to further ex-
tend the WebRatio CASE tool, so as to fully support the modeling
paradigm introduced in this dissertation and to provide for the
complete automatic code generation of adaptive Web applications.
As such, the extension could be integrated in a future release of
the WebRatio environment.

• In order to verify the usability of the proposed adaptivity paradigm,
we are planning experiments involving larger numbers of real users.
The aim of this study is to investigate the right balance between
user-controlled interactions and context-triggered adaptations.

• We are planning to formally model some aspects of the introduced
rule modeling logic to analyze possible con�icts that may be caused
by the concurrent activation of adaptivity actions.

• We are studying adaptivity modes that are either time-dependent
(i.e. whose refresh delay can be modeled according to given poli-
cies) or real-time (i.e. whose triggering is immediate thanks to an
extension of the client-side logic).

• We will study how Web services and the SOAP protocol can be
adopted to enhance the background context monitoring solution
outlined in Section 5.3.

• Going one step further, in a framework where Web applications
result from the composition of other stand-alone applications, as
envisioned in [99] and [100], a prominent research challenge is to
understand how adaptability and adaptivity may impact on single
components as well as on the resulting composite application.

195

8 Conclusion

196

Bibliography

[1] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara
Comai, and Maristella Matera, Designing Data-Intensive Web Ap-
plications, Morgan Kau�mann, 2002.

[2] Web Models s.r.l., �WebRatio Site Development Studio,� http:

//www.webratio.com, 2005.

[3] Barry Boehm, �A Spiral Model of Software Development and En-
hancement,� IEEE Computer, vol. 21, no. 5, pp. 61�72, 1988.

[4] Kent Beck, �Embracing Change with Extreme Programming,�
IEEE Computer, vol. 32, no. 10, 1999.

[5] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Uni-
�ed Modeling Language User Guide, Object Technology Series.
Addison-Wesley Professional, 1999.

[6] Jim Conallen, Building Web applications with UML, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[7] Anind K. Dey and Gregory D. Abowd, �Towards a Better Un-
derstanding of Context and Context-Awareness,� in Workshop on
The What, Who, Where, When, and How of Context-Awareness,
as part of the 2000 Conference on Human Factors in Computing
Systems (CHI 2000), The Hague, The Netherlands, 2000.

[8] Flavius Frasincar and Geert-Jan Houben, �Hypermedia Presenta-
tion Adaptation on the Semantic Web,� in Proceedings of the Sec-
ond International Conference on Adaptive Hypermedia and Adap-
tive Web-Based Systems (AH'02), Málaga, Spain, 2002, pp. 133�
142, Springer-Verlag.

[9] Mark Weiser, �The Computer for the 21st Century,� Scienti�c
American, September 1991.

[10] Bill N. Schilit and Marvin M. Theimer, �Disseminating Active
Map Information to Mobile Hosts,� IEEE Network, vol. 8, no. 5,
pp. 22�32, September/October 1994.

197

http://www.webratio.com
http://www.webratio.com

Bibliography

[11] Anind K. Dey and Gregory D. Abowd, �Towards a Better Under-
standing of Context and Context-Awareness,� Technical Report
GIT-GVU-99-22, Georgia Institute of Technology, 1999.

[12] Roy Want, Andy Hopper, Veronica Falcao, and Jonathan Gibbons,
�The Active Badge Location System,� ACM Transactions on In-
formation Systems, vol. 10, no. 1, pp. 91�102, 1992.

[13] Gregory D. Abowd, Christopher G. Atkeson, Jason I. Hong, Sue
Long, Rob Kooper, and Mike Pinkerton, �Cyberguide: A mobile
context-aware tour guide,� Wireless Networks, vol. 3, no. 5, pp.
421�433, 1997.

[14] Gerti Kappel, Birgit Proll, Werner Retschitzegger, and Wieland
Schwinger, �Customization for Ubiquitous Web Applications � A
Comparison of Approaches,� International Journal of Web Engi-
neering and Technology, January 2003.

[15] Albrecht Schmidt, Ko� Asante Aidoo, Antti Takaluoma, Urpo
Tuomela, Kristof Van Laerhoven, and Walter Van de Velde, �Ad-
vanced Interaction in Context,� in Proceedings of the 1st in-
ternational symposium on Handheld and Ubiquitous Computing
(HUC'99), London, UK, 1999, pp. 89�101, Springer-Verlag.

[16] Daniel Salber, Anind K. Dey, and Gregory D. Abowd, �The Con-
text Toolkit: Aiding the Development of Context-Enabled Appli-
cations,� in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 1999, pp. 434�441, ACM Press.

[17] Thomas Strang and Claudia Linnho�-Popien, �A Context-
Modeling Survey,� in Workshop on Advanced Context Modelling,
Reasoning and Management (part of UbiComp'04), September
2004.

[18] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka
Ohto, Johan Hjelm, Mark H. Butler, and Luu Tran, �Composite
Capability/Preference Pro�les (CC/PP): Structure and Vocabu-
laries 1.0,� W3C Recommendation, W3C, January 2004.

[19] Open Mobile Alliance Ltd., �User Agent Pro�le (UAProf),�
http://www.openmobilealliance.org/tech/affiliates/wap/

wapindex.html, 2006.

[20] Albert Held, Sven Buchholz, and Alexander Schill, �Modeling of
Context Information for Pervasive Computing Applications,� in

198

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

Bibliography

Proceedings of the 6th World Multiconference on Systemics, Cyber-
netics and Informatics (SCI'02), Orlando, Florida, July 2002.

[21] Roberto De Virgilio and Riccardo Torlone, �Modeling heteroge-
neous context information in adaptive web based applications,� in
Proceedings of the 6th international conference on Web engineering
(ICWE'06). 2006, pp. 56�63, ACM Press.

[22] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy,
�Generating context management infrastructure from context mod-
els,� in 4th International Conference on Mobile Data Management
(MDM'03), Industrial Track Proceedings, Melbourne, Australia,
January 2003, pp. 1�6.

[23] Terry Halpin, Information Modeling and Relational Databases:
From Conceptual Analysis to Logical Design, Morgan Kaufmann,
2001.

[24] Keith Cheverst, Keith Mitchell, and Nigel Davies, �Design of an
Object Model for a Context Sensitive Tourist GUIDE,� Computers
and Graphics, vol. 23, no. 6, pp. 883�891, 1999.

[25] John McCarthy, �Notes on formalizing context,� in Proceeding of
the 13th International Joint Conference on Arti�cial Intelligence,
August 1993, pp. 555�560.

[26] Varol Akman and Mehmet Surav, �The Use of Situation Theory
in Context Modeling,� Computational Intelligence, vol. 12, no. 4,
1996.

[27] Harry Chen, Tim Finin, and Anupam Joshi, �Using OWL in a
Pervasive Computing Broker,� in Proceedings of the Workshop on
Ontologies in Open Agent Systems (AAMAS'03), 2003.

[28] Peter Brusilovsky, �Methods and Techniques of Adaptive Hyper-
media,� User Modeling and User-Adapted Interaction, vol. 6, no.
2-3, pp. 87�129, 1996.

[29] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G.
Atkeson, �Rapid Prototyping of Mobile Context-Aware Applica-
tions: The Cyberguide Case Study,� in MOBICOM, 1996, pp.
97�107.

[30] Frank Allan Hansen, Niels Olof Bouvin, Bent G. Christensen, Kaj
Grønbæk, Torben Bach Pedersen, and Jevgenij Gagach, �Integrat-

199

Bibliography

ing the Web and the world: contextual trails on the move,� in
Hypertext, 2004, pp. 98�107.

[31] Paul De Bra, Ad Aerts, Bart Berden, Barend de Lange, Brendan
Rousseau, Tomi Santic, David Smits, and Natalia Stash, �AHA!
The adaptive hypermedia architecture,� in Proceedings of the four-
teenth ACM conference on Hypertext and hypermedia (HYPER-
TEXT'03), 2003, pp. 81�84.

[32] Rudi Belotti, Corsin Decurtins, Michael Grossniklaus, Moira C.
Norrie, and Alexios Palinginis, �Interplay of Content and Context,�
in Proceedings of ICWE'04, 2004, pp. 187�200.

[33] Michael Grossniklaus and Moira C. Norrie, �Information Concepts
for Content Management,� in WISE Workshops, 2002, pp. 150�
159.

[34] Richard Vdovjak, Flavius Frasincar, Geert-Jan Houben, and Peter
Barna, �Engineering Semantic Web Information Systems in Hera,�
Journal of Web Engineering, vol. 2, no. 1-2, pp. 3�26, 2003.

[35] Daniel Schwabe, Gustavo Rossi, and Simone D. J. Barbosa, �Sys-
tematic hypermedia application design with OOHDM,� in Pro-
ceedings of the the seventh ACM conference on Hypertext (HY-
PERTEXT'96), New York, NY, USA, 1996, pp. 116�128, ACM
Press.

[36] Daniel Schwabe and Gustavo Rossi, �An object oriented approach
to Web-based applications design,� Theory and Practice of Object
Systems, vol. 4, no. 4, pp. 207�225, 1998.

[37] Jaime Gómez, Cristina Cachero, and Oscar Pastor, �Extending
a Conceptual Modelling Approach to Web Application Design,�
in Proceedings of the 12th International Conference on Advanced
Information Systems Engineering (CAiSE'00), London, UK, 2000,
pp. 79�93, Springer-Verlag.

[38] Olga De Troyer and Tom Decruyenaere, �Conceptual modelling of
web sites for end-users,� World Wide Web Journal, vol. 3, no. 1,
pp. 27�42, 2000.

[39] Nora Koch, Andreas Kraus, and Rolf Hennicker, �The Author-
ing Process of the UML-based Web Engineering Approach,� in
First International Workshop on Web-oriented Software Technol-
ogy (IWWOST01), Daniel Schwabe, Ed., 2001.

200

Bibliography

[40] Yuhui Jin, Stefan Decker, and Gio Wiederhold, �OntoWebber:
Model-Driven Ontology-Based Web Site Management,� in The
1st International Semantic Web Working Symposium (SWWS'01),
Stanford University, Stanford, CA, July 29-Aug 1. 2001, Springer
Verlag.

[41] Bernhard Thalheim and Antje Düsterhöft, �SiteLang: Conceptual
Modeling of Internet Sites,� in Proceedings of the 20th International
Conference on Conceptual Modeling (ER'01), London, UK, 2001,
pp. 179�192, Springer-Verlag.

[42] Flavius Frasincar, Peter Barna, Geert-Jan Houben, and Zoltán Fi-
ala, �Adaptation and Reuse in Designing Web Information Sys-
tems,� in Proceedings of the International Conference on Infor-
mation Technology: Coding and Computing (ITCC'04) Volume 2,
Washington, DC, USA, 2004, IEEE Computer Society.

[43] Daniel Schwabe, Robson Guimaraes, and Gustavo Rossi, �Co-
hesive Design of Personalized Web Applications,� IEEE Internet
Computing, vol. 6, no. 2, pp. 34�43, March-April 2002.

[44] Irene Garrigós, Sven Casteleyn, and Jaime Gómez, �A Structured
Approach to Personalize Websites Using the OO-H Personalization
Framework,� in Web Technologies Research and Development -
APWeb 2005. 2005, vol. 3399/2005 of LNCS, pp. 695�706, Springer
Berlin / Heidelberg.

[45] Sven Casteleyn, Olga De Troyer, and Saar Brockmans, �Design
time support for adaptive behavior in Web sites,� in Proceedings
of the 2003 ACM Symposium on Applied Computing (SAC'03),
New York, NY, USA, 2003, pp. 1222�1228, ACM Press.

[46] Hubert Baumeister, Alexander Knapp, Nora Koch, and Gefei
Zang, �Modeling Adaptivity with Aspects,� in Proceedings of
ICWE 2005, Sydney, Australia., D. Lowe and M. Gaedke, Eds.
July 2005, vol. 3579 of LNCS, pp. 406�416, Springer-Verlag Berlin
Heidelberg.

[47] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Ak-
sit, Aspect-Oriented Software Development, Addison-Wesley, 2004.

[48] Klaus-Dieter Schewe and Bernhard Thalheim, �Reasoning about
web information systems using story algebras,� in Advances in
Databases and Information Systems (ADBIS'04), volume 3255 of

201

Bibliography

Lecture Notes in Computer Science. 2004, pp. 54�66, Springer Ver-
lag.

[49] Dexter Kozen, �Kleene algebra with tests,� ACM Transactions on
Programming Languages and Systems, vol. 19, no. 3, pp. 427�443,
1997.

[50] Aleksander Binemann-Zdanowicz, Roland Kaschek, Klaus-Dieter
Schewe, and Bernhard Thalheim, �Context-aware Web Informa-
tion Systems,� in Proceedings of the �rst Asian-Paci�c conference
on Conceptual modelling (APCCM'04), Darlinghurst, Australia,
Australia, 2004, pp. 37�48, Australian Computer Society, Inc.

[51] Flavius Frasincar, Geert-Jan Houben, and Peter Barna, �Hera
presentation generator,� in Special interest tracks and posters of
the 14th international conference on World Wide Web (WWW'05),
New York, NY, USA, 2005, pp. 952�953, ACM Press.

[52] Daniel Schwabe, Rita de Almeida Pontes, and Isbela Moura,
�OOHDM-Web: an environment for implementation of hyperme-
dia applications in the WWW,� ACM SIGWEB Newsletter, vol.
8, no. 2, pp. 18�34, 1999.

[53] Jaime Gómez, �Model-Driven Web Development with Visual-
WADE,� in Proceeding of the 4th International Conference on Web
Engineering (ICWE'04), 2004, pp. 611�612.

[54] Yuhui Jin, Sichun Xu, Stefan Decker, and Gio Wiederhold,
�Managing Web Sites with OntoWebber,� in Proceedings of the
8th International Conference on Extending Database Technology
(EDBT'02), London, UK, 2002, pp. 766�768, Springer-Verlag.

[55] Bernhard Thalheim, Klaus-Dieter Schewe, Irina Romalis, Thomas
Raak, and Gunar Fiedler, �Website Modeling and Website Gen-
eration,� in 4th International Conference on Web Engineer-
ing (ICWE'04). 2004, vol. 3140 of LNCS, pp. 577�578, Springer
Berlin/Heidelberg.

[56] Franca Garzotto, Paolo Paolini, and Daniel Schwabe, �HDM �
a model-based approach to hypertext application design,� ACM
Transactions on Information Systems, vol. 11, no. 1, pp. 1�26,
1993.

[57] Tomás Isakowitz, Edward A. Stohr, and P. Balasubramanian,
�RMM: a methodology for structured hypermedia design,� Com-
munications of the ACM, vol. 38, no. 8, pp. 34�44, 1995.

202

Bibliography

[58] Ioana Manolescu, Marco Brambilla, Stefano Ceri, Sara Comai, and
Piero Fraternali, �Model-driven design and deployment of service-
enabled Web applications,� ACM Transactions on Internet Tech-
nology, vol. 5, no. 3, pp. 439�479, 2005.

[59] Marco Brambilla, Stefano Ceri, Piero Fraternali, and Ioana
Manolescu, �Process Modeling in Web Applications,� ACM Trans-
actions on Software Engineering and Methodology, 2006.

[60] Karen Henricksen and Jadwiga Indulska, �Modelling and Using Im-
perfect Context Information,� in Proceedings of the Second IEEE
Annual Conference on Pervasive Computing and Communications
Workshops (PERCOMW'04), Washington, DC, USA, 2004, pp.
33�37, IEEE Computer Society.

[61] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy,
�Modeling Context Information in Pervasive Computing Systems,�
in Proceedings of the First International Conference on Perva-
sive Computing (Pervasive'02), London, UK, 2002, pp. 167�180,
Springer-Verlag.

[62] Hui Lei, Daby M. Sow, John S. Davis, II, Guruduth Banavar, and
Maria R. Ebling, �The design and applications of a context service,�
SIGMOBILE Mobile Computing and Communications Review, vol.
6, no. 4, pp. 45�55, 2002.

[63] Paul De Bra, Geert-Jan Houben, and Hongjing Wu, �AHAM: a
Dexter-based reference model for adaptive hypermedia,� in Pro-
ceedings of the tenth ACM Conference on Hypertext and hyperme-
dia : returning to our diverse roots (HYPERTEXT'99), 1999, pp.
147�156.

[64] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and
Ioana Manolescu, �Speci�cation and Design of Work�ow-Driven
Hypertexts,� Journal of Web Engineering, vol. 1, no. 2, pp. 1�100,
April 2003.

[65] Jennifer Widom and Stefano Ceri, Active Database Systems: Trig-
gers and Rules for Advanced Database Processing, Morgan Kauf-
mann Publishers, 1996.

[66] Alexander Aiken, Jennifer Widom, and Joseph M. Hellerstein, �Be-
havior of database production rules: termination, con�uence, and

203

Bibliography

observable determinism,� in Proceedings of the 1992 ACM SIG-
MOD international conference on Management of data (SIGMOD
'92), New York, NY, USA, 1992, pp. 59�68, ACM Press.

[67] Elena Baralis and Jennifer Widom, �An Algebraic Approach to
Rule Analysis in Expert Database Systems,� in Proceedings of the
20th International Conference on Very Large Data Bases (VLDB
'94), San Francisco, CA, USA, 1994, pp. 475�486, Morgan Kauf-
mann Publishers Inc.

[68] Barbara Pernici (Ed.), Mobile Information Systems - Infrastruc-
ture and Design for Adaptivity and Flexibility, Springer Verlag,
April 2006.

[69] MAIS Consortium, �MAIS Project Home Page,� http://www.

mais-project.it, October 2006.

[70] Maurizio Brioschi, Stefano Ceri, Florian Daniel, Federico M. Facca,
Gabriele Giunta, Maristella Matera, Domenico Presenza, and
Marco Riva, �Primo prototipo di uno strumento per la produzione
di siti Web multicanali personalizzati,� Prototype P. 7.1.1, The
MAIS Consortium, July 2004.

[71] Malcolm Davis, �Struts, an open-source MVC implementation,�
February 2001, http://www-106.ibm.com/developerworks/

library/j-struts/?n-j-2151.

[72] Maurizio Brioschi, Stefano Ceri, Florian Daniel, Federico M. Facca,
Massimo Legnani, and Maristella Matera, �Secondo prototipo di
uno strumento per la produzione di siti web multicanale person-
alizzati,� Prototype P. 7.1.2, The MAIS Consortium, September
2005.

[73] The WebRatio team, �Custom Units Tutorial and Reference Guide
(WebRatio 4.2),� Tech. Rep., Web Models s.r.l., March 2006.

[74] The WebRatio team, �EasyStyle User and Reference Guide (We-
bRatio 4.2),� Tech. Rep., Web Models s.r.l., March 2006.

[75] Chaeron Corporation, �Chaeron GPS (Global Positioning System)
Library,� http://www.chaeron.com/gps.html, 2005.

[76] Place Lab, �Place Lab: A privacy-observant location system,�
http://www.placelab.org, 2006.

204

http://www.mais-project.it
http://www.mais-project.it
http://www-106.ibm.com/developerworks/library/j-struts/?n-j-2151
http://www-106.ibm.com/developerworks/library/j-struts/?n-j-2151
http://www.chaeron.com/gps.html
http://www.placelab.org

Bibliography

[77] Florian Daniel and Maristella Matera, �Rapporto conclusivo,�
Technical report, MAIS Consortium, R.7.1.4 2005.

[78] WWW Consortium, �Extensible stylesheet language (xsl) ver-
sion 1.1,� W3C Recommendation, http://www.w3.org/TR/2006/
REC-xsl11-20061205/, 2006.

[79] Sandia National Laboratories, �Jess - the Rule Engine for the
Java Platform,� http://herzberg.ca.sandia.gov/jess/index.

shtml, 2005.

[80] W3C, �W3C Recommendation - Modularization of XHTML,�
http://www.w3.org/TR/xhtml-modularization/, 2001.

[81] Marco Brambilla, Stefano Ceri, Sara Comai, Piero Fraternali, and
Ioana Manolescu, �Speci�cation and Design of Work�ow-Driven
Hypertexts,� Journal of Web Engineering (JWE), vol. 1, no. 2,
pp. 163�182, April 2003.

[82] Federico Michele Facca and Pier Luca Lanzi, �Mining interesting
knowledge from weblogs: a survey,� Data Knowledge Engineering,
vol. 53, no. 3, pp. 225�241, 2005.

[83] Stefano Ceri, Florian Daniel, and Maristella Matera, �Extending
WebML for Modeling Multi-Channel Context-Aware Web Appli-
cations,� in Proceedings of Fourth International Conference on Web
Information Systems Engineering Workshops (WISEW'03), Rome,
Italy, December 12 -13, 2003. 2003, pp. 225�233, IEEE Press.

[84] Stefano Ceri, Florian Daniel, Vera Demaldé, and Federico Michele
Facca, �An Approach to User-Behavior-Aware Web Applications,�
in Proceedings of the 5th International Conference on Web Engi-
neering (ICWE'05), Sydney, Australia, July 27-29. 2005, vol. 3579
of LNCS, pp. 417�428, Springer Verlag.

[85] Stefano Ceri, Florian Daniel, and Federico M. Facca, �Modeling
Web Applications reacting to User Behaviors,� Elsevier Computer
Networks, vol. 50, no. 10, pp. 1533�1546, July 2006.

[86] Rajeev Alur and David L. Dill, �A theory of timed automata,�
Theoretical Computer Science, vol. 126, no. 2, pp. 183�235, 1994.

[87] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio
Yovine, �Symbolic model checking for real-time systems,� Infor-
mation and Computation, vol. 111, no. 2, pp. 193�244, 1994.

205

http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://herzberg.ca.sandia.gov/jess/index.shtml
http://herzberg.ca.sandia.gov/jess/index.shtml
http://www.w3.org/TR/xhtml-modularization/

Bibliography

[88] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico M.
Facca, �Model-driven Development of Context-Aware Web Appli-
cations,� ACM Transactions on Internet Technology, vol. 7, no. 1,
February 2007.

[89] Irene Garrigós, Jaime Gómez, Peter Barna, and Geert-Jan Houben,
�A reusable personalization model in web application design,� in
Proceedings of The ICWE 2005 Workshop on Web Information Sys-
tems Modelling (WISM'05), Sydney, Australia. 2005, pp. 40�49,
University of Wollongong, School of IT and Computer Science.

[90] Florian Daniel, Maristella Matera, and Giuseppe Pozzi, �Combin-
ing Conceptual Modeling and Active Rules for the Design of Adap-
tive Web Applications,� in Workshop proceedings of the sixth in-
ternational conference on Web Engineering (ICWE'06), New York,
NY, USA, 2006, p. 10, ACM Press.

[91] Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe
Pozzi, �Speci�cation and implementation of exceptions in work�ow
management systems,� ACM Transactions on Database Systems,
vol. 24, no. 3, pp. 405�451, 1999.

[92] Stefano Ceri, Florian Daniel, Federico M. Facca, and Maristella
Matera, �Model-Driven Engineering of Active Context-Awareness,�
World Wide Web Journal, 2007, (In print).

[93] Riccardo Torlone et al., �Methods and Tools for the Development
of Adaptive Applications,� in Mobile Information Systems. Infras-
tructure and Design for Flexibility and Adaptivity, Barbara Pernici,
Ed., pp. 209�247. Springer Verlag, April 2006.

[94] Federico Michele Facca, Stefano Ceri, Jacopo Armani, and Vera
Demaldé, �Building Reactive Web Applications,� in Proceedings of
the 14th international conference on World Wide Web (WWW'05),
Chiba, Japan, May 10-14, 2005 - Special interest tracks and posters.
2005, pp. 1058�1059, ACM.

[95] Federico M. Facca and Florian Daniel, �Visual Modeling of ReAc-
tive Web Applications,� in Current Trends in Database Technol-
ogy - EDBT 2006. 2006, vol. 4254 of LNCS, pp. 876�886, Springer
Berlin/Heidelberg.

[96] Florian Daniel, Maristella Matera, Alessandro Morandi, Matteo
Mortari, and Giuseppe Pozzi, �Active Rules for Runtime Adap-
tivity Management,� in Proceedings of the Seventh International

206

Bibliography

Conference on Web Engineering (ICWE�07), Como, Italy, July
2007, LNCS, Springer.

[97] Macromedia Inc., �Developing Rich Internet Applications with
Macromedia MX 2004,� Macromedia White Paper, August 2003.

[98] Laszlo Systems Inc., �OpenLaszlo - An XML Framework for Rich
Internet Applications,� Laszlo Systems Technology White Paper,
July 2006.

[99] Florian Daniel, Maristella Matera, Jin Yu, Boualem Benatallah,
Regis Saint-Paul, and Fabio Casati, �Understanding UI Integra-
tion: A survey of problems, technologies,� IEEE Internet Comput-
ing, May-June 2007, (In print).

[100] Jin Yu, Boualem Benatallah, Regis Saint-Paul, Fabio Casati, Flo-
rian Daniel, and Maristella Matera, �A Framework for Rapid
Integration of Presentation Components,� in Proceedings of the
16th International World Wide Web Conference, Ban�, Alberta,
Canada, May 2007, ACM Press, (In print).

207

Bibliography

208

Index

Action enactors, 180
Action mapping, 120
Active Badge System, 18
Active context-awareness

De�nition, 11
Implementation, 123

Active Object Model, 27
Adaptability

De�nition, 12
In WebML, 87

Adaptation
Contents, 92, 106
De�nition, 11
Hypertext structure, 92
Navigation, 92, 107
Presentation, 93, 107
Site view, 107

Adaptive behaviors, 92
Adaptive hypermedia systems, 32
Adaptive hypertext, 90
Adaptive user interfaces, 32
Adaptivity

De�nition, 12
In WebML, 87

Adaptivity actions, 104
Adaptivity policies, 103
AHA, 34
Architecture design, 8
Architecture of WebML applica-

tions, 119
Areas (hypertext modeling), 63
Automatic code generation, 83
Automatic Speech Recognition,

157

Background context monitoring,
124, 127

Example, 142
Behavior-aware Web applications,

158
Bellerofonte runtime architecture,

178

Cefriel (research consortium), 151
Change Site View unit, 107

Implementation, 123
Change Style unit, 108

Implementation, 123
Chimera-Exception, 177
Client-side context parameters, 105
CM Client con�guration, 144
CM Server con�guration, 144
codeGen function, 109
Computation of context-aware pages,

108
Examples, 112
Schema, 111

Computing environment, 17
Conditions, 106
Connect unit, 79
Connection quality sensing, 133
Content units, 64
Context

De�nition, 10
Di�culties with, 20
Explicit acquisition, 17
Graphical models, 26
Implicit acquisition, 17
Key-value models, 25
Logic-based models, 29

209

Index

Markup schema models, 25
Object-oriented models, 27
Ontology-based models, 30

Context Broker Architecture, 30
Context cloud, 98
Context data, 89

Acquisition of, 91
Communication of, 92
Dynamics of, 93
Management of, 105
Monitoring of, 91
Persistence of, 94
Sensing of, 90
Unreliability of, 93

Context digest, 126
Context model

De�nition and representation,
91

Management, 91
Context modeling, 101
Context monitor, 124

Implementation, 128
Context monitoring, 11
Context Toolkit, 24
Context-aware (de�nition by Schilit

and Theimer), 16
Context-aware application

Building blocks, 23
De�nition, 11

Contributions of the dissertation,
192

Conventional Web pages, 108
Core application data, 89
Create unit, 76
Cyberguide, 19

Data Action Enactor, 180
Data design, 8
Data events, 179
Data model, 57
Data unit, 65
Default page, 63

Deferred adaptivity, 103
Delete unit, 77
Disconnect unit, 79
Dynamic Presentation Manager,

152
Dynamic user model data, 89
Dynamic Web pages, 31

ECA-Web, 177
Deployment of rules, 182
Rule engine, 181
Rule management, 181

ECA-Web rule, 178
Action, 178
Condition, 178
Event, 178
Example, 187
Priority, 178
Scope, 177

Engineering (company), 152
Entity-Relationship diagram, 57

Attributes, 59
Entities, 59
Generalization hierarchy, 60
Primary key, 60
Relationship, 60

Entry unit, 68
Evaluating conditions, 106
Event managers, 178
ExtendedWebML design method,

summary, 193
External Action Enactor, 180
External events, 179
External implementation of context-

awareness, 117

Finite state automaton, 160
Flash remoting gateway, 129

Generic operations, 83
Get ClientParameter unit, 105

Implementation, 123
Get Data unit, 106

210

Index

Implementation, 123
Get unit, 75
Global parameters, 74

Hera, 35
Hierarchical index unit, 67
Home page, 63
HyCon, 34
Hypertext adaptation, 91
Hypertext design, 8
Hypertext, formal de�nition, 162

Immediate adaptivity, 103
Implementation, 9
Index unit, 66
In�nite loops, 111
Information �ltering and recom-

mender systems, 32
Intelligent help and tutoring sys-

tems, 32

KO link, 76

Landmark page, 63
Limitations, 193
Link, 69

Automatic link, 73
Contextual link, 70
Inter-page link, 70
Intra-page link, 70
Non-contextual link, 70
Transport link, 73

Link parameters, 71
Localized adaptivity, 99
Localized adaptivity rules, 99
Location-based services, 32
Logical context, 94

De�nition, 23
Login operation, 80
Logout operation, 82

M3L, 155
Maintenance and evolution, 9

MAIS project, 117
Integration of results, 150, 157

Managing context data, 105
Mobile Computing, 32
Model-driven design

Comparison of approaches, 48
Model-View-Controller pattern, 118
Modify unit, 78
Multi-channel delivery, 32
Multi-choice index unit, 67
Multidata unit, 66
Multimodal deployment, 155

Natural context, 22
Network adaptation, 33
Non-termination, 112

OK link, 76
OntoWebber, 45
OO-H, 37
OOHDM, 35
Operation units, 75
ORM, 26

Page, 61
Context-aware pages, 98

Page action, 120
Page computation logic, 108
Page context, 102
Page context parameters, 126
Page logic

Implementation, 122
Page service, 120
Page template, 120
Parameter automatic, 110
Persistent context parameters

Data modeling, 135
Hypertext modeling, 139

Persistent logical context, 95
Persistent physical context, 95
Personalization, 31
Physical context, 94

De�nition, 22

211

Index

Physical environment, 17
PoliTour application, 133
Position sensing, 133
Pre-processing of page requests,

117
Prede�ned operations, 76
PRML, 39, 49

Recursive page computation, 109
Refresh interval, 102
Requirements speci�cation, 8
Results of the dissertation, 191
Rule engine, 181
Runtime adaptivity management,

176

SAF, 151
Scroller unit, 68
Selector, 65

Parametric selector, 71
Send-mail operation, 82
Server-side context parameters,

105
Set unit, 75
Site view, 62
SiteLang, 47, 49
Situation-aware framework, 151
Social context, 22
Source, 65
Sparse adaptivity, 100
Sparse adaptivity rules, 100
Speci�city rules, 109

For adaptive WebML pages,
110

For ordinary WebML pages,
109

Static Web pages, 30
Sub-schema

Context, 97
Personalization, 97
User pro�le, 96

Technical context, 22

Temporal events, 180
Testing and evaluation, 9
Three-tier architecture, 88
Time constraint, 161
Time sequence, 161
Timed �nite state automaton, 161
Types of context-aware pages

Dynamic with distinct refresh
semantics based on the
initial access, 115

Dynamic with uniform refresh
semantics, 115

Static, 115

Ubiquitous access, 31
Ubiquitous computing, 15
Updating the context model, 106
User environment, 16
User pro�le data, 89
UWE, 43

Volatile context parameters
Data modeling, 134
Hypertext modeling, 137

Volatile physical context, 94

WBM, 159
Adaptivity policies, 173
Assignments, 166
Formal de�nition, 162
Formal model, 160
Link constraints, 167
Predicates, 166
Referencing WebML, 165
Rule model, 168
Script, 159
State, 159
State constraints, 166
System architecture, 172
Transition, 159
Variables, 166

Web Action Enactor, 180
Web Behavior Model, see WBM

212

Index

Web events, 179
WebML

Composition model, 57
Data model, 58
Four versions of, 56
Hypertext model, 57, 61
Modeling context-aware ap-

plications, 87
Navigation model, 58
Operation Model, 58

WebRatio, 57
Context-awareness in, 119
Extending the tool, 121

WSDM, 39, 48

213

	Riassunto
	Abstract
	Contents
	Introduction
	Motivating Adaptivity in the Web
	Use of Adaptivity
	Adaptivity in the Web

	Focus of the Dissertation
	Objectives
	Definitions
	Structure of the Dissertation

	Context-Awareness and the Web
	Context-Awareness and its Origins
	Two Historical Examples of Context-Aware Applications

	Using and Modeling Context
	Why is Context Difficult to Use?
	Physical and Logical Context
	Context Modeling Approaches

	Context and Web Applications
	The Origins of Context-Awareness in the Web
	Examples of Context-Aware or Adaptive Web Applications

	Model-Driven Design of Context-Aware or Adaptive Web Applications
	Hera
	OOHDM
	OO-H
	WSDM
	UWE
	OntoWebber
	SiteLang
	Comparison of Approaches

	Discussion

	The Web Modeling Language (WebML)
	Introduction
	WebML Design Overview
	Data Model
	Entities
	Attributes
	Identification and Primary Key
	Generalization Hierarchies
	Relationships

	Hypertext Model
	Pages
	Hypertext organization
	Units
	Links
	Global parameters

	Content Management Model
	Predefined Operations
	Access Control and Mail Operations
	Generic Operations

	Automatic Code Generation

	Modeling Context-Aware Web Applications
	A Conceptual View over Context-Aware Web Applications
	Modeling Context for Adaptivity
	Characterizing Context Data
	Modeling User, System and Environment Data
	Example Data Schema for Adaptation in WebML

	Modeling Adaptive Hypertexts
	Context-Aware Pages
	Context Clouds
	Structuring Context-Aware Hypertexts
	Enabling Adaptivity: Context Monitoring
	Adaptivity Policies
	Specifying Adaptivity Actions

	Computation of Adaptive Hypertexts
	Specificity Rules
	Context-Aware Page Computations

	Discussion

	Implementing Adaptivity and Context-Awareness
	Pre-Processing of Page Requests
	Implementing Context-Awareness in WebRatio
	The Architecture of WebML/WebRatio Applications
	Extending the WebRatio CASE Tool
	Implementation

	Enabling Background Context Monitoring
	Context Monitor
	Page Context Parameters
	Context Digest
	Context Monitor Implementation

	Discussion

	Case Study
	Conceptual Design
	Data Modeling
	Hypertext Modeling

	Implementation and Deployment
	Background Context Monitoring
	Automatic Code Generation

	Discussion

	Exploitation and Evolution of Results
	Multichannel and/or Multimodal Adaptive Information Systems
	Adaptivity for the Presentation Layer
	Multichannel Delivery
	Multimodal Deployment of Adaptive Applications
	Discussion

	Capturing Complex User Behaviors: the Web Behavior Model
	The Web Behavior Model
	WBM and WebML
	Reacting to User Behaviors
	The E-Learning Case Study
	System Architecture
	Discussion

	Enabling Runtime Adaptivity Management
	Enabling Dynamic Adaptivity Management
	Case Study
	Implementation
	Discussion

	Conclusion and Future Works

	Conclusion
	Results and Contributions
	Limitations
	Ongoing and Future Work

	Bibliography
	Index

