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ABSTRACT
Despite the emergence of mashup tools like Yahoo! Pipes or
JackBe Presto Wires, developing mashups is still non-trivial
and requires intimate knowledge about the functionality of
web APIs and services, their interfaces, parameter settings,
data mappings, and so on. We aim to assist the mashup pro-

cess and to turn it into an interactive co-creation process,
in which one part of the solution comes from the developer
and the other part from reusable composition knowledge that
has proven successful in the past. We harvest composition
knowledge from a repository of existing mashup models by
mining a set of reusable composition patterns, which we then
use to interactively provide composition recommendations to
developers while they model their own mashup. Upon ac-
ceptance of a recommendation, the purposeful design of the
respective pattern types allows us to automatically weave

the chosen pattern into a partial mashup model, in practice
performing a set of modeling actions on behalf of the de-
veloper. The experimental evaluation of our prototype im-
plementation demonstrates that it is indeed possible to har-
vest meaningful, reusable knowledge from existing mashups,
and that even complex recommendations can be efficiently
queried and weaved also inside the client browser.

Categories and Subject Descriptors
D.2.6 [Software]: Software Engineering—Programming En-

vironments

Keywords
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1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.yahoo.

com/pipes/) or JackBe Presto Wires (http://www.jackbe.
com), generally promise easy development tools and lightweight
runtime environments, both typically running inside the client
browser. By now, mashup tools undoubtedly simplified some
complex composition tasks, such as the integration of web
services or user interfaces. Yet, despite these advances in
simplifying technology, mashup development is still a com-

plex task that can only be managed by skilled developers.
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Figure 1: A typical pattern in Yahoo! Pipes

Figure 1 illustrates a Yahoo! Pipes model that encodes
how to plot news items on a map. The lesson that can be
learned from it is that plotting news onto a map requires
enriching the news feed with geo-coordinates, fetching the
actual news items, and handing the items over to the map.
Understanding this logic is neither trivial nor intuitive.

In order to aid less skilled developers in the design of
mashups like the one above, Carlson et al. [1], for instance,
leverage on semantic annotations of components to recom-
mend compatible components, given a component in the
canvas. Greenshpan et al. [3] recommend components and
connectors (so-called glue patterns) in response to the user
providing a set of desired components. Elmeleegy et al. [2]
recommend a set of components related to a component in
the canvas, leveraging on conditional co-occurrence and se-
mantic matching, and automatically plan how to connect
selected components to the partial mashup. Riabov et al.
[4] allow users to express goals as keywords, in order to feed
an automated planner that derives candidate mashups.

We assist the modeler in each step of his development
task by means of interactive, contextual recommenda-

tions of composition knowledge. The knowledge is re-
usable composition patterns, i.e., fragments of mashup mod-
els. Such knowledge may come from a variety of possi-
ble sources; we specifically focus on community composi-
tion knowledge (recurrent model fragments in a mashup
model repository). In this poster, we describe (i) how we
mine mashup composition patterns, (ii) the architecture of
our knowledge recommender, (iii) its recommendation algo-

rithms, and (iv) its pattern weaving algorithms (automati-
cally applying patterns to mashup models).
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Figure 2: Functional architecture of the composition knowledge discovery and recommendation approach

2. THE RECOMMENDATION PLATFORM
Figure 2 details our knowledge discovery and recommen-

dation prototype. The pattern discovery logic is located
in the server. After converting mashup models into a canon-
ical format, the pattern miner extracts patterns, which we
store into a knowledge base (KB) that is structured to min-
imize pattern retrieval at runtime. We support six compo-
sition pattern types: parameter value, connector, connector
co-occurrence, component co-occurrence , component embed-

ding, and multi-component patterns (cf. Figure 1).
The interactive modeling environment runs in the client.

It is here where the pattern recommendation logic re-
acts to modeling actions performed by the modeler on a
construct (the object of the action) in the canvas. For in-
stance, we can drop a component onto the canvas, or we
can select a parameter. Upon each interaction, the action

and its object are published on a browser-internal event bus,
which forwards them to the recommendation engine. With
this information and the partial mashup model pm the en-
gine queries the client-side KB for recommendations, where
an object-action-recommendation mapping tells the engine
which types of recommendations are to be retrieved. The
list of patterns retrieved from the KB are then ranked and
rendered in the recommendation panel.

Upon the selection of a pattern from the recommenda-
tion panel, the pattern weaver weaves it into the partial
mashup model. The pattern weaver first retrieves a basic

weaving strategy (a set of model-agnostic mashup instruc-
tions) and then derives a contextual weaving strategy (a set
of model-specific instructions), which is used to weave the
pattern. Deriving the contextual strategy from the basic one
may require the resolution of possible conflicts among the
constructs of the partial model and those of the pattern to
be weaved. The pattern weaver resolves them according to
a configurable conflict resolution policy.

Our prototype is a Mozilla Firefox extension for Yahoo!
Pipes [6], with the recommendation and weaving algorithms
implemented in JavaScript. Event listeners listen for DOM
modifications, in order to identify mashup modeling actions
inside the modeling canvas. The instructions in the weaving
strategies refers to modeling actions, which are implemented
as JavaScript manipulations of the mashup model’s DOM
elements. The server-side part is implemented in Java.

3. EVALUATION
For our experiments we extracted 303 pipes definitions

from the repository of Pipes. The average numbers of com-
ponents, connectors and input parameters were 12.7, 13.2
and 3.1, respectively, indicating fairly complex mashups.
We were able to identify patterns of all the types described
above. For example, the minimum/maximum support for
the connector patterns was 0.0759/0.3234, while the one
for the component co-occurrence patterns was 0.0769/0.2308.
We used these patterns to populate our KB and generated
additional synthetic patterns to test the performance of the
recommendation engine (the sizes of the KBs ranged from
10, 30, 100, 300, 1000 multi-component patterns) [5]. The
complexity of the patterns ranged from 3 − 9 components
per pattern, and we used queries with 1− 7 components. In
the worst case scenario (KB of 1000 patterns, approximate
similarity matching of patterns), the recommendation en-
gine could retrieve relevant patterns within 608 millisecond
– everything entirely inside the client browser. The next
step is going online and performing users studies.
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