
Application Composition at the Presentation Layer:
Alternatives and Open Issues

Stefan Pietschmann
Technische Universität

Dresden, Germany
Stefan.Pietschmann@tu-

dresden.de

Tobias Nestler
SAP Research Center

Dresden, Germany
Tobias.Nestler@sap.com

Florian Daniel
University of Trento

Italy
Daniel@disi.unitn.it

ABSTRACT
The concept of application composition at the presentation
layer, i .e., the development of web applications with user
interfaces (UI) starting from stand-alone, reusable compo-
nents, is a relatively new research area. The recent advent
of web mashups and component-based web applications has
produced promising results, but we argue that there is still a
lot of space for improvement. By looking at three advanced
approaches in this area, we investigate the current solution
space and consequently unveil challenges and problems still
to be solved in order to turn presentation composition into
common practice.

1. INTRODUCTION
Despite its beginnings as a static source of information,

the web has become a platform for manifold applications. A
paradigm which has made this trend possible is the so-called
Programmable Web. Therein, data, application logic and
user interfaces are made available in an open and reusable
fashion via Web APIs and services. Mashups build on this
foundation by combining services and contents, i. e., dis-
tributed resources, into new composite web applications.
Composing applications from reusable parts has been sub-
ject to research for a long time, yet traditional approaches
were typically limited to the integration on lower application
layers – namely, the business logic and data layers. However,
as mashups reusing pieces of UIs from other web sites show,
the need for similar concepts at the presentation layer – UI
integration and composition – has become evident [1].

Commonly, mashup applications are developed manually
by skilled programmers. Yet, in order to assist also less
skilled developers or web users, so-called mashup platforms
(e. g., Yahoo! Pipes) have emerged. They aim at partially
or fully assisting mashup development – an ambitious goal.
Indeed, mashups can be very complex applications, requir-
ing a variety of specific web development skills that cannot
easily be hidden behind simple user interfaces, especially
when they include extensive user interactions. Consider, for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2010 8-10 November, 2010, Paris, France
Copyright 2010 ACM 978-1-4503-0421-4/10/11 ...$10.00.

instance, the following development problem, which we will
use throughout the paper as reference scenario:

John, an administrative employee of the plumbing com-
pany Acme Inc., wants to develop a small application to
easily assign incoming service requests to the plumbers of
Acme. His typical workflow consists of the following steps:
(i) assessing the priority of service requests, (ii) checking cus-
tomer details and service history, (iii) retrieving customer
addresses, (iv) matching service requests with their geo-
graphically closest plumbers, and (v) notifying customers
and plumbers of the planned service times.

John’s work therefore includes up to five individual tasks,
which are usually performed with the help of different, ded-
icated applications. Let’s assume (i) that John can source
service requests via a company-internal RSS feed, (ii) that
there are services available that allow him to inspect cus-
tomer and plumber details, (iii) that he uses a Google Map
(it comes with a JavaScript interface) to assess the distance
between customers and plumbers, (iv) that the company has
an own email service, and (v) that there exist some visual-
ization widgets (e. g., an RSS reader) available for John to
display raw data. This list of ingredients shows that the
development of the envisioned service request management
application is anything but trivial, and it is evident that
John as simple employee is not able build it without the
help from expert programmers.

The goal of this paper is to look at current best prac-
tices for the composition of web applications like the one
required by John to understand what is missing, in order
to enable John to develop applications independently. The
distinguishing strength of the approaches we consider is that
they are able to abstract the previous scenario as a problem
of composition at the presentation layer, which eases the
understanding by end users. Specifically, in this paper:

• We introduce an evaluation framework that highlights
what we think are the most important aspects in as-
sisted composition at the presentation layer;

• We review three composition approaches that specifi-
cally focus on the problem of component-based devel-
opment of web applications at the presentation layer:
mashArt [2], ServFace [3], and CRUISe [4];

• We compare the three approaches and discuss what we
think is still missing, outlining promising directions for
future research.

In the next section we present related composition ap-
proaches targeting the presentation layer. After introducing

our evaluation framework in Section 3, Section 4 presents
and discusses the three composition approaches mentioned
accordingly. Finally, Section 5 summarizes the results of
the evaluation, highlights open issues and challenges, and
outlines directions for future work.

2. BACKGROUND AND RELATED WORK
Historically, composition on the web has focused on the

problem of web service composition, e. g., in terms of BPEL
[5], the composition standard by OASIS. The approaches
discussed in this paper are inspired by what has been achieved
in this regard, yet their focus on the presentation layer clearly
distinguishes them from pure service composition.

The problem of integration, i. e., composition at the pre-
sentation layer has first be introduced in [1], where the au-
thors concluded that UI composition is still scarcely sup-
ported: Desktop UI technologies such as .NET CAB (http:
//msdn.microsoft.com/en-us/library/aa480450.aspx) or
Eclipse RCP (http://wiki.eclipse.org/index.php/RCP)
are highly technology-dependent and not ready for the web.
Browser plug-ins such as Java applets, Microsoft Silverlight,
or Macromedia Flash can easily be embedded into HTML
pages; communications among different technologies remain
however cumbersome (e. g., via custom JavaScript). Java
portlets [6] or WSRP [7] represent a mature and web-friendly
solution for the development of portal applications; portlets
are however typically executed in an isolated fashion, and
communication among portlets or with web services remains
hard, as portals do not support service orchestration.

In the context of web mashups, some industrial tools al-
ready partly address the problem of composition. For in-
stance: Yahoo Pipes (http://pipes.yahoo.com) focuses on
data integration via RSS or Atom feeds; JackBe Presto (http:
//www.jackbe.com) adopts a Pipes-like approach for data
mashups and also supports the visualization of their out-
puts; IBM QEDWiki (http://services.alphaworks.ibm.
com/qedwiki) provides a wiki-based mechanism to glue to-
gether UI widgets; Intel Mash Maker (http://mashmaker.
intel.com) is a browser plug-in for the personalization of
web pages with UI widgets inside the web browser. In this
paper, instead, we focus on projects that employ similar con-
cepts and capabilities to the ones of the above approaches,
but specifically focus on the presentation layer. Our direct
involvement in them allows us to discuss details typically
hidden or not supported in industrial tools.

3. PRESENTATION INTEGRATION:
TECHNIQUES AND INGREDIENTS

To create the application in our reference scenario, sev-
eral aspects have to be considered: Firstly, components as
atomic parts of an application have to provide the required
functionality. Secondly, they have to be connected to design
the desired application. Finally, a tool environment should
enable the user to accomplish all parts of the composition
process in a user-friendly way.

Each of these aspects is typically supported in different
ways by different composition approaches. In order to be
able to systematically compare distinct approaches, we have
developed an evaluation framework covering major func-
tional aspects involved in integration at the presentation
layer. The framework distinguishes three main dimensions
of analysis: the components subject to composition, the

composition model, and the corresponding environment for
development and execution. The three dimensions can fur-
ther be split into more detailed sub-dimensions, which in
turn can assume a set of values:

Component models

• Types: What kind of technical resources do compo-
nents represent? The most common types are SOAP
and RESTful web services, RSS/Atom feeds, and Java-
Script UI components.

• Data format: What specific data formats are sup-
ported by the approach? We distinguish XML and
JSON (hierarchical structure), and parameter-value pairs
(flat structure).

• Description language: How are components for-
mally described? A descriptor may comply to WSDL,
WADL, or a proprietary format.

Composition model

• Internal component model: How is a component
internally described? Interactions with components
might be specified in the native format of the compo-
nent or be abstracted via suitable technology adapters.

• Composition logic: How are components glued to-
gether? Multiple techniques can be used conjunctively:
static configurations of components, event exchanges,
control flows, data flows, shared variables (blackboard
approach).

• Layout logic: How is the composite layout defined?
Typically there are either predefined HTML templates,
customizable templates, or custom (user-provided) lay-
outs. Additionally, multiple views (pages) can be sup-
ported.

• Output type: What kind of application results from
the composition process? We distinguish data services,
application services, and interactive web applications.

Design/execution environment

• Target users: What kind of users should be enabled
to compose applications? The range spans from profes-
sional programmers to non-professional programmers,
skilled web users, and unskilled end users.

• Design paradigm: What is the general paradigm for
the application design? For instance, “live” composi-
tion at run-time, visual development (drag-and-drop,
wiring), and textual coding.

• Deployment/execution paradigm: How are appli-
cations deployed and executed? Does the approach
generate code or compile the composition into an ex-
ecutable format, or is the composition interpreted at
runtime as is?

• Additional features: What are special features of
the approach? Typical features include multi-platform-
support, adaptivity (to varying runtime contexts), and
the availability of component and composition reposi-
tories.

Below, we discuss mashArt, ServFace, and CRUISe as ap-
proaches for presentation integration, i. e., composition, and
position them with respect to our evaluation framework.

http://msdn.microsoft.com/en-us/library/aa480450.aspx
http://msdn.microsoft.com/en-us/library/aa480450.aspx
http://wiki.eclipse.org/index.php/RCP
http://pipes.yahoo.com
http://www.jackbe.com
http://www.jackbe.com
http://services.alphaworks.ibm.com/qedwiki
http://services.alphaworks.ibm.com/qedwiki
http://mashmaker.intel.com
http://mashmaker.intel.com

4. PRESENTATION INTEGRATION IN
PRACTICE

4.1 Universal Composition - mashArt
The mashArt [2] project conducted at the University of

Trento, Italy, focuses on so-called hosted universal compo-
sition for the web. The aim of the project is to devise
models, languages, paradigms and development instruments
that allow one to abstract from low-level implementation
details and to compose components that are characterized
by heterogeneous technologies, ranging from simple feeds to
complex web services and UI components, within one and
the same development environment. Doing so requires con-
ciliating the need for orchestration of process-oriented ser-
vice composition with the need for synchronization of event-
based UI development, a challenge the project addresses
with a unique event- and data flow-based composition logic.

Component models

Types: One of the foundations of the mashArt approach
is its universal composition model, which abstracts from the
peculiarities of typical technologies used in the web and pro-
vides access to components through an event-based interface
logic that describes components in terms of their internal
state (a set of parameter-value pairs), events (that commu-
nicate state changes), and operations (that allow one to en-
act state changes). The abstraction is able to accommodate
component types as varied as RSS/Atom feeds, XML re-
sources, SOAP and RESTful web services, and JavaScript
UI components. That is, mashArt’s component model cov-
ers all the three layers of the typical application stack: data,
application logic, and user interface.

In order to interact with components at runtime, mashArt
natively supports JavaScript UI components that adhere to
its event-based interface logic; interaction with these com-
ponents occurs via JavaScript function calls. Interaction
with RESTful and SOAP web services, instead, utilizes suit-
able protocol adapters, which mediate between the internal
event-based logic and the components’ own protocol. Access
to RSS/Atom feeds or XML resources is simply handled by
a REST adapter, as interacting with them actually means
performing an HTTP-GET operation on their URL.

Data format: mashArt components provide access to
data via simple parameter-value pairs. That is, data formats
of integrated components are converted to or interpreted as
“flat” data structure: in terms of XML, first-level elements
represent parameter names, their nested contents represent
parameter values. The transformation of JSON, RSS and
Atom is similar, while interaction with JavaScript compo-
nents expects parameter-value data as associative array.

Description language: The abstract description of na-
tive mashArt components is done via the Mashart Descrip-
tion Language (MDL), a lightweight XML dialect for the
specification of events, operations, and state parameters.
SOAP web services can be accessed by directly referencing
their WSDL descriptor, while RESTful services require the
manual setup of the respective adapter.

Composition model

Internal component logic: Internally to the design
and runtime environment, components are treated as event-
based MDL components, independently of their actual im-
plementation, thanks to the technology adapters that are

able to mask individual protocols. This means, for instance,
that a standard request-response invocation of a SOAP ser-
vice is interpreted as event-operation sequence.

Composition logic: Given the even-based component
logic, mashArt’s composition logic is equally event-based
(so-called event listeners are first class composition objects).
Yet, it is also data-flow-based, in that it allows the developer
to connect events (outputs) to operations (inputs) of com-
ponents, thereby realizing a flow of data from one compo-
nent to another. Besides supporting the definition of listen-
ers, the Universal Composition Language (UCL) comes with
support for parallel splits, conjunctive and disjunctive joins,
conditional executions; due to its data-flow-based nature,
loops are currently not supported. Data is passed among
components as payload of events, formatted as parameter-
value pairs. UCL currently supports a simple parameter-
parameter mapping in order to assign output parameters to
input parameters; the default mapping is simply based on
the position of the parameters.

Layout logic: The layout of a mashArt application is
implemented as a predefined or a custom HTML template
with placeholders (e. g., DIV or IFRAME elements) accessed
through unique identifiers of the form mashart-X where X is
a customizable name. Only UI components need to be as-
sociated to placeholders. At startup of an application, its
layout template is loaded and UI components are instanti-
ated in their respective placeholders, filling the final layout
with the actual content of the application.

Output types: Not only in input, but also in output
mashArt theoretically provides support for all the three ap-
plication layers. Applications with own user interface are
the standard output. Pure service compositions or data pro-
cessing pipelines are supported by the composition logic, yet
running these kinds of compositions still requires the inter-
action with a suitable UI component; work on exposing these
kinds of compositions via simple URLs is ongoing.

Design/execution environment

Target users: The mashArt platform targets non-profes-
sional programmers and skilled web users that are familiar
with the semantics of their individual application domain
and understand the meaning of components. Programmers
may use the platform to enhance their productivity.

Design paradigm: The development of universal com-
positions leverages a Yahoo!-Pipes-like, visual drag-and-drop
paradigm. Users can choose components from a palette
within the development environment and place them onto
a modeling canvas. There they can configure the compo-
nents by setting static configuration parameters and wire
together events with operations by graphically connecting
output with input connectors. Connected components are
highlighted in green, while dangling components are shaded
in gray. Also, the association of UI components with place-
holders in the HTML layout template can be performed
by dragging and dropping components onto their destina-
tion placeholders. For fast feedback and immediate testing,
mashArt provides a preview, which allows designers to run
the composite application inside the design environment and
to check its correct functioning.

Deployment/execution paradigm: Complete compo-
sitions can be stored on the mashArt server and published
as web-accessible applications; the latter produces a unique

URL to access and run the application. All applications are
hosted on the server, without the need for client-side soft-
ware. The actual runtime environment of mashArt is dis-
tributed over client and server: instantiation starts at the
server, where all necessary files (layout template, MDL de-
scriptors, style files, libraries) are automatically assembled
and sent to the client. The latter instantiates and man-
ages all UI components, while service invocations and ex-
ternal notifications toward the application (originating from
remote web services) require server-side action.

Additional features: The platform comes with a ded-
icated, hosted registry for components, compositions and
layout templates. Through its graphical user interface, it
can easily be filled by a user with own objects. The plat-
form’s built-in access rights manager allows users to manage
the visibility of his objects and to share components or com-
positions with other users.

In order to implement the application for our reference
scenario, let’s assume we can rely on the following compo-
nents: the RSS feed with customer support requests, an RSS
Reader UI component, a JavaScript UI component provid-
ing access to customer data, a JavaScript UI component
with all plumbers of the company, a Google Maps UI com-
ponent, a SOAP service returning the current GPS posi-
tion of active plumbers, and a SOAP email service. Setting
up the necessary integration logic in mashArt would then
require: placing the above components onto the modeling
canvas; connecting the output of the RSS feed to the opera-
tion of the RSS Reader that visualizes the items in the feed;
connecting the RSS Reader’s “item selected” event to the
customer UI component; connecting its “customer selected”
event to the Google Map and to the email service; connect-
ing the “plumber selected” event of the plumbers UI compo-
nent to the GPS service and the output of that service to
the Google Map. Finally, connecting the “plumber selected”
event to the email service and configuring the two input
links as conjunctive join allows the delivery of emails with
both customer and plumber details. For the layout of the
application, a predefined HTML template with four place-
holders can be used, containing the RSS reader, customer,
plumber and Google Maps UI components. The application
can be run in the preview tab of the composition editor and
be published to the mashArt server for public access.

4.2 Service Frontend Composition -
The ServFace Builder

The ServFace Builder is a web-based authoring tool devel-
oped in the frame of the EU project ServFace [3]. It enables
service composition at the presentation layer by combining
service frontends, rather than their application logic or data.
The tool utilizes the advantages of service annotations [8] to
visualize these frontends already during design time in order
to give users an impression of the resulting UI at any time of
the development process. In his role as a service composer
and application designer, the end user creates the desired
application in a kind of WYSIWYG (What you see is what
you get) style. No technical knowledge about service compo-
sition is required, as applications are modeled and designed
in a graphical way without writing any code.

Component models

Types: Components within the ServFace Builder are called
service frontends and represent single operations of SOAP

web services via form-based UIs. The frontends consist of a
nested container structure, which includes UI-elements like
text fields or combo boxes that are bound to the correspond-
ing service operation parameters.

Data format: Data is exchanged via SOAP messages
using XML as a universal data format, so all parameters
adhere to the WSDL data types.

Description language: Web services that should be
used within the ServFace Builder must be described with
WSDL and enriched with UI-related service annotations.
The latter are reusable information fragments formally de-
fined in a meta-model that are linked to concrete elements
within the WSDL. They cover aspects of the visual appear-
ance of a service (e. g., labels, grouped parameters, enumera-
tions for predefined vales) the behavior of UI elements (e. g.,
client-side validation rules, input suggestions) and relations
between services (e. g., semantic data type relation) [8].

Composition model

Internal component logic: Each integrated web service
is described with an internal service model that is automati-
cally inferred from the WSDL and additionally contains the
corresponding annotation model. This service model unites
all necessary information about a service, serves as the foun-
dation for the visualization of the frontend and holds a ref-
erence to the WSDL.

Composition logic: The service model is an integrated
part of the internal application model, the Composite Ap-
plication Model (CAM). The CAM defines the application
structure visualized within the ServFace Builder. An ap-
plication consists of several pages, which act as containers
for frontends and represents a dialog visible on the screen.
Pages can be connected to each other to model navigation
flows. Adding a service operation to a page triggers the cre-
ation of UI elements for each particular operation parame-
ter. Every user action (e. g., add page, integrate frontend,
define data flow) is constantly synchronized with the CAM
instance to ensure a valid model representation at any time
of the design process.

Layout logic: General layout information is stored in
predefined templates including information like screen size,
device type and toolkit specifics. Composers can customize
specific layout aspects like background color or frames for all
pages within an application. Furthermore, they can arrange
frontends freely on the pages and can thereby define the
layout for each page individually.

Output types: A serialized instance of the internal ap-
plication model (CAM) serves as input to a model-to-code
transformation process in order to generate executable ap-
plications for different target platforms like web applications
or mobile platforms (as described in [3]).

Design/execution environment

Target users: The ServFace Builder targets non-pro-
grammers and skilled web users familiar with the semantics
of their individual application domain. They need to under-
stand the meaning of provided service functionality without
having a deep understanding of technical concepts like web
services or service composition.

Design paradigm: The main idea of ServFace is to com-
pose web services in a WYSIWYG manner, i. e., to directly
interact with single UI elements, complete frontends or pages

in order to model the application. No other abstraction layer
is needed to define data or control flow. To connect two ser-
vice frontends, the target UI element of the frontend to be
filled with data has to be selected. Using a context menu and
selection of the source UI element the data flow is defined
and visualized. The direct use of the UI elements of the
frontends benefits from the fact, that form-based applica-
tions are well-known and most users are familiar with them.
The definition of the control flow is supported visually as
well: users simply connect two pages in order to create a
automatically generated link for the page transition.

Deployment/execution paradigm: After the visual
modeling, the CAM instance is serialized to an XMI repre-
sentation that serves as the input for the fully automated
generation process of a deployable application. Currently,
support for hosted Microsoft Silverlight and a Google An-
droid applications is under development.

Additional features: The ServFace Builder supports
the development for different target devices (multi-platform-
support). Depending on the selected platform, aspects like
page size, supported toolkits and device-specific functional-
ities are considered accordingly during the design phase.

In order to implement the application described in the ref-
erence scenario, all required resources must be available in
form of annotated web services. Customer requests can, for
example, be provided by a web service (instead of an RSS
feed) offered by the CRM (Customer Relationship Manage-
ment) system of Acme Inc. Required customer data is al-
ready given by a SOAP service, as well as information on
plumbers, and a service operation to assign a plumber to
a specific customer request. Messaging services are also al-
ready available as SOAP web services. John can now use
the ServFace Builder to create the application from these
services. Firstly, he has to choose a target platform for his
application. Let’s assume, he would like to design a web
application. Having made this decision, he can start the ac-
tual composition process by dragging the customer request
service operation onto the modeling canvas of the first page.
The tool automatically creates the corresponding frontend,
which can be arranged on the page. In a second step, John
integrates the service operation that provides the customer
data onto the page. Now, he has to define a connection
between the operations by combining the two frontends via
their UI elements. Therefore, he selects a UI element (e. g.,
input field for the customer name) of the customer data
frontend and defines the data flow by selecting the customer
name UI element in the output of the customer request fron-
tend. This task must be done for the other service operations
as well to define all required data flows. John can place the
frontends on several pages to create a multi-page applica-
tion. All created pages are shown in a graph-like overview
and can be connected to define the page flow. After finishing
the design process, John can deploy his web application on
a web server and access it via his browser.

4.3 Dynamic Context-Aware
Composition - CRUISe

The main objective of the CRUISe [4] project is to develop
and evaluate novel concepts for the model-driven develop-
ment and deployment of composite applications. Its cen-
tral idea is the extension of the service-oriented paradigm to
the presentation layer to support a universal composition of

context-aware applications. This is accomplished by provid-
ing reusable UI components in a distributed, service-oriented
fashion, and their context-aware, dynamic invocation and
integration with other mashup components.

Component models

Types: Different semantic types of components are dis-
tinguished in CRUISe. On the topmost application layer,
UI Components encapsulate reusable UI parts with the cor-
responding presentation logic, such as an interactive map.
Commonly, those are represented as JavaScript. Logic Com-
ponents facilitate compatibility and efficient communication
between components, as they provide means for data trans-
formations. Finally, Service Components wrap heteroge-
neous back-end services (SOAP or REST) providing data
or application logics.

Data format: Components communicate via events, that
contain typed parameters. XML is used as a universal data
format, so all values adhere to an XML Schema data type.
Data is automatically transformed into the particular XML
structure if necessary.

Description language: Components can be specified
uniformly with the Mashup Component Description Lan-
guage (MCDL) which falls in two parts: Class descriptions
define generic interfaces with information on metadata, sig-
nature (operations and events) and semantics of a compo-
nent; Bindings map concrete component implementations to
a class and include platform-specific dependencies. WSDL
or WADL files of back-end services can be directly mapped
to MCDL, while UI components are described with UISDL
which provides UI-specific extensions like “screenshots” and
“interaction styles”.

Composition model

Internal component logic: To the composition envi-
ronment components are black boxes. However, they ad-
here to a universal component model that builds on three
abstractions, namely configuration, events, and operations.
The configuration represents a component’s state by a set
of predefined key-value-pairs (properties). State changes are
published by events, which are triggered by user interaction
(UI), component logic or notifications from external services
(model). Operations are methods of a component triggered
by events. They can include arbitrary functionality, such
as state changes, calculations, or service requests. These
abstractions facilitate the abstract definition and loose cou-
pling of application components using events.

Composition logic: CRUISe uses a platform-independent
composition model defining all relevant aspects of an appli-
cation. It specifies components used, their configurations,
data types, and visual styles. Control and data flow are
modeled by connecting events with operations via channels
that pass parameters from one component to another. Map-
pings can be defined on both sides of a channel to avoid
naming or ordering conflicts. Component interoperability
is ensured by Logic Components providing data manipu-
lations, e. g., filtering, iteration, and aggregation of data.
Besides layouts and screen flow, adaptive behavior can be
specified using aspects. They define model manipulations
with regard to context changes, thereby crosscutting all of
the above-mentioned models.

Layout logic: The layout of a composite UI is defined
in the model using common layouts that can be nested ar-

bitrarily, As an example, a FlowLayout allows components
to be stacked horizontally or vertically. Additionally, multi-
ple views can be defined, each representing a specific layout.
Transitions between views – the so-called “screen flow” – are
triggered by events issued from components or the platform.

Output types: The result of the model transformation/-
interpretation varies with regard to the platform and client-
server-distribution. Typical output is a web application with
an adaptive user interface. However, if no UI components
are included, service compositions can as well be defined
and executed. The definition of complex constraints and
dependencies between components is not supported, though.

Design/execution environment

Target users: The CRUISe composition model is tar-
geted at completeness rather than simplicity. Thus, model-
ing requires knowledge of components and event-based com-
munication, which restricts the target group to programmers
and skilled web users familiar with concepts of component-
based software. Consequently, CRUISe aims at simplify-
ing the development of composite applications in IT depart-
ments, rather than supporting end user development.

Design paradigm: Modeling applications can be done
using a text, tree, or visual editor. Certainly, the latter is
most suitable, providing modeling abstractions, drag-and-
drop composition and wiring as well as means to define lay-
out and screen flow. As a result, IT departments are en-
abled to compose applications without writing a single line
of source code.

Deployment/execution paradigm: Compositions can
be transformed into web applications, which are made avail-
able on a web server. Execution is carried out by a run-
time system which exists in different “flavors”, e. g., based
on Eclipse RAP, JSP, or completely browser-based. It con-
trols the application’s and components’ life cycles and man-
ages control and data flow. UI components are dynamically
integrated using a dedicated service which selects, adapts,
and provides components being most suitable for the current
context and platform.

Additional features: UISDL descriptions are managed
by a dedicated registry, which is invoked during the UI se-
lection process. The runtime environment supports further
adaptation techniques, such as layout changes, component
reconfigurations and exchange. As a foundation, it com-
prises context monitors and uses an ontology-based context
management service [9].

To develop our reference application with CRUISe, its
back-end services need to feature an interface description,
such as WADL (RSS feed), or WSDL (SOAP DB service).
Furthermore, we assume the following UI components and
UISDL descriptions are present: an RSS reader to visual-
ize service requests, a generic list viewer to list plumbers,
a map component to pinpoint locations, a details viewer
listing request and customer details, and a messaging UI.
Using the component descriptions, a member of the IT de-
partment, or even John himself, can compose the application
using an editor. Therefore, he configures components with
their description files and connects them with each other by
linking their events and operations. For instance, the out-
put of the feed component is connected to the RSS viewer’s
input. The viewer’s output “selectedItem” is connected to
the “getCustomerDetails” operations of the customer service

component. Since event and operation signatures do not al-
ways fit, logic components can be added, e. g., to iterate over
service requests from the feed, or to extract the customer’s
location from complex customer data. The location is then
linked to the map’s “setMarker” operation, and so forth. Al-
ternatively to this low-level approach, previously modeled
compositions, e. g., a feed, iterator and RSS viewer, can be
included as composite components. Finally, UI components
are arranged in layouts and may be divided into multiple
views. Additional adaptation aspects can be defined to en-
sure that the application fits different device characteristics
(available plug-ins, screen size) and adapts to user prefer-
ences (color schemes, favorite map services). The model is
then either transformed into an executable application or
directly interpreted, depending on the runtime system used.

4.4 Comparison and Discussion
Table 1 summarizes the details of the previous descrip-

tions and highlights similarities and differences. A first fun-
damental difference between mashArt/CRUISe and Serv-
Face can be seen by looking at the supported component
models: ServFace does not employ (JavaScript) UI com-
ponents but instead generates suitable UIs for SOAP ser-
vices. In contrast, CRUISe supports additional (UI) compo-
nents whose technologies depend on the particular integra-
tion platforms. Although all approaches focus on integration
at the presentation layer, they do recognize the need for sup-
porting “traditional” services. As the number of consumer-
and enterprise-level web services is growing fast, developing
modern applications requires being able to integrate them
without serious effort. For this reason, each approach sup-
ports WSDL descriptors, alongside proprietary descriptors
for their own component models. XML is commonly used
as data format, being a de-facto standard in the web service
domain. Yet, lightweight alternatives like JSON are gaining
momentum. They become handy for UI synchronization,
which typically does not require extensive data exchange.

Looking at the composition model, we note that all ap-
proaches support data flows. This does not come unex-
pectedly: the semantics of data flows is easy to understand
as it naturally conciliates the control flow with data arti-
facts. Thus, a data flow connector implies both the acti-
vation of its destination plus the passing of data items. In
traditional approaches like BPMN or BPEL, control flow
and data artifacts are modeled independently of each other,
which increases complexity. Consequently, most industrial
mashup tools, such as Yahoo! Pipes or JackBe Presto, adopt
data flows. As for the output types, all approaches support
web applications (HTML); CRUISe also supports applica-
tion services in case no UI components are part of the com-
position. However, the composition complexity supported is
not comparable to dedicated languages and platforms, like
BPEL. The layout of applications is generally based on tem-
plates, which is common practice in web development. In
contrast to most mashup platforms, ServFace and CRUISe
explicitly support multi-page applications, while mashArt is
working toward that feature.

All design/execution environments presented target non-
professional programmers and skilled web users. Yet, only
ServFace can claim support for the latter, being backed by
user studies. Development is assisted by visual drag-and-
drop development and by wiring components – no need for
manual coding. The sensible use of standard web technolo-

mashArt ServFace CRUISe

C
o
m

p
o
n

en
t

m
o
d

el

Types

JavaScript • – •
SOAP • • •
REST • – •
RSS/Atom • ◦ ◦
Additional – – •

Data format
XML • • •
JSON ◦ – ◦
Parameter-value pairs • – •

Description
WSDL • • •
WADL – – •
Proprietary desc. • • •
No description – – –

C
o
m

p
o
si

ti
o
n

m
o
d

el

Internal component model
Native model – – –
Abstract model • • •

Composition logic

Configuration • – •
Event-based • ◦ •
Control flow – • –
Data flow • • •
Blackboard-based – – –

Layout logic

Predefined templates • • •
Customizable templates – • •
Custom layouts • • •
Screen/Page flow ◦ • •

Output types
Data service ◦ – –
Application service ◦ – ◦
Web application • • •

D
es

ig
n

/
ex

ec
u

ti
o
n

en
v
ir

o
n

m
en

t

Target user

Prof. programmer • – •
Non-prof. progr. • • •
Skilled user ◦ • ◦
Unskilled user – – –

Design paradigm

Live composition – – –
Drag-and-drop • • ◦
Wire • • •
Coding – – –

Deployment/execution
Code generation – • •
Interpretation • – •
Compilation – – –

Additional features

Multi-Platform-Supp. – • •
Adaptivity ◦ – •
Component repository • • •
Composition repository • – ◦

Table 1: Summary of the evaluation of the three composition approaches; “•” indicates supported features,
“◦” indicates features under development, “–” indicates unsupported features.

gies (e. g., XML and HTML) facilitates code generation or
interpretation from completed compositions, rendering com-
plicated compiler logics unnecessary.

Advanced features like adaptability and adaptivity are
also partly supported. In this regard, CRUISe supports
the dynamic, context-aware integration and reconfiguration
of UI components, backed by information from a steadily-
updated context management service.

While all approaches may be used to realize our refer-
ence scenario, there are still shortcomings. So far, mature
support for JSON and WADL, two ingredients character-
izing advanced RESTful services, is missing. The black-
board approach to exchange data among components is not
considered suitable for presentation composition due to its
event-based nature (however, approaches like BPEL or Intel
Mash Maker use it). Though not explicitly discussed above,
data mappings among components using different data for-
mats are still a manual task. In this context, we regard the
accuracy of fit between components as a crucial factor for
presentation composition to succeed. Thus, research in con-
cepts for (semi-)automated, semantically enhanced data and
component mapping, i. e, matching, is desirable.

With regard to the growing importance of mashup solu-
tions for the enterprise, the effect and application of the
above-mentioned concepts for presentation integration on
traditional, human-involved business processes is another
challenging research direction. In this regard, both CRUISe
and mashArt have started to investigate how their concepts
may simplify the development and interaction with tradi-
tionally heavy-weight processes.

Finally, although all approaches restrain from manual cod-
ing, they do not achieve the goal of enabling average web
users to compose their own applications. However, they suc-
cessfully reduce development time and complexity for skilled
users and professionals.

5. CONCLUSION AND OUTLOOK
This paper evaluates three alternative approaches for the

composition of web applications at the presentation layer:
mashArt, ServFace, and CRUISe. The analysis is based on
three main dimensions (supported components, composition
model and design/execution environment), articulated into
sub-dimensions and possible values. The dimensions partic-
ularly aim at the evaluation of functional aspects, yet the

framework is generic and extensible, e. g., to also include
non functional aspects such as the ones stemming from ISO
9126 or quality aspects as discussed in [10]. Extending the
framework toward such non-functional properties will allow
the inclusion of other evaluation criteria, such as the us-
ability of compositions and the level of efficiency the tools
provide – all aspects that heavily influence the success of a
composition approach.

Our evaluation shows that mashArt and CRUISe follow a
similar philosophy centered around the idea of event-based
UI components, while ServFace distinguishes itself through
its generation of form-based UIs from annotated SOAP ser-
vices and its simplicity. All three composition platforms
share an important peculiarity with the majority of indus-
trial mashup platforms: they strongly focus on the simplifi-
cation of technologies. The lessons learned from this are:

• There is a need for a standard UI component technol-
ogy in terms of both interface logic and description
language, similar to what we have for web services
(e. g., SOAP and WSDL), to overcome dependencies
and shortcomings of proprietary platforms.

• The benefit and the usability of presentation integra-
tion are determined by the availability, quality and
reusability of individual components. Therefore, since
the complexity of application development is shifted
towards the component developer, elaborate compo-
nent design processes and tools must support them.

• As the domain of lightweight composition on the web
is still in its infancy, non-functional properties like se-
curity, reliability, performance, or quality are not yet
adequately addressed.

• It is generally hard to find the right balance between
completeness of features and simplicity of the compo-
sition approach. In this respect, tools and platforms
must be aligned with its target users as well as appli-
cation domain and requirements.

• State-of-the-art approaches aim at enabling average
users to develop applications by simplifying technol-
ogy, which is simply not enough. What users really
lack is development knowledge, which thus needs to be
provided somehow in order to really empower average
users, e. g., by learning from expert programmers.

As mentioned above, in addition to simplifying technology,
it is equally important to support reuse – not only in terms
of implementation-level components, but also in terms of do-
main knowledge and, more importantly, in terms of compo-
sition knowledge. With regard to our reference scenario, the
former implies that components presented to John should
have an immediate meaning to him, and a platform should
allow only compositions that make sense in the given do-
main. The latter could be achieved by recommending com-
position patterns that have been used successfully in the
past, or by semi-automated application evolution derived
from how other people improve their own compositions.

If we place the three discussed instruments into a simpli-
fication/reuse quadrant (Figure 1), we can easily see that
reuse is so far limited to components only, while there is
no support to tailor presentation composition platforms to
specific domains or to reuse composition knowledge.

support
for reuse

simplification of
technologies

components

domain
knowledge

composition
knowledge

textual dev. visual dev. assisted dev.

CRUISe
mashArt

ServFace

end usersdomain expertsprogrammers

future development

Figure 1: Simplification/reuse relation of presenta-
tion composition approaches

Moving into that direction will be the object of our future
research and, hopefully, also of other researchers in this area,
as doing so involves a number of challenges that can only be
achieved by joint, interdisciplinary approaches.

Acknowledgments
This work is partially supported by the EU Research Project
(FP7) ServFace. The CRUISe project is funded by the
BMBF under promotional reference number 01IS08034-C.

6. REFERENCES
[1] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera,

M., Saint-Paul, R.: Understanding ui integration: A
survey of problems, technologies, and opportunities.
Internet Computing 11(3) (May/June 2007)

[2] Daniel, F., Casati, F., Benatallah, B., Shan, M.C.:
Hosted universal composition: Models, languages and
infrastructure in mashart. In: ER. (Nov. 2009)

[3] Feldmann, M., Nestler, T., Jugel, U., Muthmann, K.,
Hübsch, G., Schill, A.: Overview of an end user
enabled model-driven development approach for
interactive applications based on annotated services.
In: Proc. of the 4th Workshop on Emerging Web
Services Technology, ACM (2009)

[4] Pietschmann, S., Voigt, M., Rümpel, A., Meißner, K.:
CRUISe: Composition of Rich User Interface Services.
In: Proc. of the 9th Intl. Conf. on Web Engineering
(ICWE 2009). (June 2009) 473–476

[5] OASIS: Web services business process execution
language version 2.0. http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

[6] Sun Microsystems: JSR-000168 Portlet Specification.
http://jcp.org/aboutJava/communityprocess/

final/jsr168/ (2003)

[7] OASIS: Web Services for Remote Portlets (WSRP).
http://oasis-open.org/committees/wsrp (2003)

[8] Janeiro, J., Preußner, A., Springer, T., Schill, A.,
Wauer, M.: Improving the development of service
based applications through service annotations. In:
Proceedings of IADIS WWW/Internet 2009. (2009)

[9] Mitschick, A., Pietschmann, S., Meißner, K.: An
ontology-based, cross-application context modeling
and management service. Intl. Journal on Semantic
Web and Information Systems (Feb.)

[10] Cappiello, C., Daniel, F., Matera, M., Pautasso, C.:
Information Quality in Mashups. IEEE Internet
Computing 14(4) (July-August 2010) 14–22

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://jcp.org/aboutJava/communityprocess/final/jsr168/
http://jcp.org/aboutJava/communityprocess/final/jsr168/
http://oasis-open.org/committees/wsrp

	Introduction
	Background and Related Work
	Presentation Integration: Techniques and Ingredients
	Presentation Integration in Practice
	Universal Composition - mashArt
	Service Frontend Composition - The ServFace Builder
	Dynamic Context-Aware Composition - CRUISe
	Comparison and Discussion

	Conclusion and Outlook
	References

