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Abstract In this paper, we approach the problem of interactively query-
ing and recommending composition knowledge in the form of re-usable
composition patterns. The goal is that of aiding developers in their com-
position task. We specifically focus on mashups and browser-based mod-
eling tools, a domain that increasingly targets also people without pro-
found programming experience. The problem is generally complex, in
that we may need to match possibly complex patterns on-the-fly and
in an approximate fashion. We describe an architecture and a pattern
knowledge base that are distributed over client and server and a set of
client-side search algorithms for the retrieval of step-by-step recommen-
dations. The performance evaluation of our prototype implementation
demonstrates that - if sensibly structured - even complex recommenda-
tions can be efficiently computed inside the client browser.

1 Introduction

Mashing up, i.e., composing, a set of services, for example, into a data process-
ing logic, such as the data-flow based data processing pipes proposed by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), is generally a complex task that
can only be managed by skilled developers. People without the necessary pro-
gramming experience may not be able to profitably use mashup tools like Pipes
– to their dissatisfaction. For instance, we think of tech-savvy people, who like
exploring software features, author and share own content on the Web, that
would like to mash up other contents in new ways, but that don’t have pro-
gramming skills. They might lack appropriate awareness of which composable
elements a tool provides, of their specific function, of how to combine them, of
how to propagate data, and so on. The problem is analogous in the context of
web service composition (e.g., with BPEL) or business process modeling (e.g.,
with BPMN), where modelers are typically more skilled, but still may not know
all the features of their modeling languages.

Examples of ready mashup models are one of the main sources of help for
modelers who don’t know how to express or model their ideas – provided that
suitable examples can be found (examples that have an analogy with the mod-
eling situation faced by the modeler). But also tutorials, expert colleagues or



friends, and, of course, Google are typical means to find help. However, search-
ing for help does not always lead to success, and retrieved information is only
seldom immediately usable as is, since the retrieved pieces of information are
not contextual, i.e., immediately applicable to the given modeling problem.

Inspired by a study on how end users would like to be assisted in mashup
development [1], we are working toward the interactive, contextual recommen-
dation of composition knowledge, in order to assist the modeler in each step of
his development task, e.g., by suggesting a candidate next component or a whole
chain of tasks. The knowledge we want to recommend is re-usable composition
patterns, i.e., model fragments that bear knowledge that may come from a vari-
ety of possible sources, such as usage examples or tutorials of the modeling tool
(developer knowledge), best modeling practices (domain expert knowledge), or
recurrent model fragments in a given repository of mashup models (community
knowledge [2]). The vision is that of developing an assisted, web-based mashup
environment (an evolution of our former work [3]) that delivers useful composi-
tion patterns much like Google’s Instant feature provides search results already
while still typing keywords into the search field.

In this paper, we approach one of the core challenges of this vision, i.e., the
fast search and retrieval of a ranked list of contextual development recommen-
dations. The problem is non-trivial, in that the size of the respective knowledge
base may be large, and the search for composition patterns may be complex;
yet, recommendations are to be delivered at high speed, without slowing down
the modeler’s composition pace. Matching a partial mashup model with a repos-
itory of modeling patterns, in order to identify which of the patterns do in fact
represent useful information, is similar to the well-known inexact sub-graph iso-
morphism problem [4], which has been proven to be NP-complete in general.
Yet, if we consider that the pattern recommender should work as a plug-in for
a web-based modeling tool (such as Pipes or mashArt [3], but also instruments
like the Oryx BPMN editor [http://bpt.hpi.uni-potsdam.de/Oryx/]), fast
response times become crucial.

We provide the following contributions, in order to approach the problem:

– We model the problem of interactively recommending composition knowl-
edge as pattern matching and retrieval problem in the context of data
mashups and visual modeling tools (Section 2). This focus on one specific
mashup/composition model is without loss of generality as for what regards
the overall approach, and the model can easily be extended to other contexts.

– We describe an architecture for an assisted development environment, along
with a client-side, recommendation-specific knowledge base (Section 3).

– We describe a set of query and similarity search algorithms that enable the
efficient querying and ranking of interactive recommendations (Section 4).

– We study the performance of the conceived algorithms and show that inter-
actively delivering composition patterns inside the modeling tool is feasible
(Section 5).

In Section 6 we have a look at related works, and in the conclusion we recap
the lessons we learned and provide hints of our future work.



2 Preliminaries and Problem Statement

Recommending composition knowledge requires, first of all, understanding how
such knowledge looks like. We approach this problem next by introducing the
mashup model that accompanies us throughout the rest of this paper and that
allows us to define the concept of composition patterns as formalization of the
knowledge to be recommended. Then, we characterize the typical browser-based
mashup development environment and provide a precise problem statement.

2.1 Mashup model and composition patterns

As a first step toward more complex mashups, in this paper we focus on data
mashups. Data mashups are simple in terms of modeling constructs and expres-
sive power and, therefore, also the structure and complexity of mashup patterns
is limited. The model we define in the following is inspired by Yahoo! Pipes and
JackBe’s Presto (http://www.jackbe.com) platform; in our future work we will
focus on more complex models.

A data mashup model can be expressed as a tuple m = 〈name,C, F,M,P 〉,
where name is the unique name of the mashup, C is the set of components used
in the mashup, F is the set of data flow connectors ruling the propagation of
data among components, M is the set of data mappings of output attributes1 to
input parameters of connected components, and P is the set of parameter value
assignments for component parameters. Specifically:

– C = {ci|ci = 〈namei, desci, Ini, Outi, Confi〉} is the non-empty set of com-
ponents, with namei being the unique name of the component ci, desci
being a natural language description of the component (for the modeler),
and Ini = {〈inij , reqij〉}, Outi = {outik}, and Confi = {〈confil, reqil〉},
respectively, being the sets of input, output, and configuration parame-
ters/attributes, and reqij , reqil ∈ {yes, no} specifying whether the param-
eter is required, i.e., whether it is mandatory, or not. We distinguish three
kinds of components:

• Source components fetch data from the web or the local machine. They
don’t have inputs, i.e., Ini = ∅. There may be multiple source compo-
nents in C.

• Regular components consume data in input and produce processed data
in output. Therefore, Ini, Outi 6= ∅. There may be multiple regular
components in C.

• Sink components publish the output of the data mashup, e.g., by printing
it onto the screen or providing an API toward it, such as an RSS or
RESTful resource. Sinks don’t have outputs, i.e., Outi = ∅. There must
always be exactly one sink in C.

1 We use the term attribute to denote data attributes in the data flow and the term
parameter to denote input and configuration parameters of components.



– F = {fm|fm ∈ C × C} are the data flow connectors that assign to each
component ci it’s predecessor cp (i 6= p) in the data flow. Source components
don’t require any data flow connector in input; sink components don’t have
data flow connectors in output.

– M = {mn|mn ∈ IN × OUT, IN = ∪i,jinij , OUT = ∪i,koutik} is the data
mapping that tells each component which of the attributes of the input
stream feed which of the input parameters of the component.

– P = {po|po ∈ (IN∪CONF )×(val∪null), CONF = ∪i,lconfil} is the value
assignment for the input or configuration parameters of each component,
val being a number or string value (a constant), and null representing an
empty assignment.

This definition allows models that may not be executed in practice, e.g.,
because the data flow is not fully connected. With the following properties we
close this gap:

Definition 1. A mashup model m is correct if the graph expressed by F is
connected and acyclic.

Definition 2. A mashup model m is executable if it is correct and all required
input and configuration parameters have a respective data mapping or value as-
signment.

These two properties must only hold in the moment we want to execute a
mashup m. Of course, during development, e.g., while modeling the mashup logic
inside a visual mashup editor, we may be in the presence of a partial mashup
model pm = 〈C,F,M,P 〉 that may be neither correct nor executable. Step by
step, the mashup developer will then complete the model, finally obtaining a
correct and executable one, which can typically be run directly from the editor
in a hosted fashion.

Given the above characterization of mashups, we can now define composition
knowledge that can be recommended as re-usable composition patterns for
mashups of type m, i.e., model fragments that provide insight into how to solve
specific modeling problems. Generically – given the mashup model introduced be-
fore – we express a composition pattern as a tuple cp = 〈C,F,M,P, usage, date〉,
where C,F,M,P are as defined for m, usage counts how many times the pat-
tern has been used (e.g., to compute rankings), and date is the creation date of
the pattern. In order to be useful, a pattern must be correct, but not necessar-
ily executable. The size of a pattern may vary from a single component with a
value assignment for at least one input or configuration parameter to an entire,
executable mashup; later on we will see how this is reflected in the structure of
individual patterns.

Finally, to effectively deliver recommendations it is crucial to understand
when to do so. Differently from most works on pattern search in literature (see
Section 6), we aim at an interactive recommendation approach, in which pat-
terns are queried for and delivered in response to individual modeling actions per-
formed by the user in the modeling canvas. In visual modeling environments, we



typically have action ∈ {select, drag, drop, connect, delete, fill,map, ...}, where
action is performed on an object ⊆ C ∪ F ∪ IN ∪ CONF , i.e., on the set of
modeling constructs affected by the last modeling action. For instance, we can
drop a component ci onto the canvas, or we can select a parameter confil to fill
it with a value, we can connect a data flow connector fm with an existing target
component, or we can select a set of components and connectors.

2.2 Problem statement

In the composition context described above, providing interactive, contextual
development recommendations therefore corresponds to the following problem
statement: given a query q = 〈object, action, pm〉, with pm being the partial
mashup model under development, how can we obtain a list of ranked com-
position patterns R = [〈cpi, ranki〉] (the recommendations), such that (i) the
provided recommendations help the developer to stepwise draw an executable
mashup model and (ii) the search, ranking, and delivery of the recommendations
can be efficiently embedded into an interactive modeling process?

3 Recommending Composition Knowledge: Approach

The key idea we follow in this work is not trying to crack the whole problem at
once. That is, we don’t aim to match a query q against a repository of generic
composition patterns of type cp in order to identify best matches. This is instead
the most followed approach in literature on graph matching, in which, given a
graph g1, we search a repository of graphs for a graph g2, such that g1 is a sub-
graph of g2 or such that g1 satisfies some similarity criteria with a sub-graph of
g2. Providing interactive recommendations can be seen as a specific instance of
this generic problem, which however comes with both a new challenge as well
as a new opportunity: the new challenge is to query for and deliver possibly
complex recommendations responsively ; the opportunity stems from the fact
that we have an interactive recommendation consumption process, which allows
us to split the task into optimized sub-steps (e.g., search for data mappings,
search for connectors, and similar), which in turn helps improve performance.

Having an interactive process further means having a user performing model-
ing actions, inspecting recommendations, and accepting or rejecting them, where
accepting a recommendation means weaving (i.e., connecting) the respective
composition pattern into the partial mashup model under development. Thanks
to this process, we can further split recommendations into what is needed to
represent a pattern (e.g., a component co-occurrence) from what is needed to
use the pattern in practice (e.g., the exact mapping of output attributes to input
parameters of the component co-occurrence). We can therefore further leverage
on the separation of pattern representation and usage: representations (the rec-
ommendations) don’t need to be complete in terms of ingredients that make up
a pattern; completeness is required only at usage time.



3.1 Types of knowledge patterns

Aiming to help a developer to stepwise refine his mashup model, practically
means suggesting the developer which next modeling action (that makes sense)
can be performed in a given state of his progress and doing so by providing as
much help (in terms of modeling actions) as possible. Looking at the typical
modeling steps performed by a developer (filling input fields, connecting compo-
nents, copying/pasting model fragments) allows us to define the following types
of patterns (for simplicity, we omit the usage and date attributes):

– Parameter value pattern: cppar = 〈cx,∅,∅, pxo〉. Given a component, the
system suggest values for the component’s parameters.

– Connector pattern: cpconn = 〈{cx, cy}, fxy,∅,∅〉. Given two components,
the system suggests a connector among the components.

– Data mapping pattern: cpmap = 〈{cx, cy}, fxy, {mxy
n },∅〉. Given two com-

ponents and a connector among them, the system suggests how to map the
output attributes of the first component to the parameters of the second
component.

– Component co-occurrence pattern: cpco = 〈{cx, cy}, fxy, {mxy
n }, {pxo}∪{pyo}〉.

Given one component, the system suggests a possible next component to be
used, along with all the necessary data mappings and value assignments.

– Complex pattern: cpcom = 〈C,F,M,P 〉. Given a fragment of a mashup
model, the system suggests a pattern consisting of multiple components and
connectors, along with the respective data mappings and value assignments.

Our definition of cp would allow many more possible types of composition
patterns, but not all of them make sense if patterns are to be re-usable as is, that
is, without requiring further refinement steps like setting parameter values. This
is the reason for which we include also connectors, data mappings, and value
assignments when recommending a component co-occurrence pattern.

3.2 The interactive modeling and recommender system

Figure 1 illustrates the internals of our prototype modeling environment equipped
with an interactive knowledge recommender. We distinguish between client and
server side, where the whole application logic is located in the client, and the
server basically hosts the persistent pattern knowledge base (KB; details in Sec-
tion 3.3). At startup, the KB loader loads the patterns into the client environ-
ment, decoupling the knowledge recommender from the server side.

Once the editor is running inside the client browser, the developer can visu-
ally compose components (in the modeling canvas) taken from the component
tool bar. Doing so generates modeling events (the actions), which are published
on a browser-internal event bus, which forwards each modeling action to the
recommendation engine. Given a modeling action, the object it has been applied
to, and the partial mashup model pm, the engine queries the client-side pattern
KB via the KB access API for recommendations (pattern representations). An
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Figure 1. Simplified architecture of the assisted modeling environment with client-side
knowledge base and interactive recommender. We focus on recommendations only and
omit elements like the mashup runtime environment, the component library, etc.

object-action-recommendation mapping (OAR) tells the engine which type of
recommendation is to be retrieved for each modeling action on a given object.

The list of patterns retrieved from the KB (either via regular queries or
by applying dedicated similarity criteria) are then ranked by the engine and
rendered in the recommendation panel, which renders the recommendations to
the developer for inspection. In future, selecting a recommendation will allow
the pattern weaver to query the KB for the usage details of the pattern (data
mappings and value assignments) and to automatically provide the modeling
canvas with the necessary modeling instructions to weave the pattern into the
partial mashup model.

3.3 Patterns knowledge base

The core of the interactive recommender is the KB that stores generic patterns,
but decomposed into their constituent parts, so as to enable the incremental
recommendation approach. If we recall the generic definition of composition
patterns, i.e., cp = 〈C,F,M,P, usage, date〉, we observe that, in order to convey
the structures of a set of complex patterns inside a visual modeling tool, typ-
ically C and F (components and connectors) will suffice to allow a developer
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Figure 2. Model of the pattern knowledge base for client-side knowledge management.

to select a candidate pattern. Ready data mappings and value assignments are
then delivered together with the components and connectors only upon selection
of a pattern by the developer.

This observation leads us to the KB illustrated in Figure 2, whose struc-
ture enables the retrieval of the representations of the types of recommendations
introduced in Section 3.1 with a one-shot query over a single table. For in-
stance, the entity Connectors contains all connector patterns, and the entity
ComplexPattern contains the structure of the complex patterns (in Section 4
we explain the meaning of the attributes C,F, F ′). The KB is partly redun-
dant (e.g., the structure of a complex pattern also contains components and
connectors), but this is intentional. It allows us to defer the need for joins to
the moment in which we really need to retrieve all details of a pattern, i.e.,
when we want to use it. In order to retrieve, for example, the representation of
a component co-occurrence pattern, it is therefore enough to query the Com-
ponentCooccur entity for the SourceComponent and the TargetComponent at-
tributes; weaving the pattern then into the modeling canvas requires querying
ComponentCooccur ./ DataMapping ./ ParameterV alues for the details.

4 Exact and Approximate Search of Recommendations

Given the described types of composition patterns and a query q, we retrieve
composition recommendations from the described KB in two ways: (i) we query
the KB for parameter value, connector, data mapping, and component co-occur-
rence patterns; and (ii) we match the object against complex patterns. The
former approach is based on exact matches with the object, the latter leverages
on similarity search. Conceptually, all recommendations could be retrieved via
similarity search, but for performance reasons we apply it only in those cases
(the complex patterns) where we don’t know the structure of the pattern in
advance and, therefore, are not able to write efficient conventional queries.

Algorithm 1 details this strategy and summarizes the logic implemented by
the recommendation engine. In line 3, we retrieve the types of recommendations
that can be given (getSuitableRecTypes function), given an object-action combi-
nation. Then, for each recommendation type, we either query for patterns (the



Algorithm 1: getRecommendations
Data: query q = 〈object, action, pm〉, knowledge base KB, object-action-recommendation

mapping OAR, component similarity matrix CompSim, similarity threshold Tsim,
ranking threshold Trank, number n of recommendations per recommendation type

Result: recommendations R = [〈cpi, ranki〉] with ranki ≥ Trank

1 R = array();
2 Patterns = set();
3 recTypeToBeGiven = getSuitableRecTypes(object, action,OAR);
4 foreach recType ∈ recTypeToBeGiven do
5 if recType ∈ {ParV alue, Connector,DataMapping, CompCooccur} then
6 Patterns = Patterns∪ queryPatterns(object,KB, recType) ; // exact query
7 else
8 Patterns = Patterns∪

getSimilarPatterns(object,KB.ComplexPattern, CompSim, Tsim) ; // similarity
search

9 foreach pat ∈ Patterns do
10 if rank(pat.cp, pat.sim, pm) ≥ Trank then
11 append(R, 〈pat.cp, rank(pat.cp, pat.sim, pm)〉) ; // rank, threshold, remember

12 orderByRank(R);
13 groupByType(R);
14 truncateByGroup(R,n);
15 return R;

queryPatterns function can be seen like a traditional SQL query) or we do a sim-
ilarity search (getSimilarPatterns function, see Algorithm 2). For each retrieved
pattern, we compute a rank, e.g., based on the pattern description (e.g., contain-
ing usage and date), the computed similarity, and the usefulness of the pattern
inside the partial mashup, order and group the recommendations by type, and
filter out the best n patterns for each recommendation type.

As for the retrieval of similar patterns, our goal was to help modelers, not
to disorient them. This led us to the identification of the following principles
for the identification of “similar” patterns: preference should be given to exact
matches of components and connectors in object, candidate patterns may differ
for the insertion, deletion, or substitution of at most one component in a given
path in object, and among the non-matching components preference should be
given to functionally similar components (e.g., it may be reasonable to allow a
Yahoo! Map instead of a Google Map).

Algorithms 2 and 3 implement these requirements, although in a way that
is already optimized for execution, in that they don’t operate on the original,
graph-like structure of patterns, but instead on a pre-processed representation
that prevents us from traversing the graph at runtime. Figure 3(a) illustrates the
pre-processing logic: each complex pattern is represented as a tuple 〈C,F, F ′〉,
where C is the set of components, F the set of direct connections, and F ′ the set
of indirect connections, skipping one component for approximate search. This
pre-processing logic is represented by the function getStructure, which can be
evaluated offline for each complex pattern in the raw pattern KB; results are
stored in the ComplexPattern entity introduced in Figure 2. Another input that
can be computed offline is the component similarity matrix CompSim, which
can be set up by an expert or automatically derived by mining the raw pat-



A

B

C

E

D

AB

AC

BE

CD

CE
DE

AE

AD

A

F

C
AC

AF

E
CE

(a) An example composition pattern cp

getStructure(cp) = <C,F,F'> with 
C = {A,B,C,D,E}, 
F = {AB,AC,BE,CD,DE}, and 
F' = {AE,AD,CE}

getStructure(object) = <C,F,F'> with 
C = {A,C,E,F}, 
F = {AF,AC,CE}, and 
F' = {AE}

(b) An example object of a query q

Direct connection 
f ∈ F

Indirect connection f' ∈ F'Component c ∈ C

A
B
C
D
E
F

1 - - - - -
- 1 - - - 0.5
- - 1 - - -
- - - 1 - -
- - - - 1 -
- 0.5 - - - 1

A B C D E F

(c) Component similarity 
matrix CompSim 

Figure 3. Pattern pre-processing and example of component similarity matrix
CompSim. Components are identified with characters, connectors with their endpoints.

tern KB. For the purpose of recommending knowledge, similarity values should
reflect semantic similarity among components (e.g., two flight search services);
syntactic differences are taken into account by the pattern structures. Figure
3(c) illustrates a possible matrix for the components in the sub-figures (a) and
(b); similarity values are contained in [0..1], 0 representing no similarity, 1 rep-
resenting equivalence.

Algorithm 2 now works as follows. First, it derives the optimized structure
of object (line 2). Then, it compares it with each complex pattern cp ∈ CP in
four steps: (i) it computes a similarity value for all components and connectors
of obj and cp that have an exact match (line 5); (ii) it eliminates all matching
components and connectors from the structure of obj (lines 6-8); (iii) it computes
the best similarity value for the so-derived obj by approximating it with other
components based on CompSim (lines 9-16); and it aggregates to two similarity
values (line 17). Specifically, the algorithm substitutes one component at a time
in obj (using getApproximatePattern in line 13), considering all possible substi-
tutes simc and their similarity values simc.sim obtained from CompSim. The
actual similarity value between two patterns is computed by Algorithm 3.

Let’s consider the pattern, object, and similarity matrix in Figure 3. If in
Algorithm 3 we use the weights wi ∈ {0.5, 0.2, 0.1, 0.1, 0.1} in the stated order,
sim in line 4 of Algorithm 2 is 0.57 (exact matches for 3 components and 2 con-
nectors). After the elimination of those matches, obj = 〈{F}, {AF},∅〉, and sub-
stituting F with B as suggested by CompSim allows us to obtain an additional
approximate similarity of approxSim = 0.35 (two matches and simc.sim = 0.5),
which yields a total similarity of sim = 0.57 + 0.35/4 = 0.66.

5 Implementation and Performance Evaluation

We implemented the recommendation engine, the KB access API, and the client-
side pattern KB along with the recommendation and similarity search algo-
rithms, in order to perform a detailed performance analysis. The prototype
implementation is entirely written in JavaScript and has been tested with a



Algorithm 2: getSimilarPatterns
Data: query object object, set of complex patterns CP , component similarity matrix

CompSim, similarity threshold Tsim

Result: Patterns = {〈cpi, simi〉} with simi ≥ Tsim

1 Patterns = set();
2 objectStructure = getStructure(object) ; // computes object’s structure for comparison
3 foreach cp ∈ CP do
4 obj = objectStructure;
5 sim = getSimilarity(obj, cp) ; // compute similarity for exact matches
6 obj.C = obj.C − cp.C ; // eliminate all exact matches for C, F, F’ from obj

7 obj.F = obj.F − cp.F − cp.F ′;

8 obj.F ′ = obj.F ′ − cp.F ′ − cp.F ;
9 approxSim = 0; // will contain the best similarity for approximate matches

10 foreach c ∈ obj.C do
11 SimC = getSimilarComponents(c, CompSim) ; // get set of similar components
12 foreach simc ∈ SimC do
13 approxObj = getApproximatePattern(obj, c, simc) ; // get approx. pattern
14 newApproxSim = simc.sim∗getSimilarity(approxObj, cp) ; // get similarity
15 if newApproxSim > approxSim then
16 approxSim = newApproxSim ; // keep highest approximate similarity

17 sim = sim + approxSim ∗ |obj.C|/|objectStructure.C| ; // normalize and aggregate
18 if sim ≥ Tsim then
19 Patterns = Patterns ∪ 〈cp, sim〉 ; // remember patterns with sufficient sim

20 return Patterns;

Algorithm 3: getSimilarity
Data: query object object, complex pattern cp
Result: similarity

1 initialize wi for i ∈ 1..5 with
∑

i wi = 1;
2 sim1 = |object.C ∩ cp.C|/|object.C| ; // matches components
3 sim2 = |object.F ∩ cp.F |/|object.F | ; // matches connectors

4 sim3 = |object.F ∩ cp.F ′|/|object.F | ; // allows insertion of a component

5 sim4 = |object.F ′ ∩ cp.F |/|object.F ′| ; // allows deletion of a component

6 sim5 = |object.F ′ ∩ cp.F ′|/|object.F ′| ; // allows substitution of a component
7 similarity =

∑
i wi ∗ simi;

8 return similarity;

Firefox 3.6.17 web browser. The implementation of the client-side KB is based
on Google Gears (http://gears.google.com), which internally uses SQL Lite
(http://www.sqlite.org) for storing data on the client’s hard drive. Given
that SQL Lite does not support set data types, we serialize the representation of
complex patterns 〈C,F, F ′〉 in JSON and store them as strings in the respective
ComplexPattern table in the KB; doing so slightly differs from the KB model in
Figure 2, without however altering its spirit. The implementation of the persis-
tent pattern KB is based on MySQL, and it is accessed by the KB loader through
a dedicated RESTful Java API running inside an Apache 2.0 web server. The
prototype implementation is installed on a MAC machine with OS X 10.6.1, a
2.26 GHz Intel Core 2 Duo processor, and 2 GB of memory. Response times are
measured with the FireBug 1.5.4 plug-in for Firefox.

For the generation of realistic test data, we assumed to be in the presence of
a mashup editor with 26 different components (A−Z), with a random number of
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Figure 4. Performance evaluation of the client-side knowledge recommender.

input and configuration parameters (ranging from 1−5) and a random number of
output attributes (between 1−5). To obtain an upper bound for the performance
of the exact queries for parameter value, connector, data mapping, and compo-
nent co-occurrence patterns, we generated, respectively, 26 ∗ 5 = 130 parameter
values for the 26 components, 26 ∗ 25 = 650 directed connectors, 650 ∗ 5 = 3250
data mappings, and 650 component co-occurrences. To measure the performance
of the similarity search algorithms, we generated 5 different KBs with 10, 30,
100, 300, 1000 complex patterns, where the complexity of patterns ranges from
3 − 9 components. The patterns make random use of all available components
and are equally distributed in the generated KBs. Finally, we generated a set of
query objects with |obj.C| ∈ {1..7}.

In Figure 4, we illustrate the tests we performed and the respective results.
The first test in Figure 4(a) studies the performance in terms of pattern retrieval
times of Algorithm 2 for different KB sizes; the figure plots the retrieval times
for different object sizes. Considering the logarithmic scale of the x-axis, we note
that the retrieval time for complex patterns grows almost linearly. This somehow
unexpected behavior is due to the fact that, compared to the number of patterns,
the complexity of patterns is similar among each other and limited and, hence,
the similarity calculation can almost be considered a constant. We also observe
that there are no significant performance differences for varying object sizes. In
Figure 4(b) we investigate the effect of the object size on the performance of
Algorithm 2 only for the KB with 1000 complex patterns (the only one with
notable differences). Apparently, also the size of the query object does not affect
much retrieval time. Figure 4(c), finally, studies the performance of Algorithm
1, i.e., the performance perceived by the user, in a typical modeling situation: in
response to the user placing a new component into the canvas, the recommenda-



tion engine retrieves respective parameter value, connector, co-occurrence, and
complex patterns (we do not recommend data mappings for single components);
the overall response time is the sum of the individual retrieval times. As ex-
pected, the response times of the simple queries can be neglected compared to
the one of the similarity search for complex patterns, which basically dominates
the whole recommendation performance.

In summary, the above tests confirm the validity of the proposed pattern rec-
ommendation approach and even outperform our own expectations. The number
of components in a mashup or composition tool may be higher, yet the number
of really meaningful patterns in a given modeling domain only unlikely will grow
beyond several dozens or 100. Recommendation retrieval times of fractions of
seconds will definitely allow us – and others – to develop more sophisticated,
assisted composition environments.

6 Related Work

Traditionally, recommender systems focus on the retrieval of information of
likely interest to a given user, e.g., newspaper articles or books. The likelihood
of interest is typically computed based on a user profile containing the user’s
areas of interest, and retrieved results may be further refined with collabora-
tive filtering techniques. In our work, as for now we focus less on the user and
more on the partial mashup under development (we will take user preferences
into account in a later stage), that is, recommendations must match the partial
mashup model and the object the user is focusing on, not his interests. The ap-
proach is related to the one followed by research on automatic service selection,
e.g., in the context of QoS- or reputation-aware service selection, or adaptive or
self-healing service compositions. Yet, while these techniques typically approach
the problem of selecting at runtime a concrete service for an abstract activity,
we aim at interactively assisting developers at design time with more complex
information in the form of complete modeling patterns.

In the context of web mashups, Carlson et al. [5], for instance, react to
a user’s selection of a component with a recommendation for the next com-
ponent to be used; the approach is based on semantic annotations of compo-
nent descriptors and makes use of WordNet for disambiguation. Greenshpan
et al. [6] propose an auto-completion approach that recommends components
and connectors (so-called glue patterns) in response to the user providing a set
of desired components; the approach computes top-k recommendations out of
a graph-structured knowledge base containing components and glue patterns
(the nodes) and their relationships (the arcs). While in this approach the actual
structure (the graph) of the knowledge base is hidden to the user, Chen et al.
[7] allow the user to mashup components by navigating a graph of components
and connectors; the graph is generated in response to the user’s query in form
of descriptive keywords. Riabov et al. [8] also follow a keyword-based approach
to express user goals, which they use to feed an automated planner that derives
candidate mashups; according to the authors, obtaining a plan may require sev-



eral seconds. Elmeleegy et al. [9] propose MashupAdvisor, a system that, starting
from a component placed by the user, recommends a set of related components
(based on conditional co-occurrence probabilities and semantic matching); upon
selection of a component, MashupAdvisor uses automatic planning to derive how
to connect the selected component with the partial mashup, a process that may
also take more than one minute. Beauche and Poizat [10] apply automatic plan-
ning in the context of service composition. The planner generates a candidate
composition starting from a user task and a set of user-specified services.

The business process management (BPM) community more strongly fo-
cuses on patterns as a means of knowledge reuse. For instance, Smirnov et al.
[11] provide so-called co-occurrence action patterns in response to action/task
specifications by the user; recommendations are provided based on label similar-
ity, and also come with the necessary control flow logic to connect the suggested
action. Hornung et al. [12] provide users with a keyword search facility that al-
lows them to retrieve process models whose labels are related to the provided
keywords; the algorithm applies the traditional TF-IDF technique from infor-
mation retrieval to process models, turning the repository of process model into
a keyword vector space. Gschwind et al. [13] allow users in their modeling tool
to insert control flow patterns, as introduced by Van der Aalst et al. [14], just
like other modeling elements. The proposed system does not provide interactive
recommendations and rather focuses on the correct insertion of patterns.

In summary, the mashup and service composition approaches either focus on
single components or connectors, or they aim to automatically plan complete
compositions starting from user goals. The BPM approaches do focus on pat-
terns as reusable elements, but most of the times pattern similarity is based on
label/text similarity, not on structural compatibility. We assume components
have stable names and, therefore, we do not need to interpret text labels.

7 Conclusion and Future Work

In this paper, we focused on a relevant problem in visual mashup development,
i.e., the recommendation of composition knowledge. The approach we followed
is similar to the one adopted in data warehousing, in which data is transformed
from their operational data structure into a dimensional structure, which op-
timizes performance for reporting and data analysis. Analogously, instead of
querying directly the raw pattern knowledge base, typically containing a set of
XML documents encoding graph-like mashup structures, we decompose patterns
into their constituent elements and transform them into an optimized structure
directly mapped to the recommendations to be provided. We access patterns
with fixed structure via simple queries, while we provide an efficient similarity
search algorithm for complex patterns, whose structure is not known a-priori.

We specifically concentrated on the case of client-side mashup development
environments, obtaining very good results. Yet, the described approach will per-
form well also in the context of other browser-based modeling tools, e.g., business
process or service composition instruments (which are also model-based and of



similar complexity), while very likely it will perform even better in desktop-
based modeling tools like the various Eclipse-based visual editors. As such, the
pattern recommendation approach discussed in this paper represents a valuable,
practical input for the development of advanced modeling environments.

Next, we will work on three main aspects: The complete development of the
interactive modeling environment for the interactive derivation of search queries
and the automatic weaving of patterns; the discovery of composition patterns
from a repository of mashup models; the fine-tuning of the similarity and ranking
algorithms with the help of suitable user studies. This final step will also allow
us to assess and tweak the set of proposed composition patterns.
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