
Baya: Assisted Mashup Development as a Service

Soudip Roy Chowdhury, Carlos Rodrı́guez, Florian Daniel and Fabio Casati
University of Trento

Via Sommarive 5, 38123 Povo (TN), Italy

{rchowdhury,crodriguez,daniel,casati}@disi.unitn.it

ABSTRACT
In this demonstration, we describe Baya, an extension of
Yahoo! Pipes that guides and speeds up development by in-
teractively recommending composition knowledge harvested
from a repository of existing pipes. Composition knowl-
edge is delivered in the form of reusable mashup patterns,
which are retrieved and ranked on the fly while the devel-
oper models his own pipe (the mashup) and that are auto-
matically weaved into his pipe model upon selection. Baya
mines candidate patterns from pipe models available online
and thereby leverages on the knowledge of the crowd, i.e.,
of other developers. Baya is an extension for the Firefox
browser that seamlessly integrates with Pipes. It enhances
Pipes with a powerful new feature for both expert developers
and beginners, speeding up the former and enabling the lat-
ter. The discovery of composition knowledge is provided as
a service and can easily be extended toward other modeling
environments.

Categories and Subject Descriptors
H.m [Information Systems]: Miscellaneous; D.1 [Softwa-
re]: Programming Techniques; D.2.6 [Software]: Software
Engineering—Programming Environments

Keywords
Baya, Assisted mashup development, Composition patterns,
Pattern mining, Pattern recommendation, Weaving

1. INTRODUCTION
Mashup tools, such as Yahoo! Pipes (http://pipes.

yahoo.com/pipes/) or JackBe Presto Wires (http://www.
jackbe.com), simplify the development of composite appli-
cations by means of easy development paradigms (e.g., using
visual programming metaphors) and hosted runtime envi-
ronments that do not require the installation of any client-
side software. Yet, despite the initial goal of enabling end
users to develop own applications and the advances in sim-
plifying technology, mashup development is still a complex
task that can only be managed by skilled developers.

For instance, Figure 1 illustrates a Yahoo! Pipes model
that encodes how to plot news items on a map. The example
shows that understanding and modeling the logic for build-
ing such a mashup is neither trivial nor intuitive. Firstly,
we need to enrich the news feed with geo-coordinates, then,

Copyright is held by the author/owner(s).
WWW2012, April 16-20, 2012, Lyon, France.
.

Figure 1: A typical pattern in Yahoo! Pipes

we must fetch the actual news items, and only then we can
plot the items on a map. If modeling difficulties arise, it
is common practice to manually search the Web for exam-
ples or help on which components to use, on how to fill the
respective parameter fields, or on how to propagate data.

In order to aid less skilled developers in the design of
mashups like the one above, in programming by demonstra-
tion [1], for instance, the system aims to auto-complete a
process definition, starting from a set of user-selected model
examples. Goal-oriented approaches [4] aim to assist the
user by automatically deriving compositions that satisfy user-
specified goals. Pattern-based development [3] aims at rec-
ommending connector patterns (so-called glue patterns) in
response to user selected components (so-called mashlets)
in order to autocomplete the partial mashup. Syntactic ap-
proaches [7] suggest modeling constructs based on syntactic
similarity (comparing output and input data types), while
semantic approaches [5] annotate constructs to support sug-
gestions based on the meaning of constructs. The limitations
in these approaches lie in the fact that they overlooked the
perspectives for end user development, as they either still
require advanced modeling skills (which users don’t have),
or they expect the user to specify complex rules for defining
goals (which they are not able to), or they expect domain ex-
perts to specify and maintain the semantics of the modeling
constructs (which they don’t do).

Driven by a user study on how end users would like to be
assisted during mashup development [2], we have developed
Baya, a plug-in for Yahoo! Pipes that provides interactive,
contextual recommendations of reusable composition knowl-
edge. The knowledge Baya recommends is re-usable compo-



sition patterns, i.e., model fragments that bear knowledge
about how to compose mashups, such as the one in Figure
1. For instance, Baya may suggest a candidate next com-
ponent or a whole chain of constructs. Upon selection of a
recommendation, Baya weaves the respective pattern auto-
matically into the current model in the modeling canvas1.
Baya mines community composition knowledge from exist-
ing mashup models publicly available in the online Yahoo!
Pipes repository and provides the respective patterns as a
service to client-side modeling environments.

In this demo paper, we describe Baya, outline the con-
cepts and architecture behind its simple user interface, and
provide insight into its implementation and future evolution.

2. THE BAYA APPROACH
Baya aims to seamlessly extend existing mashup or com-

position instruments with advanced knowledge reuse capa-
bilities. It targets both expert developers and beginners and
aims to speed up the former and to enable the latter.

The design goals behind Baya can be summarized as fol-
lows: We didn’t want to develop yet another mashup envi-
ronment; so we opted for an extension of existing and work-
ing solutions (in this demo, we focus on Yahoo! Pipes; other
tools will follow). We wanted to reuse composition knowl-
edge that has proven successful in the past; mining modeling
patterns from existing mashups allows us to identify exactly
this, i.e., recurrent modeling practice. We wanted to sup-
port a variety of different mashup tools, not just one; as we
will see, the sensible design of a so-called canonical mashup
model serves exactly this purpose. Modelers should not be
required to ask for help; we therefore pro-actively and inter-
actively recommend contextual composition patterns. We
did not want the reuse to be limited to simple copy/paste of
patterns, but knowledge should be actionable, and therefore,
Baya features the automated weaving of patterns.

2.1 Composition Knowledge
Considering the typical actions performed by a developer

in a graphical modeling environment (e.g., filling input fields,
connecting components, copying/pasting model fragments),
Baya specifically supports the following set of pattern types:

• Parameter value pattern. The parameter value pat-
tern represents a set of recurrent value assignments for
the input parameters of a component. This pattern
helps filling input parameters of a component that re-
quire explicit user input.

• Connector pattern. The connector pattern repre-
sents a recurrent connector between a pair of compo-
nents, along with the data mapping of the target com-
ponent. The pattern helps connecting a newly placed
component to the partial mashup model in the canvas.

• Connector co-occurrence pattern. The connector
co-occurrence pattern captures which connectors oc-
cur together. The pattern also includes the associated
data mappings. This pattern is particularly valuable in
those cases where people, rather than developing their

1This is also the capability that inspired the name of the
tool: the Baya weaver is a so-called weaverbird that weaves
its nest with long strips of leaves.

mashup model in an incremental but connected fash-
ion, first select the desired functionalities (the compo-
nents) and only then connect them.

• Component co-occurrence pattern. Similarly, the
component co-occurrence pattern captures couples of
components that occur together. It comes with the
two associated components as well as with their con-
nector, parameter values, and data mapping logic. The
pattern helps developing mashups incrementally in a
connected fashion.

• Component embedding pattern. The component
embedding pattern captures which component is typ-
ically embedded into which other component, both
being preceded by another component. The pattern
helps, for instance, modeling loops, a task that is usu-
ally not trivial to non-experts.

• Multi-component pattern. The multi-component pat-
tern represents recurrent model fragments that are com-
posed of multiple components. It represents more com-
plex patterns, such as the one in Figure 1, that are not
yet captured by the other pattern types.

This list of pattern types is extensible and will evolve
over time. However, this set of pattern types at the same
time leverages on the interactive modeling paradigm of the
mashup tools (the patterns represent modeling actions that
could also be performed by the developer) and provides as
much information as possible.

2.2 Discovery, Recommendation and Weaving
Figure 2 details the internals of the Baya architecture.

The overall architecture is devided into two blocks, namely,
the recommendation server and the client-side extension of
the chosen mashup tool, i.e., Yahoo! Pipes.

The Baya recommendation server (at the left in Fig-
ure 2) is in charge of discovering and harvesting composi-
tion knowledge patterns from existing mashup compositions.
The first step for discovering composition patterns consists
in taking the native models of the target mashup tools from
a repository of existing compositions and translating them
into a canonical mashup model, a step that is performed by
a dedicated model adapter. The canonical model is able to
represent a variety of similar mashup languages and allows
the development of more generic mining algorithms. The
pattern miner runs a set of pattern mining algorithms on
the data in the canonical model and discovers the above
introduced patterns. Discovered patterns are stored back
into a database of canonical patterns, transformed by the
data transformer, and loaded into the persistent knowledge
base (KB). The persistent KB consists in a database that
is structured in such a way that patterns can be efficiently
queried and retrieved by the client-side browser extension
for interactive recommendation.

The Baya Firefox extension consists of two main com-
ponents: a recommendation engine and a pattern weaver. In
the client, we have the actual interactive modeling environ-
ment (Pipes), in which the developer can visually compose
components by dragging and dropping them from a compo-
nent tool bar and connecting them together in the canvas.
The developer therefore performs composition actions (e.g.,
select, drag, drop, connect, delete, fill, map,...), where the



Baya Firefox extension

Event bus

Recommendation 
engine

KB access API

KB loader

Client-side 
pattern KB

Baya recommendation server

Pattern miner

Model 
adapter

Modeling 
action

User 
selection

Modeling 
action 

Recom-
menda- 
tions

Query

Patterns

Native models

<mashup>
...
</mashup>

Canonical models

<mashup>
...
</mashup>

C
om

po
si

tio
n 

pa
tte

rn
 K

B

Pa
tte

rn
 u

sa
ge

 s
ta

tis
tic

s

Pattern weaver

User 
selection

Modeling
instructions

Object-action-
recommend. mapping

Similarity 
metrics

Ranking 
algos

Partial 
mashup 
model

KB access API

Pa
tte

rn

D
et

ai
ls

Persistent KB

Data

Meta
data

Data 
transformer

Canonical patterns

<mashup>
...
</mashup>

Partial mashup model

R
ec

om
m

en
da

tio
n 

pa
ne

l

Modeling 
instructions

Yahoo! Pipes

Figure 2: The internals of Baya: functional architecture for pattern discovery, recommendation and weaving

action is performed on a modeling construct in the model-
ing canvas; we call this construct the object of the action.
For instance, we can drop a component onto the canvas, or
we can select a parameter to fill it with a value, and so on.
Upon each interaction, the action and its object are pub-
lished on a browser-internal event bus, which forwards them
to the recommendation engine. Given a modeling action,
the object it has been applied to, and the partial mashup
model, the engine queries the client-side pattern KB via the
KB access API for recommendations (pattern representa-
tions) and gets a list of candidate patterns. Baya uses both
exact and approximate pattern matching algorithms [6] to
determine the final candidate set of recommendations that
also match the current composition context, ranks them in
order of their similarity and popularity, and finally renders
them in the recommendation panel.

Upon the selection of a pattern from the recommendation
panel, the pattern weaver weaves it into the partial mashup
model in the modeling canvas. For each supported pattern
type, Baya retrieves a basic weaving strategy (a static set
of modeling instructions; see http://goo.gl/Xk7VF), which
is independent of the partial mashup model, and derives a
contextual weaving strategy, which applies the basic strategy
to the partial model at runtime. Applying the mashup op-
erations in the basic strategy may require the resolution of
possible conflicts among the constructs of the partial model
and those of the pattern to be weaved. For instance, if we
want to add a new component of type ctype but the mashup
already contains an instance of type ctype, say comp, we
are in the presence of a conflict: either we decide that we
reuse comp, which is already there, or we decide to create
a new instance of ctype. In order to choose how to pro-
ceed, Baya allows one to choose among different policies (see
http://goo.gl/9jJtK). Given a final, contextual strategy,
the pattern weaver applies the respective modeling actions
to the partial mashup model.

Upon successful weaving of a recommended pattern into
the partial composition, the usage statistics of the selected
pattern in the client-side KB get updated, and simultane-
ously this information is sent to the server-side persistent
KB via the KB loader. This updated metadata is used for
future recommendation filtering and ranking. In the Baya
client side, we also consider the option for saving patterns,

in which users can select and store to the pattern KB new
user-defined patterns from their current composition. This
feature is part of our on-going development and will be avail-
able in future versions of Baya.

3. IMPLEMENTATION
Baya is implemented as Mozilla Firefox (http://mozilla.

com/firefox) extension for Yahoo! Pipes, adding an inter-
active recommendation panel at the right of its modeling
canvas. Baya implementation is based on JavaScript for the
business logic (e.g., the algorithms) and XUL (XML User
Interface Language, https://developer.mozilla.org/En/
XUL) for UI development. The use of JavaScript in Firefox
Extension development framework eases the interaction with
the HTML DOM elements in the browser window and the
implementation of dedicated listeners to intercept modeling
events on elements in the DOM tree (e.g., model constructs
in the Pipes modeling canvas). A screenshot of Baya in
action is shown in Figure 3.

The server side is implemented in Java. This comprises
the model adapter (cf. Figure 2), which is able to convert
Yahoo! Pipes’ internal JSON representation of mashups into
our canonical mashup model as well as the necessary mining
algorithms for the discovery of the patters (a description
of the algorithms can be found at http://goo.gl/Dis5V).
Parts of our mining algorithms make use of frequent itemset
mining, for which we used the tool ARMiner (http://www.
cs.umb.edu/~laur/ARMiner/).

Discovered patterns are transformed and stored in a knowl-
edge base that is optimized for fast pattern retrieval at run-
time. The implementation of the persistent pattern KB at
server side, is based on MySQL (http://www.mysql.com/).
Via a dedicated Java RESTful API, at startup of the rec-
ommendation panel the KB loader synchronizes the server-
side KB with the client-side KB, which instead is based on
SQLite (http://www.sqlite.org). The pattern matching
and retrieval algorithms are implemented in JavaScript and
triggered by events generated by the event listeners moni-
toring the DOM modifications related to the mashup model.

The weaving algorithms are also implemented in Java-
Script. Upon the selection of a recommendation from the
panel, they derive the contextual weaving strategy that is
necessary to weave the respective pattern into the partial



Yahoo! Pipes 
modeling canvas

Newly added component

Baya recommendation panel

Recommended 
patterns

Details about 
selected pattern

Component 
toolbar

Figure 3: Screenshot of Baya in action.

mashup model. Each of the instructions in the weaving
strategy refers to a modeling action, where modeling actions
are implemented as JavaScript manipulations of the mashup
model’s DOM elements. Both the weaving strategies (basic
and contextual) are encoded as JSON arrays, which enable
us to use the native eval() command for fast and easy pars-
ing of the weaving logic.

For our experiments we extracted 303 pipes definitions
from the repository of Pipes. The average numbers of com-
ponents, connectors and input parameters were 12.7, 13.2
and 3.1, respectively, indicating fairly complex mashups.
We were able to identify patterns of all the types described
above. For example, the minimum/maximum support for
the connector patterns was 0.0759/0.3234, while the one for
the component co-occurrence patterns was 0.0769/0.2308.
We used these patterns to populate our KB and generated
additional synthetic patterns to test the performance of the
recommendation engine (the sizes of the KBs ranged from
10, 30, 100, 300, 1000 multi-component patterns) [6]. The
complexity of the patterns ranged from 3 − 9 components
per pattern, and we used queries with 1− 7 components. In
the worst case scenario (KB of 1000 patterns, approximate
similarity matching of patterns), the recommendation en-
gine could retrieve relevant patterns within 608 millisecond
– everything entirely inside the client browser.

4. DEMONSTRATION STORYBOARD
During the live demonstration, we will showcase Baya at

work and take our audience through the theoretical as well
as the usage aspects of the tool, using a mix of slides and
hands-on examples. In particular, we intend to organize the
demonstration as follows:

1. Introduction : A short intro to the goals and key con-
cepts of Baya.

2. Example: A simple example developed by us with the
use of the interactive recommendations.

3. Non-assisted development by audience: A similar
modeling exercise for a member of the audience, how-
ever without the help of the interactive recommender.

4. Assisted development by audience: The same mod-
eling scenario as in 3, this time however with the help
of the interactive recommender.

5. Patterns and discovery : An explanation of the pat-
tern types supported by Baya, along with the mining
approach underlying the pattern knowledge base.

6. Architecture and internals: Explanation of the in-
ternal architecture of Baya and of the recommendation
and weaving algorithms working behind the scenes.

7. Conclusion : Lessons learned and outline of future
works and the evolution of Baya.

This process will allow us to introduce the audience to
Baya and help us evaluate the efficacy and usability of the
tool. We hope we will get valuable feedback from the audi-
ence, in order to further fine-tune Baya’s UI and algorithms.

An introduction to and a screencast of Baya is available
at http://www.youtube.com/watch?v=RNRAsX1CXtE.

5. STATUS AND LESSONS LEARNED
Baya was born in the context of the EU research project

OMELETTE, in order to assist mashup development inside
the project’s own mashup editors. Soon, however, we rec-
ognized that the kind of knowledge discovery algorithms we
were working on and the conceptual approach to pattern
recommendation and weaving are generic enough to be ap-
plied in the context of many other modeling or mashup tools.
As a proof of concept, we therefore developed Baya, an ap-
parently simple, yet effective tool. The idea of composition
knowledge as a service makes it unique among other assisted
development approaches, and a-priori definition of pattern
structures allows us to extract meaningful knowledge also
from single mashup models.

Next, we will extend the mining algorithms to other com-
position paradigms and develop dedicated clients for differ-
ent composition tools. The idea is to make Baya publicly
available and to study how effectively pattern recommenda-
tion and weaving can help users to develop own mashups.

Acknowledgment. This work was supported by the Euro-
pean Commission (project OMELETTE, contract 257635).

6. REFERENCES
[1] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman,

D. Maulsby, B. A. Myers, and A. Turransky, editors.
Watch what I do: programming by demonstration. MIT
Press, Cambridge, MA, USA, 1993.

[2] A. De Angeli, A. Battocchi, S. Roy Chowdhury,
C. Rodŕıguez, F. Daniel, and F. Casati. End-User
Requirements for Wisdom-Aware EUD. In IS-EUD’11,
pages 245–250.

[3] O. Greenshpan, T. Milo, and N. Polyzotis.
Autocompletion for mashups. VLDB’09, 2:538–549.

[4] M. Henneberger, B. Heinrich, F. Lautenbacher, and
B. Bauer. Semantic-Based Planning of Process Models.
In Multikonferenz Wirtschaftsinformatik’08, 2008.

[5] A. Ngu, M. Carlson, Q. Sheng, and H. young Paik.
Semantic-based mashup of composite applications.
IEEE TSC, 3(1):2 –15, 2010.

[6] S. Roy Chowdhury, F. Daniel, and F. Casati. Efficient,
Interactive Recommendation of Mashup Composition
Knowledge. In ICSOC’11, pages 374–388, 2011.

[7] J. Wong and J. I. Hong. Making mashups with
marmite: towards end-user programming for the web.
In CHI’07, pages 1435–1444.


