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Abstract Service composition, web mashups, and business process modeling are
based on the composition and reuse of existing functionalities, user interfaces, or
tasks. Composition tools typically come with their own, purposely built composi-
tion languages, based on composition techniques like data ßow or control ßow, and
only with minor distinguishing features - besides the different syntax. Yet, all these
composition languages are developed from scratch, without reference speciÞcations
(e.g., XML schemas), and by reasoning in terms of low-level language constructs.
That is, there is neither reuse nor design support in the development of custom com-
position languages.
We propose a conceptual design technique for the construction of custom compo-
sition languages that is based on a generic composition reference model and that
fosters reuse. The approach is based on the abstraction of common composition
techniques into high-level language features, a set of reference speciÞcations for
each feature, and the assembling of features into custom languages by guaranteeing
their soundness. We speciÞcally focus on mashup languages.

1 Introduction

The proliferation of composition instruments like mashup platforms or web service
composition environments, which allow one to integrate Web-accessible APIs and
data into value-adding, composite applications or services, also led to the prolifer-
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ation of respectivecomposition languages. Depending on the type of API or data
source (we call them collectively components), the type of application or service
(e.g., data mashup vs. UI mashup vs. service composition, and similar), and the tar-
get user of the application or service, composition languages differ in the features
they offer to the developer - not only in their syntax. While in many cases lan-
guage differences among tools actually donÕt seem to be necessary, in other cases
these differences may indeed Òmake the differenceÓ. This is, for instance, the case of
domain-speciÞc mashup platforms [1], which aim to provide more effective devel-
opment support (compared to generic tools) by tailoring their composition language
to a speciÞc domain and its very own needs. That is, despite the existence of stan-
dard languages like BPEL, there are good reasons for having different languages for
different uses and different users.

Designing a composition language is howevernot an easy task. There are lots of
conceptual and technological choices to be made, such as (i) whichcomponents to
support (e.g., SOAP services, RESTful services, UI widgets, or proprietary compo-
nent technologies); (ii) whichcomposition logic to adopt (e.g., event-based, control
ßow, data ßow, blackboard-like data exchange, and so on); (iii) whichdata integra-

tion capabilities to support (e.g., parameter mapping, template-based transforma-
tions, scripts, etc.); and (iv) whichpresentation features to provide, if any (e.g., UI
templates, UI widgets, single pages, multiple pages). All these choices do not only
affect the structure of the composition language, but eventually they determine the
complexity and viability of the composition platform built on top. A careless selec-
tion of features and constructs inevitably results in inconsistent languages and tools.
Even worse, oftentimes developers are not even aware of which choices need to be
made and which options are available, or they do not understand which implications
an individual choice has on another choice. For example, it does not make sense
to support both control ßow and data ßow based composition logics in one and a
same language, as both paradigms specify the order in which component operations
are to be invoked. The former explicitly deÞnes this order independently of how
data is passed from one component to another; the latter deÞnes the order implicitly
focusing instead on how data is passed among components. Having both together
could thus lead to duplicate - possibly inconsistent - deÞnitions of the operationsÕ
invocation order.

Recognizing this difÞculty, which we experience ourselves in the development
of our mashup tools, with this paper we would like to lay the foundation for the
conceptual design of custom composition languages for mashup tools, an approach
that aims to modularize and reuse language construction knowledge. The idea is to
enable a developer to reason at a high level of abstraction about the composition
language he would like to obtain and to allow him to interactively construct his
language by specifying the set of composition features that characterize his target
language - everything by guaranteeing the soundness, i.e., consistency, of the Þnal
result. With the help of a hosted design tool, we would like to provide custom com-
position language designas a service and equip the design tool with an according,
hosted runtime environment (an execution engine) that is able to execute composi-
tions/mashups expressed in any of the languages constructed with the tool. The Þnal
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objective is very ambitious. The approach is to start with a set of core functionalities
and to extend this set over time as new requirements emerge. Thecontributions we
provide in this paper are:

¥ We provide a comprehensive conceptualization of the most importantcomposi-

tion features that characterize todays most prominent composition languages.
¥ We derive ageneric, extensible composition language meta-model, which ex-

presses how the identiÞed features can be used together for the construction of
custom composition languages.

¥ We modularize the identiÞed composition features intoreusable language pat-

terns, and equip the patterns with a simple logic-based language to express fea-
ture composition constraints and to guarantee consistency.

¥ We generatecustom composition languages and according custom component
description languages from the developerÕs selection of composition features.

Thestructure of the remainder of the paper is as follows. Next, we provide an ex-
ample scenario and some background knowledge on composition language features.
Then, in Section 4, we describe key requirements and our problem statement. In Sec-
tion 5, we outline our approach. In Section 6, we describe our generic composition
language meta-model, and in Section 7 we describe the structure of composition
features. In Section 8 we show two composition language deÞnition examples, in
Section 9 we discuss related works and in Section 10 we conclude.

2 Scenario

LetÕs assume we need to develop a custom composition language with speciÞc prop-
erties. SpeciÞcally, letÕs assume we want to develop a mashup language presenting
the same characteristics of the language used by the mashArt mashup platform [4],
which we developed from scratch in the context of the mashArt project. A simple
example of a composition instance that the language must be able to support is the
one presented in Figure 1: we want to allow any user to search for a given - user-
selected - object in a speciÞc - user-selected - geographical area and to get a list of
results. Then, by selecting one of the results the user will see its location displayed
on a map and will be provided with the trafÞc information related to the geograph-
ical area around this location. For example, a user must be able to look for hotels
in Miami, get a list of hotels in the city and, when selecting one of them, visualize
its location on a map and have the trafÞc information regarding the area around the
selected hotel. This example shows the need for the integration and synchronization
of data, business logic and user interfaces.

Concretely, we need a mashup language allowing one to integrate data, applica-
tion logic (e.g., through Web services) and graphical UI components. This is what
we calleduniversal integration in the context of the mashArt project. Moreover,
as shown in Figure 1, the language has to support the presentation of the UI com-
ponents inside a single Web page, manage their synchronization (considering the
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Fig. 1 Example of mashup application the mashArt language must support

event-based nature of UIs), and allow for the explicit deÞnition of the data ßow
schema enabling components to exchange data. Propagating data among compo-
nents may require conditional execution of ßows, as well as branching and merging
of parallel ßows. UI components, which are implemented in JavaScript, can possi-
bly have parameters for their conÞguration and one or more operations including an
arbitrary number of input and output parameters. Web services are typically SOAP-
based or RESTful. The resulting mashups are accessible to any user in a single-
user fashion; thus, no user management or collaboration support by the language is
needed.

3 Background: Software Composition

The scenario shows that mashup development is an intricate software integration
and composition endeavor. As highlighted in [1], next to the integration of data
and application logic, mashups also feature integration of user interface, i.e., UI
integration. Figure 2 graphically illustrates the situation from a conceptual point of
view and contextualizes the three integration layers in the domain of the Web with
its very own component technologies

Data level integration.When the focus is on the integration of data, we have spe-
ciÞc needs to address. Typically, solutions for retrieving, combining, splitting and
transforming data are needed. In addition, when more than one entity is involved
in the data integration process data exchange among the involved parties may be
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Fig. 2 The different levels of integration in general and in the speciÞc context of web mashups.

needed. In the context of Web mashups, we have speciÞc conditions and constraints.
Data sources are typically not fully accessible, i.e., the standard way of retrieving
data on the Web is through Web services or Web APIs. This means that we can
only access the data provided by the service and we cannot make arbitrary com-
plex, free queries over the data source, as we could do with conventional databases.
The key problem of data integration is understanding which data items are semanti-
cally similar to which other data items and solving possible formatting differences.
Mashups arenÕt any different. They usually integrate data coming from completely
independent sources, which were not designed to work together; thus, data format
and structure mismatches must be solved. Mechanisms to address these kinds of
problems span from simple data mapping solutions, allowing one, e.g., to map part
of the output of one service onto (part of) the input of another service, to more
powerful solutions supporting data transformation languages and processors (like,
e.g., XSLT). On the other side, though, on the Web there are ofÞcial and de-facto
standards that are oftentimes adopted (e.g., RSS and Atom feeds, XML and JSON
formats), which simplify data integration in that they standardize the syntax and
partly also the semantics of data (e.g., RSS and Atom).

In the mashup context, considering also the usual intent to keep the toolsÕ com-
plexity as low as possible, a well-known and widely adopted paradigm for data in-
tegration isdata flow integration. Specifying a data ßow among components means
explicitly expressing (e.g., visually modeling) how data ßows from one component
to one or more other components, thereby also stating an order of invocation of
components (the ßow) and respective activation conditions (the availability of input
data). In other words, a data ßow based composition logic implies also a control
ßow logic, i.e., an execution order of components. With the term component we
speciÞcally refer to software artifacts (e.g., Web services) exposing public functions
(also called operations) providing for data provisioning or processing. Data travel-
ling along a ßow are visible only to the component involved in the ßow. Data ßows
allow the easy implementation of data mappings, e.g., by creating separate data ßow
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connections for each communicating output-input pair. Features like data aggrega-
tion, splitting or transformation can be supported by the composition language or
through dedicated components offering these kinds of functionalities as a service.

The data ßow paradigm is, for instance, the solution adopted also by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), a popular example of data mashup tool. Pipes
allows users to mash up components retrieving and processing data (typically struc-
tured as data feeds) and to set up data ßows (so-called pipes), allowing the produced
data to ßow through the composition.

Business logic level integration.When the main target is instead the integration
at the business logic level, the key requirement is orchestrating the services imple-
menting the different pieces of business logic to be integrated. In concrete terms, the
developer must be able to explicitly deÞne the order in which component operations
are to be triggered. The most suitable composition paradigm supporting these fea-
tures is thecontrol flow paradigm. Specifying a control ßow means specifying when
to enact which component inside a composition. Doing so may require the deÞnition
of conditional ßows, of ßow branching (i.e., parallel ßows) and ßow merging (i.e.,
parallel ßows synchronization).

Examples of pure control ßow based compositions can be developed, e.g., in
BPMN, which offers many control ßow related constructs including conditions,
loops, parallel ßows and so forth. Although the focus of the control ßow paradigm
is on the order of tasks or components, executing them usually requires complemen-
tary data passing mechanisms to feed them with the necessary inputs. In combina-
tion with the control ßow paradigm, theblackboard approach, i.e., global variables
holding data produce and consumed at runtime, is typically used for this (note that
the Òdata ßowÓ constructs of BPMN do not express a data ßow based composition
logic, but rather the writing and reading of business data). This scheme is also used
in the BPEL language, where the main target is the integration of SOAP-based Web
services.

Presentation level integration.As mentioned, in other cases the main focus is on
the integration of user interfaces at the presentation layer. In this case the compo-
sition language must support the graphical representation of UI components with
suitable constructs. Also in this case, our focus on Web mashups sets speciÞc con-
straints. UI presentation takes place inside the browser, normally in standard HTML
pages. As shown by the example of Figure 1, typically a Web page may contain one
or more UI components. UI components are software artifacts that have two main
functions: show a graphical user interface and provide users with a point of direct
interaction with the composition through their interfaces. UI components usually
require synchronization, in order to have them show related content. Typically the
interaction mechanism implementing UI synchronization is event-based, since UI
development is intrinsically event-based and it is just not possible to predict when
and in which order user interactions will take place (which makes asynchronous
events a good instrument to manage communication among components). Support
for data passing among UI components may also be needed and can be implemented
following either the data ßow or the blackboard paradigms.
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Concretely, in the mashup world, languages supporting presentation features typ-
ically include two additional concepts to lay out UI components:pages andview-

ports. A viewport is a placeholder where a UI component is hosted and rendered
(e.g., adiv or iframe element contained in an HTML page). A page can contain
one or more viewports, allowing for the presentation of integrated user interfaces.
These concepts are present in the models of several mashup tools, e.g., mashArt and
JackBe Presto, as well as in the W3C Widgets family of speciÞcations (where the
term viewport itself comes from).

Having user interfaces oriented toward human users opens to the introduction of
other composition features, such as user authorization and management mechanisms
in the case of mashups with multiple pages. Individual pages may be assigned to
speciÞc user roles, allowing for the deÞnition of multi-user, collaborative mashup
applications where several users can work on a shared mashup instance acting on
the pages they have access to. This is, for instance, one of the main features in the
MarcoFlow platform [5].

4 Requirements and problem statement

What does it now mean to develop acustom composition language for mashup de-
sign and to support its execution? In order to answer this question, Þrst of all we
deÞne acustom composition language as a composition language that is speciÞcally
tailored to a given combination of component types and a target application/service
type (mashup type). We represent a language (we use the termslanguage andcom-

position language interchangeably) by means of its meta-model or XSD schema.
Standard languages like BPEL [7] or BPMN [8] are very focused languages that are
generally not able to satisfy the requirements of a mashup platform, since mashups
typically go much beyond the orchestration of SOAP web services or human tasks.

In order to develop a custom language, we generally have differentdesign options

that allow us to achieve the desired expressive power:

¥ Development from scratch: This is the current practice that we want to prevent.
Developing a language from scratch means designing the language without any
reference by looking at the composition problem to be solved and by deriving
suitable, ad-hoc composition constructs. This task is more complex than it looks
like and often leads to poorly designed, inconsistent languages, which can only
be run by speciÞcally tailored runtime environments.

¥ Selection of off-the-shelf language: This is the other, ideal extreme, in which for
each component and mashup type combination we have a pre-deÞned language
that supports all features of the given combination. Implementing all these lan-
guages is not feasible, in that the number of potential languages (and execution
engines) grows combinatorially with the number of component types and fea-
tures of the target mashups. Also, the introduction of a new component type or
feature would require the update of the whole languages library.
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¥ Extension of existing language: A practice that works in many situations is to
take an existing language, e.g., BPEL, and to extend it with new constructs and
semantics, so as to support custom features. Starting from a known language
eases the adoption of the extended language, but it is typically hard to identify a
suitable language, and changes to the original language may involuntarily intro-
duce inconsistencies into the custom extension. Even with small extensions, the
languageÕs own engine can usually no longer be used for execution.

¥ Customization of reference language: Another option is to provide a set of
reference languages with predeÞned extension mechanisms. For instance, we
could have reference languages for data-ßow-based, control-ßow-based, UI-
based mashups, and combinations thereof. Yet, it is hard to predict all possible
customization requirements and to maintain the library of reference languages
and execution engines up to date with changing technologies and applications.

¥ Modular composition of language: Finally, we can provide a set of basic lan-
guage features, such as control ßow, data ßow, UI synchronization, and the like
and allow the developer to compose his own language. Newly emerging features
can be added to the feature library without invalidating prior language speciÞ-
cations. Given a library of language features, it sufÞces to implement only one
execution engine that is able to understand all the features, in order to be able to
execute a large set of custom mashups.

In this paper we speciÞcally focus on the problem of developing custom lan-
guages, while our vision is also to provide runtime support for custom languages;
the modular composition approach seems therefore most suitable. But which is a
good granularity forreusable language modules? We again have several options:

¥ Individual language constructs (with the termconstruct we generically refer to
both meta-model and XSD constructs): Constructs like components, pages, ports,
inputs, outputs, connectors, and similar are the basic ingredients for every lan-
guage. Yet, constructs represent the lowest level of granularity of a language. It is
therefore hard to encode reusable language construction knowledge, if not in the
form of a library of typical composition constructs. How to use each construct, in
which combination with other constructs, for which typical modeling situation,
and so on can however not be expressed.

¥ Composite constructs: Modules may express composite constructs, such as the
structured elements sequence, parallel ßow, and loop, typically used for the con-
struction of well-formed models. This technique aids the development of compo-
sition languages that are sound, but it is still very syntactic and does not support
reuse of more complex language construction knowledge.

¥ Language patterns: Modules may also express more complex usage patterns of
constructs that represent semantically meaningful composition language prop-
erties, such as control ßow, data ßow, UI synchronization, component types,
asynchronous vs. synchronous communications, etc. If such patterns are further
equipped with suitable language composition constraints, it is also possible to
guarantee their sound composition.
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Given our experience with the reuse of modeling knowledge [2], we advocate
the use of semantically meaningful language patterns to represent reusable language
composition knowledge. We call these patternslanguage features, since they allow
us to represent composition features in an abstract fashion. The question that re-
mains to be answered is therefore which language features must be provided, so as
to support the construction of a reasonably wide set of possible languages. Looking
at set of existing mashup approaches [3][4][6] and standard composition languages
[7][8] and without trying to crack the whole problem at once, we identify Þve key
aspects (groups of features) that inßuence the expressive power of a composition
language:

1. Component types: First and foremost, theobject of the composition, i.e., the
types of components, inßuences the whole logic of the language most promi-
nently. There are many possible component technologies to take into account,
such as SOAP web services, RESTful services, UI widgets, JavaScript classes,
plain XML or CSV data sources, and similar. Composing UI widgets is, for ex-
ample, fundamentally different from orchestrating web services.

2. Control flow logic: Next, it is important to deÞne how thecomputation of a com-
posite application or service is enacted, that is, how and when individual com-
ponents are processed. Components may be enacted in parallel (e.g., in the case
of simple UI widgets placed in a web page), they may be executed sequentially,
their execution may be subject to conditions, and so on. The possibility to inte-
grate heterogeneous component technologies (e.g., UI widgets and web services)
further increases the number of available control ßow options, if the control ßow
paradigm is required at all.

3. Data passing logic: In addition to the control ßow logic, the language must be
able to express how data ispropagated among components. While data ßow
paradigms typically bring together aspects of both control ßow and data passing,
other paradigms like pure control ßow or UI synchronization may rather adopt a
blackboard approach with global variables.

4. Presentation logic: One of the distinguishing features of mashups is that they
also featureintegration of user interfaces, not only services and data sources.
This however asks for speciÞc techniques to lay out and render UI elements. For
instance, we may make use of HTML templates with placeholders or we may
have automatic arrangements of UI widgets, there might be the need of special
visualization components for data sources, and so on.

5. Collaboration support: Finally, mashups can be much more than simple, one-
page applications. We can have mashups that implementcollaborative business
processes with different actors per task, or we can have mashups that support the
concurrent use of individual pages by multiple users. Supporting these features
requires the possibility to express at least roles of users and to assign them to
pages, while more complex logics can be envisioned.

The problem we want to solve in this paper is toenable developers to design

custom composition languages in an abstract, conceptual fashion, supporting the
Þve above feature types and guaranteeing that the Þnal languages come without
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internal inconsistencies, i.e., that they aresound. Our focus is on imperative mashup
languages that can be executed by a mashup engine.

5 Approach

Figure 3 graphically illustrates how we decompose the problem into artifacts and
how we Þnally obtain a custom language. The idea is to express acustom composi-

tion language as a set ofcomposition features that give the language its expressive
power. Features come with a set offeature constraints, which express feature com-
patibilities, conßicts, and subsumptions. For each of the Þve types of composition
features discussed above, we provide a set of concrete features (we discuss them
next). Each feature has areference specification, i.e., a pattern of language con-
structs, which implements the feature and represents reusable language composi-
tion knowledge. Patterns are based on ageneric composition language meta-model.
The meta-model does not yet represent an executable language. It syntactically puts
composition constructs and features in relation with each other, but it also contains
constructs and features that are not compatible with each other (e.g., control ßow
and data ßow constructs). The meta-model determines which features are supported
and how they are syntactically integrated; the sensible design of feature constraints
provides for soundness. Hence, given a set of non-conßicting composition features,
the custom composition language is represented by theunion of the respective refer-
ence speciÞcations. Similarly, we derive acustom component description language,
which can be used as guide for the implementation of components and to describe
their external interfaces.

In the following, we Þrst construct the generic meta-model, then we describe
how we deÞne composition features on top using patterns and constraints and how
patterns can be used and integrated for the development of custom languages.

6 The generic composition meta-model

Before going into the details of the language meta-model, we introduce the meta-
meta-model it complies with, as such is also the basis for the Þnal code generation.

6.1 Language meta-meta-model

To design the meta-model for the composition languages, we use a notation and
modeling language derived from the UML Class Diagram with some peculiarities.
SpeciÞcally, we impose some constraints on the allowed types of modeling con-
structs, tailoring them to the expressive power required by our modeling needs. As
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Fig. 3 Conceptual approach to the development of custom composition languages

detailed in Section 6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal - and machine-readable - language schema
deÞnition, which is then needed for the deÞnition of other artifacts of the system.
In addition, using this constrained modeling language also opens to future exten-
sions of the meta-model by third parties, making them aware of the implications
of each model extension or modiÞcation on the resulting language deÞnition (since
deterministic translation rules are deÞned). Concretely, as deÞned by the meta-meta-
model depicted in Figure 4, the meta-model may consist of:

¥ Entities. Represent main constructs of the composition language. They are iden-
tiÞed by a name.

¥ Attributes. Each entity can have a set of related attributes characterizing it. At-
tributes have a name and a type. The type can be stated through its name or can
be explicitly deÞned in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute namedid, representing a
unique identiÞer for the instances of the entity used to reference them.

¥ Associations. Relations among the entities are expressed through associations.
Only two possible types of associations are needed:composition anduni-directional

association. The composition is used to state that an entity is contained in another
one, while the uni-directional association states that an entity simply refers to an-
other entity, but it is not contained in it.

¥ Cardinalities. Represent associationsÕ multiplicities. The target cardinality rep-
resents the multiplicity of the association when reading it following the speci-
Þed association direction, while the source cardinality represents the multiplicity
when reading the association in the opposite direction.



12 Stefano Soi, Florian Daniel, Fabio Casati

Name: String
Entity

Name: String
Type: String

Attribute

Association

sourcetarget

Composition
Name: String
Uni-directional

has

MinValue: Integer
MaxValue: Integer

Cardinality

source 0..1

1

0..N

1 1

target

Fig. 4 Composition language meta-meta-model

6.2 The generic meta-model

In essence, our approach is tocompose composition languages out of composition
features represented as language patterns. Just like in any other composition ap-
proach, the core problem is therefore the identiÞcation and formalization of the
ÒcomponentsÓ to work with. In our case, these components arelanguage patterns

(e.g., XSD fragments). However, these patterns have a distinctive feature that makes
our problem very different form generic component-based development (next to the
fact that we do not handle software modules but document/model fragments): un-
like, for example, web services,language patterns are not independent. That is, the
reference speciÞcations of different composition features may overlap (e.g., inter-
acting with aSOAP service is very similar to interacting with aRESTful service),
include other features (e.g., thedata flow paradigm generally subsumes the pres-
ence ofdata source components), or exclude others (e.g., thedata flow paradigm
does not make use ofvariables). This asks for a thorough design of the language
patterns and their mutual interaction points, a task that we achieve by mapping each
composition feature into thegeneric composition meta-model (see Figure 5), which
(i) integrates all basic language constructs syntactically, (ii) allows us to deÞne com-
position features as language fragments on top, and (iii) guarantees that fragments
are compatible by design.

We have identiÞed several dozens of composition features that can be used to
describe the expressive power of mashup languages. In the following paragraphs,
we overview the features and provide some examples. For space reasons, however,
we refer the reader to an online resource (http://goo.gl/hfkLO) for the list of sup-
ported features and respective details. The list of identiÞed features comes without
the claim of completeness and is meant to grow over time; however, as we will see in
Section 8, we are already able to express a fairly complex set of mashup languages.

Component features.They specify which kinds of components - in terms of tech-
nologies and communication patterns - the language should support. For instance, a
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Fig. 5 The generic composition meta-model for custom languages. Gray boxes group entities into
feature types. The Component group is also used to derive component descriptor languages

SOAP web service may come with message-based operations of four different types
(request-response, solicit-response, one-way, notiÞcation), custom data formats for
each input and output message, a service endpoint, and a protocol binding (e.g.,
SOAP). We represent such a service in the meta-model as acomponent that has a
set ofoperations with different input/output parameter patterns (implementing the
four different operation types), only singleinput/output parameters per operation to
represent input/output messages, an owndata type for each parameter, and respec-
tive binding andendpoint attribute values. Similarly, a W3C UI widget [9] can be
seen as acomponent with someconfiguration parameters but without operations,
which can be displayed in aviewport of a page of the mashup.

Analogously, the meta-model so far conciliates the followingtechnologies, which
are the basis of many types of mashups and, as such, widely used and accepted
(component technologies are tracked by thetype attribute of thecomponent entity):

¥ Data source components: RSS feeds, Atom feeds, RESTful data components,
SOAP data components, JavaScript data components.

¥ Web service components: Atom services, RESTful services, SOAP services,
JavaScript components.

¥ UI components: W3C UI widgets [9], JavaScript UI components [4] (our own).

Stefano Soi
SupportReferencePassing
Class
Syntax

Stefano Soi
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For each of these component technologies, it is then important to specify which
exactcommunication patterns the language should support. For instance, the lan-
guage could support only synchronous communications (operations with inputand

output parameters), only asynchronous communications (operations witheither in-
put or output parameters), or both. It might be necessary to limit the number of
operations per component (e.g., in Yahoo! Pipes each component corresponds to
one operation) or the number of parameters per operation (like for SOAP services
as described above). All these options can be represented via patterns that suitably
set the relationship cardinalities in the meta-model.

Control ßow features. They specify whether the language is control-ßow-based
(e.g., BPMN) or not and, if yes, which control ßow constructs to support. Se-
quential execution can be expressed by connecting operations using control ßow
connectors (CfConnetors). Parallel executions are supported viasplit andjoin con-
structs. Each of these constructs can have one or moreconditions, which constrain
the control ßow along connectors and, for instance, allow the implementation of
conditional control ßow constructs like conditions, conditional split, and conditional
joins. Loops can be implemented by means of conditions and joins. Events for event-
based mashups (e.g., our mashArt platform [4]) are operations with only outputs.
Each of these features can be added to the language by including the respective
entities in the meta-model.

Data passing features.They specify whether the language is data-ßow-based or not
and how data is propagated among components. In data-ßow-based languages (e.g.,
Yahoo! Pipes) it sufÞces to connect two operations using a data ßow connector (Df-

Connector), in order to propagate the output of the Þrst operation as input to the sec-
ond operation. Implicitly, data ßow connectors also determine how components are
enacted and, hence, do not require any additional control ßow construct. Data ßows
may however be subject to conditional execution. Control-ßow-based languages,
instead, require additional constructs to specify how data are passed among com-
ponents. The most common technique is to write/readglobal variables (blackboard
feature), which are accessible during the execution of a composition (e.g., as in
BPEL). The meta-model represents the writing/reading operations with a data ßow
connector between the variable and its target/source parameter. UI-based mashups,
such as widget portals, typically run all widgets in parallel, and data is passed via
global variables or events (operation with only outputs). ConÞguration parameters
are instead typically set once at the startup of a component (e.g., the background
color of a UI widget); we support this by means ofconstants. Data passing may
also require mapping output parameters to input parameters, a feature that can be
achieved by specifying data ßow connectors between parameters instead of between
operations.

Presentation features.They specify whether the language is UI-based or not and
how UI widgets are laid out into web pages. Unlike service compositions, mashups
typically also come with an own user interface that renders UI components and data
from UI-less components. The minimum support required to express this capability
in the meta-model is represented by thepage andviewport entities, which allow the
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ordering of UI components into pages (HTML web pages) and their rendering in
selected areas inside these pages (typicallydiv or iframe HTML elements). We
assume the HTML pages are given and already linked to each other as necessary.

Collaboration features. They specify whether the language describes single-user
or multi-user mashups and how user roles collaborate. Single-user mashups (the
most common type of mashups) do not require any user management. Multi-user
mashups, instead, may restrict the visibility of individualpages to selecteduser

roles only. Users may have different views on a mashup (e.g., via different pages)
or they may have the same view (e.g., via the concurrent use of a same page). For
the time being, we start with a simple, role-based user management logic and do not
say anything about how such is implemented, as this is a runtime choice.

The above features and examples show that developing a good generic meta-
model is atrade-off between the simplicity and usability of the Þnal language (the
fewer individual constructs the better) and the ease of mapping features onto the
meta-model (the more constructs the better; in the extreme case, each feature could
have its own construct). The challenge we try to solve in this paper is exactly that
of identifying the right balance between the two, so as to be able to map all relevant
features and to do so in an as elegant as possible fashion from the resulting language
point of view.

6.3 Mapping the generic meta-model to XSD

The information represented by the generic meta-model constitutes the basis for the
deÞnition of the feature reference speciÞcations (see Section 7.1) and is required by
the language generation algorithm (see Section 7.3). Therefore, we need to serialize
the generic meta-model in a machine-readable format. To this aim, also considering
the context where mashup languages are used (i.e., the Web), we map the meta-
model onto an equivalent XSD deÞnition. As introduced in Section 6.1, we impose
some simple conventions and constraints to the admitted modeling constructs for the
meta-model so that we can deÞne a set of rules which guarantees an unambiguous
translation of the model.

Figure 6 exempliÞes how the generic meta-model is translated into an equivalent
XSD deÞnition applying the following translation rules:

¥ Entities (e.g.,page) are translated as XSD elements having the same name of the
entity.

¥ Entity attributes (e.g., a pageÕsURL) are translated as XSD attributes of the re-
lated element having the same name of the entityÕs attribute.

¥ Composition associations (e.g., the one havingviewport as source andpage as
target) are translated deÞning within the element associated to the target entity
an XSD child element (with zero or more possible occurrences depending on the
speciÞed cardinality) having the name of the source entity (e.g., the elementpage
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<xs:element name="userRole">
<xs:complexType>

<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

<xs:element name="page">
<xs:complexType>

<xs:sequence>
<xs:element name="viewport" minOccurs="1" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />

</xs:complexType>
</xs:element>
<xs:element name="belongsTo_userRole" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>

<xs:attribute name="id" type="xs:string" use="required" />
<xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="URL" type="xs:string" use="required" />

</xs:complexType>
</xs:complexType>

Fig. 6 Example of translation of a meta-model fragment into XSD

has 1 to N child elementsviewport). As shown in the example in the Þgure, the
child elements are contained and deÞned within the parent element.

¥ Uni-directional associations (e.g., the one havingpage as source anduserRole

as target) are translated deÞning within the element associated to the source
entity an XSD child element (with zero or more possible occurrences depend-
ing on the speciÞed cardinality) having the name of the form Òassociation-
NametargetEntityNameÓ and including an attributeref designed to contain a
reference (i.e., the ID) to a target entity instance (e.g., the elementpage may
have 0 to N child elementsbelongsTo userRole). The child elements only refer
to the target entity and do not deÞne it.

Applying the above translation rules to the meta-model presented in Figure 5 we
obtain an equivalent XSD deÞnition that we use as base for the production of the ar-
tifacts and algorithm presented in the next section. The complete schema deÞnition
can be inspected at http://goo.gl/hfkLO.

7 Representing and assembling composition features

The meta-model in Figure 5 solves the problem of integrating the composition lan-
guage constructs needed to specify a varied set of composition features. Designing
the meta-model required both the analysis of the features to be supported and knowl-
edge about their implementation in terms of language constructs. We aim to abstract
away from low-level language constructs and represent concrete composition fea-
tures on top of the generic meta-model so as to allow the language developer to
focus on the selection of features only, in order to design his custom language.
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We deÞne a composition feature asf = !name, label,desc,spec,Constr", where
name is a text label that uniquely identiÞes the feature (e.g.,data flow ); label
brießy describes the feature and expresses its semantics;desc is a natural language
verbose description of the feature for human consumption;spec is the reference
speciÞcation of the feature; andConstr = constri is a set of feature constraints.

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>

<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>

</specification>

<constraints>
(control_flow AND blackboard) OR data_flow

</constraints>

</feature>

Listing 1 XML reference speciÞcation of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in ourfeature knowledge base of the formF = f j. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: First, thereference specification

of the feature expresses which speciÞc language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema deÞnition representing semantically meaningful parts of it.
An ID uniquely identiÞes each of these fragments in the XSD. Second, thefea-

ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

7.1 Feature speciÞcation language

In order for feature speciÞcations to be composable, we adopt a constructive ap-
proach that starts with an empty language speciÞcation (we call it thebase lan-

guage), which contains only the basic XSD structure (e.g., name space deÞnitions
and types) for the language to be generated, and then incrementally adds new con-
structs based on the speciÞcations the of selected features. Since a given feature may
span multiple constructs of the meta-model, a feature reference speciÞcation gen-
erally requires multiple language fragments (identiÞed through manually assigned
IDs) to be included in the Þnal custom language deÞnition. For instance, the speciÞ-
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cation of theblackboard feature requires several fragments to be included, e.g.,
those related to the speciÞcation of theGlobal Variable construct and those related
to the speciÞcation of theDfConnector construct used to connect variables and pa-
rameters. The syntax to require theinclusion of the fragments referenced by a given
feature is as follows:

<include
fragments="[comma separated list of fragments IDs]"
if="[condition]" />

Each feature speciÞcation contains one or moreinclude elements that are
composed by an attributefragments listing the fragments needed to implement
the feature in the custom language XSD deÞnition. The referenced IDs relate to
XSD fragments deÞning elements, attributes, enumerations and similar. In addition,
the include element may optionally contain an attributeif that can be used to
require a conditional inclusion of the referenced fragment(s). In particular, the con-
dition can require the selection or non-selection of other features for the inclusion
to be performed (as exempliÞed in Listing 1). The fragments come with default
values for cardinalities (i.e., values for theminOccur andmaxOccur XSD at-
tributes), as speciÞed in the meta-model in Figure 5. Some features, such as the
max 1 operation per component or thesingle page features, may need
to modify them. In order to change cardinality values, we provide a dedicated car-
dinality setting function with the following syntax:

<setCardinality
element="[elementID]"
minOccurs="[value]"
maxOccurs="[value]" />

The function has three attributes, which allow us to select which XSDelement
in the current language speciÞcation to modify and whichminOccurs and/or
maxOccurs values to assign to the element. It can be noticed that an associationÕs
cardinality setting involves only one XSD element. This is because, according to
our translation rules, associations are translated in one element that is nested into
the associated element and, therefore, the cardinality setting needs only to set the
number of possible occurrences of one element, i.e., the nested one.

7.2 Feature constraints language

Feature constraints areBoolean conditions that check (i) whether all featuresre-

quired by a given selection of features are contained in the selection and (ii) whether
the selection containsconflicting features. Feature constraints therefore guarantee
for the semantic soundness of a selection of features. Feature constraints are of the
form: constr ::= fbool | Â constr | constr op constr.
f bool # FB is a Boolean variable representing the selection (or not) of a feature,
FB = { f b j| f b j = !name,val",name = f j.name, f j # F,val = true| f alse} is the set
of Boolean variables representing all features, andop # { $ ,%,&} is one of the log-
ical AND, OR, and XOR operators.
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For example, in Listing 1 we have the constraint(control flow AND
blackboard) OR data flow , since for the deÞnition of conditions it is re-
quired the presence of some data passing mechanism in the mashup model. This is
an example of constraint assessing the presence of the features required for the se-
lected one. An example of constraint preventing conßicting features is the one asso-
ciated to the featuremax 0 operation per component (e.g., used for simple
UI widget portals), which may state:NOT(data flow OR control flow) .
It would not make sense to support any of these paradigms in a language that by
deÞnition does not allow communication among components.

In addition to assigning constraints to individual features, we assign a set of base
constraints to the base language, in order to enforce global constraints that guarantee
the integrity of the overall language. For instance, the constraint(control flow
XOR data flow) OR user interface asks for the selection of at least one
basic mashup paradigm (e.g., a simple state machine or UI widget portal).

7.3 Language generation algorithm

Algorithm 1 summarizes the language generation logic. It takes as input a set of
feature names and produces as output either an according combination of composi-
tion and component description languages ornull (in case of constraint conßicts).
After initializing the variables holding the language to be generated and the con-
straints to be evaluated (lines 2-3), the algorithm loads the complete feature speci-
Þcations of each feature in input from the feature knowledge base (line 4) and sets
the respective Boolean variables totrue and all the remaining variables (those asso-
ciated to non-selected features) tofalse (lines 5-6). This enables the processing of
thecheckSoundness function, which checks whether all the constraints associ-
ated to the selected features are satisÞed. For this purpose, the function evaluates
the Boolean formula contained inCONSTR based on the variable values assigned
in lines 5-6. If the evaluation returnsfalse, the function stops processing and re-
turns null (lines 7-10). Otherwise, the algorithm constructs the list of IDs of all
the fragments required by the selected features and the set ofsetCardinality instruc-
tions needed to update the default cardinalities (lines 11-13). Based on these sets the
algorithm constructs the actual output composition language including all the frag-
ments in theFRAGMENTS set and then updates the cardinalities of the elements of
the resulting composition language based on the instructions contained in theSET-

CARDINS set (lines 14-15). Finally the algorithm returns the composition language
deÞnition and the component description language deÞnition, which is extracted by
the former (line 17).

Our current prototype of the language generator comes as a simple command line
tool, which takes as input a text Þle with the list of desired language features and,
if successful, produces as output two XSD Þles for the composition and component
description languages. The feature knowledge baseF is a plain XML Þle, which can
easily be extended with new features.
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is  the set of Boolean variables representing all features, and !" ! !!! ! !  is one of 
the logical AND, OR, and XOR operators.  

For example, in Listing 1 we have the constraint (control_flow AND blac k-
board ) OR data_flow , since for the definition of conditions it is required the pres-
ence of some data passing mechanism in the mashup model.  

In addition to assigning constraints to individual features, we assign a set of base 
constraints to the base language, in order to enforce global constraints that guarantee 
the integrity of the overall language. For instance, the constraint (control_flow 
XOR data_flow) OR user_interface  asks for the selection of at least one basic 
mashup paradigm (e.g., a simple state machine or UI widget portal).  

7.3 Language generation algorithm 

Algorithm 1 summarizes the language generation logic. It takes as input a set of fea-
ture names and produces as output either an according combination of composition 
and component description languages or null (in case of constraint conflicts). After 
initializing the variables holding the language to be generated and the constraints to 
be evaluated, the algorithm loads the complete feature specifications of each feature 
in input from the feature knowledge base and sets the respective Boolean variables to 
true. This enables the processing of the checkSound ness  function, which, if false, 
stops processing and returns null. Otherwise, the algorithm constructs the list of IDs 
of all the fragments required by the selected features and the set of setCardinality 

!"#$%&'()*+!"#$%$&'($)'%#*'#$""
,-'-.** +$(",-".$/$0($1"-$'(*&$"%'2$."!"#$%&%'"
/012"'1.** !!"#$"%&'&"()*(+! !"#$"%&%'(&)!*+%,!"0,%('3%3%#"(4$"#$%$&'($1"0,25,.3(3,%"/'%#*'#$"

.5$03-30'(3,%" 3%" 6+7" '%1" (4$" '00,&13%#" 0,25,%$%(" 1$.0&35(3,%" /'%#*'#$" .5$03-30'(3,%" 3%"
6+78",&""('' "3-"(4$"(4$&$"'&$"0,%-/30(."'2,%#"(4$"0,%.(&'3%(.",-"(4$".$/$0($1"-$'(*&$.*

1 // the knowledge base F and the set of Boolean variables FB are  accessible 
through  global variable s  

2 )*$+*,-.-*"/#"01 9"'#"0(#0%2#,%:"//languageBase is a global variable  

3* 345&67"9"8#,%3*",.9#-"., :"//base Constrain t s  is global variable "

4* !"#$ ! !!!!!!!! ! !!!! ! !"#$ ! !"#$%&%'!!"// load sel. features from knowledge base F "

5* -,&"$'04"!" ! !" "// set values of Boolean variables in FB "
6* """"":8;<#'"9"; !" !!"#$ ! !"#$%&%'<"="(&*$">"-'/.$:""
7* -,&"$'04"! ! !"#$ ""// construct set of constraints to be checked "
8* """""!"#$%&! ! !!"#$%& ! ! !!"#$%&:"
9* 3-";:(0:;<$2=>=011;345&678"!2 <"99"-'/.$<"(4$%"// check soundness "
+?* """""&$(*&%"%*//:"// interrupt processing if constraint conflicts occur "
++* -,&"$'04"! ! !!"#"""
+@* 11111!7=>?@56&19"!7=>?@56&1! 1%0'2%=A=:"2>01;-<:"//construct set of  frag ment s IDs "
+3* 11111&@63=7AB5&"9"!"#$%&'()! !!"%0'2%=<0'1;-<:"// construct set of setCardin. opers "
+4* !"#$%&'()*+,'" -. /!"#$%&'()01*+,-+./0/+1231423"//construct  composition language "
+5* %4&*-'5* )&!"*$!-! ' . /)&(5#"67')81*+,-+./0/+1231423"// update cardinalities "
+6* // construct result set by generating also the component description language "
+7* &$(*&%"!!"#$"%&'&"()*(+! !"#$%&#'!(&)%*+ !!"#$"%&'&"()*(+!!:"

8 Examples

In the following sections, we apply the conceptual design approach introduced
above to two concrete examples with different requirements.

8.1 mashArt

In Section 2, we stated a set of requirements for the mashArt composition language.
In the following, starting from these requirements, we derive the set of features
(emphasized inCourier font in the following paragraphs) to be given as input to
our generation algorithm to produce a mashup language supporting our scenario.

As said, mashArt aims at integrating data, business logic and user interfaces.
Therefore, data component , service component and ui component
features are required to support all the different types of needed compo-
nents. All the components must be implemented through JavaScript, there-
fore the featuresjavascript for data , javascript for service and
javascript for ui have to be included. In particular, data components
must support onlyrequest response for data operations, service com-
ponents bothrequest response for service , one way for service
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Fig. 7 A composition language meta-model supporting the discussed features set

and notification for service operations and UI components only
one way for ui and notification for ui operations. The requirements
do not include isolated UI components (i.e., widgets), so all components
will have minimum one operation, while no maximum number of oper-
ations per component is required (max N operation per component ).
Also the number of input and output parameters per operation should
not be constrained to any limit (max N input param per oper and
max N output param per operation ). Clearly, it is also required to sup-
port the display and layout of UI components, which is fulÞlled by the
user interface feature. In particular, we require compositions to be consti-
tuted by asingle page . The componentsÕ intercommunication, according to the
requirements, must be supported through thedata flow mechanisms. In addition,
merge andbranch features are explicitly required.

The above paragraph provides the list of features supporting our scenario (the
only design artifact to be produced) to be given as input to the language generation
algorithm shown in Algorithm 1. Doing so produces an XSD speciÞcation for the
composition language that is equivalent to the meta-model illustrated in Figure 7.

For space reasons we cannot include the whole XSD speciÞcation, which can
be inspected at http://goo.gl/hfkLO. Listing 2, though, provides an excerpt of the
XML deÞnition - compliant to this speciÞcation - representing the example scenario
introduced in Section 2 (i.e., geo-localized search with trafÞc information).

<mashup name="GeoLocalSearchWithTraffic">
<component id="C1" name="Yahoo Local Search" type="ui" binding="javascript"

endpoint="http://...">
[...]
<operation id="OP2-1" name="Item Selected" type="notification"

reference="itemSelected">
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<output id="O2-1" name="Latitute" dataType="double"/>
<output id="O3-1" name="Longitue" dataType="double"/>
<output id="O4-1" name="Zoom Level" dataType="int"/>
<output id="O5-1" name="Label" dataType="string"/>

</operation>
</component>

<component id="C2" name="Google Map" type="ui" binding="javascript"
endpoint="http://...">

[...]
<configurationParameter id="CP1-2" name="latitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP2-2" name="longitude" dataType="double"

manualInput="yes"/>
<configurationParameter id="CP3-2" name="zoomLevel" dataType="int"

manualInput="yes"/>
[...]
<operation id="OP1-2" name="Show Point" type="one-way" reference="

showPoint">
<input id="I1-2" name="longitude" dataType="double" optional="no" />
<input id="I2-2" name="latitude" dataType="double" optional="no" />

</operation>
</component>

<component id="C3" name="Geo Names" type="service" binding="javascript"
endpoint="http>//...">

[...]
<operation id="OP1-3" name="Get address" type="request-response"

reference="getAddress">
<input id="I1-3" name="longitude" dataType="double" optional="no" />
<input id="I2-3" name="latitude" dataType="double" optional="no" />
<output id="O1-3" name="city" dataType="string"/>
<output id="O2-3" name="street" dataType="string"/>

</operation>

</component>

[...]
<constant id="CNST1" name="Latitude" dataType="double" value="46.0667"

feeds_configurationParameter="CP1-2"/>
<constant id="CNST2" name="Longitude" dataType="double" value="11.1333"

feeds_configurationParameter="CP2-2"/>
<constant id="CNST3" name="Zoom Level" dataType="int" value="13"

feeds_configurationParameter="CP3-2"/>
[...]

<dfConnector id="DF1" source_output="O2-1" target_input="I1-2" />
<dfConnector id="DF2" source_output="O3-1" target_input="I2-2" />
<dfConnector id="DF3" source_output="O1-1" target_input="I1-3" />
<dfConnector id="DF4" source_output="O2-1" target_input="I2-3" />

</mashup>

Listing 2 XML deÞnition of the example mashup application presented in Section 2

Figure 8 shows how the example scenario can be modeled using the graphical
syntax we adopt in the mashArt editor. It can be noticed that all the main compo-
sition features supported by the existing editor are also supported by the language
produced by our system, which are summarized on the right side of this Þgure.

8.2 Yahoo! Pipes

In the following, we derive part of the mashup language underlying the popular
mashup platform Yahoo! Pipes from an example modeled in its graphical editor.
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Fig. 9 Yahoo Pipes example composition and set of respective language features

Pipes is a data mashup tool for the retrieval and processing of web data feeds. Figure
9 shows an example Pipes model, which we use to analyze PipesÕ language features.

Pipes is based on thedata flow paradigm. It supportsdata component and
service component types to retrieve and process data, respectively. SpeciÞ-
cally, data source components types areRSSfor data or atoms for data ,
while the only supported service component type isRESTfor service . Each
component in Pipes provides exactly one function, that is, each component repre-
sents one single operation. Thereforemax 1 operation per component . All
operations are of type request-response (request response for data and
request response for service ). Each operation may have one or more
inputs (max N input param per operation ) but one and only one output
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Fig. 10 A composition language meta-model supporting the discussed features set

(max 1 output param per operation ). Manual inputs (manual input )
are used to Þll the values of input Þelds, i.e., ofconfiguration parameter (s).
Some inputs can be fed with both an input pipe and a manually set constant value.
Also in this example, the output of a component can be the source for an arbitrary
number of dataßow connectors, allowing one tobranch the data ßow into parallel
ßows. Input parameters, instead, have at most one input pipe; so, there is not need
for anymerge .

The language produced by the language generation algorithm (deÞned in Algo-
rithm 1) giving as input to it the described features is equivalent to the meta-model
illustrated in Figure 10. The respective language XSD speciÞcations and the XML
model of the scenario can be inspected online at http://goo.gl/hfkLO.

9 Realated work

The problem we aim to solve in this paper, i.e., supporting the design of custom
mashup/composition languages, has not been addressed before. Most contributions
in the area of mashup and service-oriented computing focus on the design of spe-
ciÞc languages taking into account, for example, quality of service [10], adaptivity
or context-awareness [11], energy efÞciency [12], and similar. We instead propose
a language (the composition features) for the design of languages -a model weav-

ing approach (at the meta-model level) forblack-box composition languages (e.g.,
mashups), in the terminology of Heidenreich et al. [13]. The problem is very com-
plex, but our analysis of a large set of mashup tools and practices has shown that
the design space for non-mission-critical mashups (without fault handling, compen-
sations, transactions, etc.) is limited and manageable, up to the point where we can
provide mashup execution as a service for a large class of custom languages.
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If we compare the meta-model in Figure 5 with, for example, that of BPEL [7]
(see also http://www.ebpml.org/wsper/wsper/ws-bpel20b.png) or XPDL, we notice
a bias towardsimplicity. The reason for this is that mashup platforms (our target)
aim to simplify composition, typically moving complexity from the composition
to the components. For instance, it is common practice to have a dedicateddata

filter component, instead of a Þlter construct at language level (see, for example,
Yahoo! Pipes). The meta-model we propose in this paper shares this interpretation
for both the component model and the composition model. Also Saeed and Pautasso
[14] have a similar perspective, but they focus on the design of a generic mashup
component description language only and do not elaborate on their composition.
Their model contains technology aspects (e.g., component wrappers), which are
instead a runtime aspect. We only propose the use of component types and bindings.

A proposal toward the standardization of a generic mashup language, covering
as many different uses as possible, is represented by the Open Mashup AllianceÕs
EMML (Enterprise Mashup Markup Language) speciÞcation [15]. The target of the
initiative is however different: data mashups. In our view the key novelty mashups
brought to software integration is integration at the UI layer. Hence, the focus on
data mashups only is too narrow, yet the language has already grown very complex
and has not been adopted so far by vendors outside the Alliance itself.

However, especially with the growing importance of cloud computing and com-
position as a service providers (such as mashup platforms or scientiÞc workßows
[16]), we expect the importance of customization of composition languages - as a
means of diversiÞcation - to grow. Also Trummer and Faltings [17] work toward
composition as a service; yet, instead of focusing on custom language design, they
approach the problem from the provider side and study the optimal selection of ser-
vice composition algorithms - a task that could be eased if customers were allowed
to tailor the composition language to be executed to their very speciÞc needs.

10 Conclusion and future work

Component-based development and composition tools, such as mashup tools, are
an increasingly important reality in todayÕs software development landscape. With
this paper, we aim to lower the barriers to the development ofgood composition
tools by approaching a relevant and central aspect of composition, i.e., the design
of composition languages. We speciÞcally focus on the problem of developingcus-

tom mashup languages and show that a sensible design of suitable abstractions and
reference speciÞcations enables aconceptual development paradigm for mashup
languages that is based on the assisted selection of desired composition features and
allows developers to neglect low-level details. The paradigm improvesawareness

of design choices and fostersreuse of language design knowledge.
In approaching this methodological problem, we also solve a relevant, non-

conventional composition problem per se, i.e., the composition of components (the
language patterns) that arenot independent of each other and that require an inte-
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gration that is much tighter than that of traditional component technologies, such
as web services, alreadybefore composing them. The key to solve this problem is
mapping composition features to a generic language meta-model, an artifact that
aim to reÞne and evolvecollectively with the help of the scientiÞc community.

The idea is to make the meta-model, the feature reference speciÞcations, and the
language generator open source and to share it with the community. In this context,
we also want to equip the language design paradigm with an interactive language
design tool and a hosted execution engine that is able to run compositions developed
with any variation of language developed on top of the common meta-model. The
Þnal goal is to provide mashup executionas a service. This will eventually lower
the barriers to the development of custom mashup platforms.
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