Conceptual Design of Sound, Custom
Composition Languages

Stefano Soi, Florian Daniel, Fabio Casati

Abstract Service composition, web mashups, and business process modeling are
based on the composition and reuse of existing functionalities, user interfaces, or
tasks. Composition tools typically come with their own, purposely built composi-
tion languages, based on composition techniques like data 3ow or control 3ow, and
only with minor distinguishing features - besides the different syntax. Yet, all these
composition languages are developed from scratch, without reference specibcations
(e.g., XML schemas), and by reasoning in terms of low-level language constructs.
That is, there is neither reuse nor design support in the development of custom com-
position languages.

We propose a conceptual design technique for the construction of custom compo-
sition languages that is based on a generic composition reference model and that
fosters reuse. The approach is based on the abstraction of common composition
techniques into high-level language features, a set of reference specibcations for
each feature, and the assembling of features into custom languages by guaranteeing
their soundness. We specibcally focus on mashup languages.

1 Introduction

The proliferation of composition instruments like mashup platforms or web service
composition environments, which allow one to integrate Web-accessible APIs and
data into value-adding, composite applications or services, also led to the prolifer-

Stefano Soi
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: soi@disi.unitn.it

Florian Daniel
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: daniel@disi.unitn.it

Fabio Casati
University of Trento, Via Sommarive 5, 38123 Trento - Italy e-mail: casati@disi.unitn.it

2 Stefano Soi, Florian Daniel, Fabio Casati

ation of respectiveomposition languages. Depending on the type of API or data
source (we call them collectively components), the type of application or service
(e.g., data mashup vs. Ul mashup vs. service composition, and similar), and the tar-
get user of the application or service, composition languages differ in the features
they offer to the developer - not only in their syntax. While in many cases lan-
guage differences among tools actually donOt seem to be necessary, in other cases
these differences may indeed Omake the differenceO. This is, for instance, the case of
domain-specibc mashup platforms [1], which aim to provide more effective devel-
opment support (compared to generic tools) by tailoring their composition language

to a specibc domain and its very own needs. That is, despite the existence of stan-
dard languages like BPEL, there are good reasons for having different languages for
different uses and different users.

Designing a composition language is howeweran easy task. There are lots of
conceptual and technological choices to be made, such as (i) wnighonents to
support (e.g., SOAP services, RESTful services, Ul widgets, or proprietary compo-
nent technologies); (ii) whichomposition logic to adopt (e.g., event-based, control
Row, data Row, blackboard-like data exchange, and so on); (iii) whichintegra-
tion capabilities to support (e.g., parameter mapping, template-based transforma-
tions, scripts, etc.); and (iv) whighresentation features to provide, if any (e.g., Ul
templates, Ul widgets, single pages, multiple pages). All these choices do not only
affect the structure of the composition language, but eventually they determine the
complexity and viability of the composition platform built on top. A careless selec-
tion of features and constructs inevitably results in inconsistent languages and tools.
Even worse, oftentimes developers are not even aware of which choices need to be
made and which options are available, or they do not understand which implications
an individual choice has on another choice. For example, it does not make sense
to support both control Bow and data Bow based composition logics in one and a
same language, as both paradigms specify the order in which component operations
are to be invoked. The former explicitly debnes this order independently of how
data is passed from one component to another; the latter debPnes the order implicitly
focusing instead on how data is passed among components. Having both together
could thus lead to duplicate - possibly inconsistent - debnitions of the operationsO
invocation order.

Recognizing this difbculty, which we experience ourselves in the development
of our mashup tools, with this paper we would like to lay the foundation for the
conceptual design of custom composition languages for mashup tools, an approach
that aims to modularize and reuse language construction knowledge. The idea is to
enable a developer to reason at a high level of abstraction about the composition
language he would like to obtain and to allow him to interactively construct his
language by specifying the set of composition features that characterize his target
language - everything by guaranteeing the soundness, i.e., consistency, of the bnal
result. With the help of a hosted design tool, we would like to provide custom com-
position language design a service and equip the design tool with an according,
hosted runtime environment (an execution engine) that is able to execute composi-
tions/mashups expressed in any of the languages constructed with the tool. The bnal

Conceptual Design of Sound, Custom Composition Languages 3

objective is very ambitious. The approach is to start with a set of core functionalities
and to extend this set over time as new requirements emergeokhébutions we
provide in this paper are:

¥ We provide a comprehensive conceptualization of the most impatdantosi-
tion features that characterize todays most prominent composition languages.

¥ We derive ageneric, extensible composition language meta-model, which ex-
presses how the identibed features can be used together for the construction of
custom composition languages.

¥ We modularize the identibed composition features wateable language pat-
terns, and equip the patterns with a simple logic-based language to express fea-
ture composition constraints and to guarantee consistency.

¥ We generateustom composition languages and according custom component
description languages from the developerOs selection of composition features.

Thestructure of the remainder of the paper is as follows. Next, we provide an ex-
ample scenario and some background knowledge on composition language features.
Then, in Section 4, we describe key requirements and our problem statement. In Sec-
tion 5, we outline our approach. In Section 6, we describe our generic composition
language meta-model, and in Section 7 we describe the structure of composition
features. In Section 8 we show two composition language debnition examples, in
Section 9 we discuss related works and in Section 10 we conclude.

2 Scenario

LetOs assume we need to develop a custom composition language with specibc prop-
erties. Specibcally, letOs assume we want to develop a mashup language presenting
the same characteristics of the language used by the mashArt mashup platform [4],
which we developed from scratch in the context of the mashArt project. A simple
example of a composition instance that the language must be able to support is the
one presented in Figure 1: we want to allow any user to search for a given - user-
selected - object in a specibc - user-selected - geographical area and to get a list of
results. Then, by selecting one of the results the user will see its location displayed
on a map and will be provided with the trafpc information related to the geograph-
ical area around this location. For example, a user must be able to look for hotels
in Miami, get a list of hotels in the city and, when selecting one of them, visualize

its location on a map and have the trafbc information regarding the area around the
selected hotel. This example shows the need for the integration and synchronization
of data, business logic and user interfaces.

Concretely, we need a mashup language allowing one to integrate data, applica-
tion logic (e.g., through Web services) and graphical Ul components. This is what
we calleduniversal integration in the context of the mashArt project. Moreover,
as shown in Figure 1, the language has to support the presentation of the Ul com-
ponents inside a single Web page, manage their synchronization (considering the

4 Stefano Soi, Florian Daniel, Fabio Casati

A | Mappa | Satellite | Rilievo |

Search Yahoo Local:

\ £
p— 7 9] Miami ;
What [hotel Where [miami < ! Miam i
« ntenational o & 505 Bl Wes!
W”‘J Airport (s38) Pl |2 Avent
(search) (a53) " EastlLittle ©O)
— + (es3) West Little Havana ™ i)
- Flagami Havana gy Downtown)
- =2 Miami Dodge]
The Mutiny Hotel More info) (0) swanst fsland s
iami : ¢ e g Fis
Miami International Airport More info West Miami *és
Hotel Coral Way &
. . Coral Gables Hobie Island
Mayfair Hotel and Spa More info Coral Section i Beach Park
2 " err: g ¥
Spartico - Mayfair Hotel & . race 5 0%® 4
More info Country *
Spa Y <) Historic Virginia
dRd Club Section @ Key Beach Parb
Sonesta Bayfront Hotel . Northeast
More info t
Coconut Grove Coral Golden Gate' Coconut Grove
Residence Inn Miami . OWERED EY ; Gables (513)
SesiEelie AN —all More info 4 || fRee0E 2mi & 50”"‘“'295‘ (s13)
Coconut Grove Cougle = oconut Grove 7
- . v Zkin % A Map data 2012 Google - Termini e condiziogg d'uso

1I-10 West Construction major Panhandle Jefferson In Jefferson on I-10 west at MM 227 Planned construction in
Jefferson on I-10 west at MM 227, right lane blocked. Last updated at 10:12:06AM. B

I-10 West Construction major Panhandle Santa Rosa In Santa Rosa on I-10 west at MM 19 Planned construction in
Santa Rosa on I-10 west at MM 19, left lane blocked. Last updated at 10:03:38AM.

I-395 East Construction major Southeast Miami-Dade In Miami-Dade on I-395 east beyond Exit 2A US-1/NE 2

[— Blid Nlamand cnmcbeinbinmg fn Minmal Pada am T DAC anab hoavinnd Ewie A 116 4 /AIE A Aven /Binancinn

Fig. 1 Example of mashup application the mashArt language must support

event-based nature of Uls), and allow for the explicit debnition of the data Row
schema enabling components to exchange data. Propagating data among compo-
nents may require conditional execution of 3ows, as well as branching and merging
of parallel Bows. Ul components, which are implemented in JavaScript, can possi-
bly have parameters for their conbguration and one or more operations including an
arbitrary number of input and output parameters. Web services are typically SOAP-
based or RESTful. The resulting mashups are accessible to any user in a single-
user fashion; thus, no user management or collaboration support by the language is
needed.

3 Background: Software Composition

The scenario shows that mashup development is an intricate software integration
and composition endeavor. As highlighted in [1], next to the integration of data
and application logic, mashups also feature integration of user interface, i.e., Ul
integration. Figure 2 graphically illustrates the situation from a conceptual point of
view and contextualizes the three integration layers in the domain of the Web with
its very own component technologies

Data level integration. When the focus is on the integration of data, we have spe-
cibc needs to address. Typically, solutions for retrieving, combining, splitting and
transforming data are needed. In addition, when more than one entity is involved
in the data integration process data exchange among the involved parties may be

Conceptual Design of Sound, Custom Composition Languages 5

Presentation
Business Logic
Data Integration

[Presentation
[Business Logic Integration

[Presentation Integration]

Presentation 1 Presentation 2
Bus. Logic 1 Bus. Logic 2
Data Source 1 Data Source 2

|
l
Bus. Logic 1] [Bus. Logic 2]
[Data Source 1] [Data Source 2]

[Data Source 1] [Data Source 2]

(a)

Presentation [Presentation Presentation Integration]

Business Logic [Business Logic Integration
Data Integration

OpenSocial
Gadget

SAOP WS REST WS WG Widget

RSS Feed Atom Feed

(@))

Fig. 2 The different levels of integration in general and in the specibc context of web mashups.

needed. In the context of Web mashups, we have specibc conditions and constraints.
Data sources are typically not fully accessible, i.e., the standard way of retrieving
data on the Web is through Web services or Web APIs. This means that we can
only access the data provided by the service and we cannot make arbitrary com-
plex, free queries over the data source, as we could do with conventional databases.
The key problem of data integration is understanding which data items are semanti-
cally similar to which other data items and solving possible formatting differences.
Mashups arenOt any different. They usually integrate data coming from completely
independent sources, which were not designed to work together; thus, data format
and structure mismatches must be solved. Mechanisms to address these kinds of
problems span from simple data mapping solutions, allowing one, e.g., to map part
of the output of one service onto (part of) the input of another service, to more
powerful solutions supporting data transformation languages and processors (like,
e.g., XSLT). On the other side, though, on the Web there are ofpcial and de-facto
standards that are oftentimes adopted (e.g., RSS and Atom feeds, XML and JSON
formats), which simplify data integration in that they standardize the syntax and
partly also the semantics of data (e.g., RSS and Atom).

In the mashup context, considering also the usual intent to keep the toolsO com-
plexity as low as possible, a well-known and widely adopted paradigm for data in-
tegration isdata flow integration. Specifying a data Row among components means
explicitly expressing (e.g., visually modeling) how data Rows from one component
to one or more other components, thereby also stating an order of invocation of
components (the Bow) and respective activation conditions (the availability of input
data). In other words, a data Bow based composition logic implies also a control
Row logic, i.e., an execution order of components. With the term component we
specibcally refer to software artifacts (e.g., Web services) exposing public functions
(also called operations) providing for data provisioning or processing. Data travel-
ling along a Row are visible only to the component involved in the Row. Data RBows
allow the easy implementation of data mappings, e.g., by creating separate data 3ow

6 Stefano Soi, Florian Daniel, Fabio Casati

connections for each communicating output-input pair. Features like data aggrega-
tion, splitting or transformation can be supported by the composition language or
through dedicated components offering these kinds of functionalities as a service.

The data RBow paradigm is, for instance, the solution adopted also by Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), a popular example of data mashup tool. Pipes
allows users to mash up components retrieving and processing data (typically struc-
tured as data feeds) and to set up data 3ows (so-called pipes), allowing the produced
data to Bow through the composition.

Business logic level integrationWhen the main target is instead the integration

at the business logic level, the key requirement is orchestrating the services imple-
menting the different pieces of business logic to be integrated. In concrete terms, the
developer must be able to explicitly debne the order in which component operations
are to be triggered. The most suitable composition paradigm supporting these fea-
tures is thecontrol flow paradigm. Specifying a control Bow means specifying when

to enact which component inside a composition. Doing so may require the depnition
of conditional Bows, of Bow branching (i.e., parallel Bows) and Row merging (i.e.,
parallel Bows synchronization).

Examples of pure control Bow based compositions can be developed, e.g., in
BPMN, which offers many control Bow related constructs including conditions,
loops, parallel RBows and so forth. Although the focus of the control Row paradigm
is on the order of tasks or components, executing them usually requires complemen-
tary data passing mechanisms to feed them with the necessary inputs. In combina-
tion with the control Bow paradigm, théackboard approach, i.e., global variables
holding data produce and consumed at runtime, is typically used for this (note that
the Odata RowO constructs of BPMN do not express a data Row based composition
logic, but rather the writing and reading of business data). This scheme is also used
in the BPEL language, where the main target is the integration of SOAP-based Web
services.

Presentation level integration.As mentioned, in other cases the main focus is on
the integration of user interfaces at the presentation layer. In this case the compo-
sition language must support the graphical representation of Ul components with
suitable constructs. Also in this case, our focus on Web mashups sets specibc con-
straints. Ul presentation takes place inside the browser, normally in standard HTML
pages. As shown by the example of Figure 1, typically a Web page may contain one
or more Ul components. Ul components are software artifacts that have two main
functions: show a graphical user interface and provide users with a point of direct
interaction with the composition through their interfaces. Ul components usually
require synchronization, in order to have them show related content. Typically the
interaction mechanism implementing Ul synchronization is event-based, since Ul
development is intrinsically event-based and it is just not possible to predict when
and in which order user interactions will take place (which makes asynchronous
events a good instrument to manage communication among components). Support
for data passing among Ul components may also be needed and can be implemented
following either the data Row or the blackboard paradigms.

Conceptual Design of Sound, Custom Composition Languages 7

Concretely, in the mashup world, languages supporting presentation features typ-
ically include two additional concepts to lay out Ul componeptsies and view-
ports. A viewport is a placeholder where a Ul component is hosted and rendered
(e.g., adiv oriframe element contained in an HTML page). A page can contain
one or more viewports, allowing for the presentation of integrated user interfaces.
These concepts are present in the models of several mashup tools, e.g., mashArt and
JackBe Presto, as well as in the W3C Widgets family of specibcations (where the
term viewport itself comes from).

Having user interfaces oriented toward human users opens to the introduction of
other composition features, such as user authorization and management mechanisms
in the case of mashups with multiple pages. Individual pages may be assigned to
specibc user roles, allowing for the debnition of multi-user, collaborative mashup
applications where several users can work on a shared mashup instance acting on
the pages they have access to. This is, for instance, one of the main features in the
MarcoFlow platform [5].

4 Requirements and problem statement

What does it now mean to develop@stom composition language for mashup de-
sign and to support its execution? In order to answer this question, prst of all we
debne &ustom composition language as a composition language that is specibcally
tailored to a given combination of component types and a target application/service
type (mashup type). We represent a language (we use the kergagge andcom-
position language interchangeably) by means of its meta-model or XSD schema.
Standard languages like BPEL [7] or BPMN [8] are very focused languages that are
generally not able to satisfy the requirements of a mashup platform, since mashups
typically go much beyond the orchestration of SOAP web services or human tasks.
In order to develop a custom language, we generally have difféeeigt: options
that allow us to achieve the desired expressive power:

¥ Development from scratch: This is the current practice that we want to prevent.
Developing a language from scratch means designing the language without any
reference by looking at the composition problem to be solved and by deriving
suitable, ad-hoc composition constructs. This task is more complex than it looks
like and often leads to poorly designed, inconsistent languages, which can only
be run by specibcally tailored runtime environments.

¥ Selection of off-the-shelf language: This is the other, ideal extreme, in which for
each component and mashup type combination we have a pre-debned language
that supports all features of the given combination. Implementing all these lan-
guages is not feasible, in that the number of potential languages (and execution
engines) grows combinatorially with the number of component types and fea-
tures of the target mashups. Also, the introduction of a new component type or
feature would require the update of the whole languages library.

Stefano Soi, Florian Daniel, Fabio Casati

Extension of existing language: A practice that works in many situations is to
take an existing language, e.g., BPEL, and to extend it with new constructs and
semantics, so as to support custom features. Starting from a known language
eases the adoption of the extended language, but it is typically hard to identify a
suitable language, and changes to the original language may involuntarily intro-
duce inconsistencies into the custom extension. Even with small extensions, the
languageOs own engine can usually no longer be used for execution.
Customization of reference language: Another option is to provide a set of
reference languages with predebPned extension mechanisms. For instance, we
could have reference languages for data-Bow-based, control-RBow-based, Ul-
based mashups, and combinations thereof. Yet, it is hard to predict all possible
customization requirements and to maintain the library of reference languages
and execution engines up to date with changing technologies and applications.
Modular composition of language: Finally, we can provide a set of basic lan-
guage features, such as control Bow, data 3ow, Ul synchronization, and the like
and allow the developer to compose his own language. Newly emerging features
can be added to the feature library without invalidating prior language specib-
cations. Given a library of language features, it sufbces to implement only one
execution engine that is able to understand all the features, in order to be able to
execute a large set of custom mashups.

In this paper we specibcally focus on the problem of developing custom lan-

guages, while our vision is also to provide runtime support for custom languages;
the modular composition approach seems therefore most suitable. But which is a
good granularity foreusable language modules? \We again have several options:

¥

Individual language constructs (with the termconstruct we generically refer to

both meta-model and XSD constructs): Constructs like components, pages, ports,
inputs, outputs, connectors, and similar are the basic ingredients for every lan-
guage. Yet, constructs represent the lowest level of granularity of a language. Itis
therefore hard to encode reusable language construction knowledge, if not in the
form of a library of typical composition constructs. How to use each construct, in
which combination with other constructs, for which typical modeling situation,
and so on can however not be expressed.

Composite constructs: Modules may express composite constructs, such as the
structured elements sequence, parallel Bow, and loop, typically used for the con-
struction of well-formed models. This technique aids the development of compo-
sition languages that are sound, but it is still very syntactic and does not support
reuse of more complex language construction knowledge.

Language patterns: Modules may also express more complex usage patterns of
constructs that represent semantically meaningful composition language prop-
erties, such as control Bow, data Bow, Ul synchronization, component types,
asynchronous vs. synchronous communications, etc. If such patterns are further
equipped with suitable language composition constraints, it is also possible to
guarantee their sound composition.

Conceptual Design of Sound, Custom Composition Languages 9

Given our experience with the reuse of modeling knowledge [2], we advocate
the use of semantically meaningful language patterns to represent reusable language
composition knowledge. We call these patteinguage features, since they allow
us to represent composition features in an abstract fashion. The question that re-
mains to be answered is therefore which language features must be provided, so as
to support the construction of a reasonably wide set of possible languages. Looking
at set of existing mashup approaches [3][4][6] and standard composition languages
[71[8] and without trying to crack the whole problem at once, we identify bve key
aspects (groups of features) that inBuence the expressive power of a composition
language:

1. Component types: First and foremost, thebject of the composition, i.e., the
types of components, inBuences the whole logic of the language most promi-
nently. There are many possible component technologies to take into account,
such as SOAP web services, RESTful services, Ul widgets, JavaScript classes,
plain XML or CSV data sources, and similar. Composing Ul widgets is, for ex-
ample, fundamentally different from orchestrating web services.

2. Control flow logic: Next, it is important to dePne how themputration of a com-
posite application or service is enacted, that is, how and when individual com-
ponents are processed. Components may be enacted in parallel (e.g., in the case
of simple Ul widgets placed in a web page), they may be executed sequentially,
their execution may be subject to conditions, and so on. The possibility to inte-
grate heterogeneous component technologies (e.g., Ul widgets and web services)
further increases the number of available control Row options, if the control 3ow
paradigm is required at all.

3. Data passing logic: In addition to the control Bow logic, the language must be
able to express how data jgopagated among components. While data Bow
paradigms typically bring together aspects of both control Bow and data passing,
other paradigms like pure control Bow or Ul synchronization may rather adopt a
blackboard approach with global variables.

4. Presentation logic: One of the distinguishing features of mashups is that they
also featurentegration of user interfaces, not only services and data sources.
This however asks for specibc techniques to lay out and render Ul elements. For
instance, we may make use of HTML templates with placeholders or we may
have automatic arrangements of Ul widgets, there might be the need of special
visualization components for data sources, and so on.

5. Collaboration support. Finally, mashups can be much more than simple, one-
page applications. We can have mashups that implenaélaborative business
processes with different actors per task, or we can have mashups that support the
concurrent use of individual pages by multiple users. Supporting these features
requires the possibility to express at least roles of users and to assign them to
pages, while more complex logics can be envisioned.

The problem we want to solve in this paper is table developers to design
custom composition languages in an abstract, conceptual fashion, supporting the
bve above feature types and guaranteeing that the bnal languages come without

10 Stefano Soi, Florian Daniel, Fabio Casati

internal inconsistencies, i.e., that they asend. Our focus is on imperative mashup
languages that can be executed by a mashup engine.

5 Approach

Figure 3 graphically illustrates how we decompose the problem into artifacts and
how we Pnally obtain a custom language. The idea is to exprassan composi-
tion language as a set otomposition features that give the language its expressive
power. Features come with a setfafrure constraints, which express feature com-
patibilities, conf3icts, and subsumptions. For each of the bve types of composition
features discussed above, we provide a set of concrete features (we discuss them
next). Each feature hasraference specification, i.e., a pattern of language con-
structs, which implements the feature and represents reusable language composi-
tion knowledge. Patterns are based Qe@eric composition language meta-model.
The meta-model does not yet represent an executable language. It syntactically puts
composition constructs and features in relation with each other, but it also contains
constructs and features that are not compatible with each other (e.g., control Bow
and data Row constructs). The meta-model determines which features are supported
and how they are syntactically integrated; the sensible design of feature constraints
provides for soundness. Hence, given a set of non-conRicting composition features,
the custom composition language is represented byritlwa of the respective refer-
ence specibcations. Similarly, we derivei@tom component description language,
which can be used as guide for the implementation of components and to describe
their external interfaces.

In the following, we Prst construct the generic meta-model, then we describe
how we debne composition features on top using patterns and constraints and how
patterns can be used and integrated for the development of custom languages.

6 The generic composition meta-model
Before going into the details of the language meta-model, we introduce the meta-
meta-model it complies with, as such is also the basis for the bnal code generation.

6.1 Language meta-meta-model

To design the meta-model for the composition languages, we use a notation and
modeling language derived from the UML Class Diagram with some peculiarities.

Specibcally, we impose some constraints on the allowed types of modeling con-
structs, tailoring them to the expressive power required by our modeling needs. As

Conceptual Design of Sound, Custom Composition Languages 11

Custom composition based on Custom component
language description language
¢ supports supports
1.N 1.N
Composition Component feature

implemented as

feature

0.1] 1.N T ,
constrains
has
Feature

o.N| constraint

Data passing feature

|
Control Bow feature ‘
|

Presentation feature ‘

Collaboration feature ‘

1.N 1.N
Feature reference

derives from specibcation derives from
0.1 0.1

Generic composition integrates Generic component
language meta-model descriptor meta-model

Fig. 3 Conceptual approach to the development of custom composition languages

detailed in Section 6.3, applying these constraints allows for an unambiguous trans-
lation of the meta-model into a formal - and machine-readable - language schema
debnition, which is then needed for the depnition of other artifacts of the system.
In addition, using this constrained modeling language also opens to future exten-
sions of the meta-model by third parties, making them aware of the implications
of each model extension or modibcation on the resulting language debnition (since
deterministic translation rules are debned). Concretely, as debned by the meta-meta-
model depicted in Figure 4, the meta-model may consist of:

¥

¥

Entities. Represent main constructs of the composition language. They are iden-
tibed by a name.

Attributes. Each entity can have a set of related attributes characterizing it. At-
tributes have a name and a type. The type can be stated through its name or can
be explicitly dePned in form of enumeration of possible values. To be noticed,
each entity in our meta-model must contain an attribute namedpresenting a
unique identiber for the instances of the entity used to reference them.
Associations. Relations among the entities are expressed through associations.
Only two possible types of associations are needstposition anduni-directional
association. The composition is used to state that an entity is contained in another
one, while the uni-directional association states that an entity simply refers to an-
other entity, but it is not contained in it.

Cardinalities. Represent associationsO multiplicities. The target cardinality rep-
resents the multiplicity of the association when reading it following the speci-
Ped association direction, while the source cardinality represents the multiplicity
when reading the association in the opposite direction.

12 Stefano Soi, Florian Daniel, Fabio Casati

Attribute
Name: String
Type: String

Entity 0.N
Name: String has

1 1

target source

[Assosiaton]~ | __Cardinaliy
MinValue: Integer

source 0.1
MaxValue: Integer

\
[Composition] Uni-directional
Name: String

Fig. 4 Composition language meta-meta-model

6.2 The generic meta-model

In essence, our approach isdenpose composition languages out of composition
features represented as language patterns. Just like in any other composition ap-
proach, the core problem is therefore the identibcation and formalization of the
OcomponentsO to work with. In our case, these componeritsigrege patterns

(e.g., XSD fragments). However, these patterns have a distinctive feature that makes
our problem very different form generic component-based development (next to the
fact that we do not handle software modules but document/model fragments): un-
like, for example, web serviceBinguage patterns are not independent. That is, the
reference specibcations of different composition features may overlap (e.g., inter-
acting with aSOAP service is very similar to interacting with ESTful service),

include other features (e.qg., thlata flow paradigm generally subsumes the pres-
ence ofdata source components), or exclude others (e.g., thizsa flow paradigm

does not make use efiriables). This asks for a thorough design of the language
patterns and their mutual interaction points, a task that we achieve by mapping each
composition feature into thgeneric composition meta-model (See Figure 5), which

(i) integrates all basic language constructs syntactically, (ii) allows us to debne com-
position features as language fragments on top, and (iii) guarantees that fragments
are compatible by design.

We have identibed several dozens of composition features that can be used to
describe the expressive power of mashup languages. In the following paragraphs,
we overview the features and provide some examples. For space reasons, however,
we refer the reader to an online resource (http:/goo.gl/hfkLO) for the list of sup-
ported features and respective details. The list of identibed features comes without
the claim of completeness and is meant to grow over time; however, as we will see in
Section 8, we are already able to express a fairly complex set of mashup languages.

Component features.They specify which kinds of components - in terms of tech-
nologies and communication patterns - the language should support. For instance, a

SupportReferencePassingid

Class
Syntax

Conceptual Design of Sound, Custom Composition Languages

1 target o.N

1N source 0.N

Join

oO.N

1N target

1 source

o.N

target

source

1
Operation J Input
Id

has

C

feeds 0.1

DefaultValue

URL

Mashup
0.1 target
IdParameler arge *Name
Name
Nl Type 1.N| Name | o Expression
Reference Manualinput Language
Optional
0.N @t ~
User Role
LN has Id
C : o.N Name
0.N 0.N
Data Type Output 0.1 source | o.n [DFC | O:N
Name d has Parameter d source
Type o.n| Name 1 on|ld oI O.N Ba belongsTo
Binding Debnition Name _ on
DescriptorURL a a o Gdlobal Variable Page
0.1 target
"9t | Name on Id O.N
has n| Type Name

Constant

o.N| Parameter

Id
Name
Manuallinput

Id
Name

feeds 1

Type

Value

13

displays

Fig. 5 The generic composition meta-model for custom languages. Gray boxes group entities into
feature types. The Component group is also used to derive component descriptor languages

SOAP web service may come with message-based operations of four different types
(request-response, solicit-response, one-way, hotibcation), custom data formats for
each input and output message, a service endpoint, and a protocol binding (e.g.,
SOAP). We represent such a service in the meta-modelkasigonent that has a
set ofoperations with different input/output parameter patterns (implementing the
four different operation types), only singkput/output parameters per operation to
represent input/output messages, an dama rype for each parameter, and respec-
tive binding andendpoint attribute values. Similarly, a W3C Ul widget [9] can be
seen as aomponent With someconfiguration parameters but without operations,
which can be displayed imaewport of apage of the mashup.

Analogously, the meta-model so far conciliates the followig@nologies, which
are the basis of many types of mashups and, as such, widely used and accepted
(component technologies are tracked byafpe attribute of thecomponent entity):

¥ Data source components: RSS feeds, Atom feeds, RESTful data components,
SOAP data components, JavaScript data components.

¥ Web service components: Atom services, RESTful services, SOAP services,
JavaScript components.

¥ Ul components: W3C Ul widgets [9], JavaScript Ul components [4] (our own).

Stefano Soi
SupportReferencePassing
Class
Syntax

Stefano Soi

14 Stefano Soi, Florian Daniel, Fabio Casati

For each of these component technologies, it is then important to specify which
exactcommunication patterns the language should support. For instance, the lan-
guage could support only synchronous communications (operations withdmput
output parameters), only asynchronous communications (operationsgixkithin-
put or output parameters), or both. It might be necessary to limit the number of
operations per component (e.g., in Yahoo! Pipes each component corresponds to
one operation) or the number of parameters per operation (like for SOAP services
as described above). All these options can be represented via patterns that suitably
set the relationship cardinalities in the meta-model.

Control RBow features. They specify whether the language is control-Row-based
(e.g., BPMN) or not and, if yes, which control Bow constructs to support. Se-
quential execution can be expressed by connecting operations using control Bow
connectors(fConnetors). Parallel executions are supported widir andjoin con-
structs. Each of these constructs can have one or matkrions, which constrain

the control Bow along connectors and, for instance, allow the implementation of
conditional control Bow constructs like conditions, conditional split, and conditional
joins. Loops can be implemented by means of conditions and joins. Events for event-
based mashups (e.g., our mashArt platform [4]) are operations with only outputs.
Each of these features can be added to the language by including the respective
entities in the meta-model.

Data passing featuresThey specify whether the language is data-Row-based or not
and how data is propagated among components. In data-ow-based languages (e.qg.,
Yahoo! Pipes) it sufbces to connect two operations using a data Row conmggtor (
Connector), in order to propagate the output of the brst operation as input to the sec-
ond operation. Implicitly, data RBow connectors also determine how components are
enacted and, hence, do not require any additional control Bow construct. Data Bows
may however be subject to conditional execution. Control-Bow-based languages,
instead, require additional constructs to specify how data are passed among com-
ponents. The most common technique is to write/rgatlal variables (blackboard
feature), which are accessible during the execution of a composition (e.g., as in
BPEL). The meta-model represents the writing/reading operations with a data Row
connector between the variable and its target/source parameter. Ul-based mashups,
such as widget portals, typically run all widgets in parallel, and data is passed via
global variables or events (operation with only outputs). Conbguration parameters
are instead typically set once at the startup of a component (e.g., the background
color of a Ul widget); we support this by means @fnstants. Data passing may

also require mapping output parameters to input parameters, a feature that can be
achieved by specifying data Bow connectors between parameters instead of between
operations.

Presentation features.They specify whether the language is Ul-based or not and
how Ul widgets are laid out into web pages. Unlike service compositions, mashups
typically also come with an own user interface that renders Ul components and data
from Ul-less components. The minimum support required to express this capability
in the meta-model is represented by tlage andviewport entities, which allow the

Conceptual Design of Sound, Custom Composition Languages 15

ordering of Ul components into pages (HTML web pages) and their rendering in
selected areas inside these pages (typiahlly or iframe HTML elements). We
assume the HTML pages are given and already linked to each other as necessary.

Collaboration features. They specify whether the language describes single-user
or multi-user mashups and how user roles collaborate. Single-user mashups (the
most common type of mashups) do not require any user management. Multi-user
mashups, instead, may restrict the visibility of individpakes to selecteduser

roles only. Users may have different views on a mashup (e.qg., via different pages)
or they may have the same view (e.g., via the concurrent use of a same page). For
the time being, we start with a simple, role-based user management logic and do not
say anything about how such is implemented, as this is a runtime choice.

The above features and examples show that developing a good generic meta-
model is atrade-off between the simplicity and usability of the Pnal language (the
fewer individual constructs the better) and the ease of mapping features onto the
meta-model (the more constructs the better; in the extreme case, each feature could
have its own construct). The challenge we try to solve in this paper is exactly that
of identifying the right balance between the two, so as to be able to map all relevant
features and to do so in an as elegant as possible fashion from the resulting language
point of view.

6.3 Mapping the generic meta-model to XSD

The information represented by the generic meta-model constitutes the basis for the
debnition of the feature reference specibcations (see Section 7.1) and is required by
the language generation algorithm (see Section 7.3). Therefore, we need to serialize
the generic meta-model in a machine-readable format. To this aim, also considering
the context where mashup languages are used (i.e., the Web), we map the meta-
model onto an equivalent XSD depnition. As introduced in Section 6.1, we impose
some simple conventions and constraints to the admitted modeling constructs for the
meta-model so that we can debPne a set of rules which guarantees an unambiguous
translation of the model.

Figure 6 exemplibes how the generic meta-model is translated into an equivalent
XSD debpnition applying the following translation rules:

¥ Entities (e.g.page) are translated as XSD elements having the same name of the
entity.

¥ Entity attributes (e.g., a page@®BL) are translated as XSD attributes of the re-
lated element having the same name of the entityOs attribute.

¥ Composition associations (e.g., the one havifegport as source angage as
target) are translated debning within the element associated to the target entity
an XSD child element (with zero or more possible occurrences depending on the
specibed cardinality) having the name of the source entity (e.g., the elpagent

16 Stefano Soi, Florian Daniel, Fabio Casati

UserRole :element name="userRole">
d <xs:complexType>
<xs:attribute name="id" type="xs:string" use="required" />
Name <xs:attribute name="name" type="xs:string" use="required" />
</xs:complexType>
0.N </xs:element>
<xs:element name="page">
belongsTo <xsicomplexType>
<xs:sequence>
<xs:element name="viewport" minOccurs="1" maxOccurs="unbounded">
0.N <xs:complexType>
Page <xs:attribute name="id" type="xs:string" use="required" />
d <xs:attribute name="name" type="xs:string" use="required" />
<Ixs:complexType>
Name <Ixs:element>
URL <xs:element name="belongsTo_userRole" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:attribute name="ref" type="xs:string" use="required" />
<Ixs:complexType>
<Ixs:element>
<Ixs:sequence>
1.N <xs:attribute name="id" type="xs:string" use="required" />
Viewport <xs:attribute name="name" type="xs:string" use="required" />
<xs:attribute name="URL" type="xs:string" use="required" />
</xs:complexType>
Name X ‘r‘nmnIAYTypeg P

Fig. 6 Example of translation of a meta-model fragment into XSD

has 1 to N child elementsewport). As shown in the example in the bgure, the
child elements are contained and debned within the parent element.

¥ Uni-directional associations (e.g., the one havpage as source andserRole
as target) are translated debning within the element associated to the source
entity an XSD child element (with zero or more possible occurrences depend-
ing on the specibed cardinality) having the name of the form Oassociation-
NametargetEntityNameO and including an attributg designed to contain a
reference (i.e., the ID) to a target entity instance (e.g., the elemgatmay
have 0 to N child elementselongsTo_userRole). The child elements only refer
to the target entity and do not debne it.

Applying the above translation rules to the meta-model presented in Figure 5 we
obtain an equivalent XSD debpnition that we use as base for the production of the ar-
tifacts and algorithm presented in the next section. The complete schema depbnition
can be inspected at http://goo.gl/hfkLO.

7 Representing and assembling composition features

The meta-model in Figure 5 solves the problem of integrating the composition lan-
guage constructs needed to specify a varied set of composition features. Designing
the meta-model required both the analysis of the features to be supported and knowl-
edge about their implementation in terms of language constructs. We aim to abstract
away from low-level language constructs and represent concrete composition fea-
tures on top of the generic meta-model so as to allow the language developer to
focus on the selection of features only, in order to design his custom language.

Conceptual Design of Sound, Custom Composition Languages 17

We debne a composition featurefas: ! name, label, desc, spec,Constr", where
name is a text label that uniquely identibes the feature (egta _flow); label
brieB3y describes the feature and expresses its semaftiess a natural language
verbose description of the feature for human consumptipe; is the reference
specibcation of the feature; aGdnstr = constr; is a set of feature constraints.

<feature name="condition" label="Conditions">

<description> Conditions can be set for each connector to define the
possible flows of the composition. Conditions are supported both for
control flow and data flow composition paradigms.

</description>

<specification>
<include fragments="conditionForCf" if="control_flow"/>
<include fragments="conditionForDf" if="data_flow"/>
<include fragments="conditionForSplit" if="split"/>
<include fragments="conditionForJoin" if="join"/>
</specification>
<constraints>
(control_flow AND blackboard) OR data_flow
</constraints>

</feature>

Listing 1 XML reference specibcation of the condition composition feature

The XML code in Listing 1 shows an example of how we serialize, for instance,
the condition feature in outfeature knowledge base of the formF = f;. The
example shows the two core ingredients that allow us to collapse the assembling of
features into a simple selection of feature names: Firstydfaeence specification
of the feature expresses which specibc language constructs - out of all those repre-
sented in the generic meta-model - are needed to implement the feature. From the
XSD representation of the generic meta-model (see Section 6.3), we identify given
subsets of the schema dePnition representing semantically meaningful parts of it.
An ID uniquely identibes each of these fragments in the XSD. Secondedhe
ture constraints state feature compatibilities or incompatibilities. They are simple
Boolean conditions. We detail these two aspects in the following.

7.1 Feature specibcation language

In order for feature specibcations to be composable, we adopt a constructive ap-
proach that starts with an empty language specibcation (we call #dtrelan-

guage), which contains only the basic XSD structure (e.g., name space debnitions
and types) for the language to be generated, and then incrementally adds new con-
structs based on the specibcations the of selected features. Since a given feature may
span multiple constructs of the meta-model, a feature reference specibcation gen-
erally requires multiple language fragments (identibed through manually assigned
IDs) to be included in the Pnal custom language debnition. For instance, the specib-

18 Stefano Soi, Florian Daniel, Fabio Casati

cation of theblackboard feature requires several fragments to be included, e.g.,
those related to the specibcation of t¥ebal Variable construct and those related
to the specibcation of thBfConnector construct used to connect variables and pa-
rameters. The syntax to require thvelusion of the fragments referenced by a given
feature is as follows:

<include
fragments="[comma separated list of fragments IDs]"
if="[condition]" />
Each feature specibcation contains one or niockude elements that are
composed by an attribufeagments listing the fragments needed to implement
the feature in the custom language XSD debnition. The referenced IDs relate to
XSD fragments debning elements, attributes, enumerations and similar. In addition,
theinclude element may optionally contain an attribute that can be used to
require a conditional inclusion of the referenced fragment(s). In particular, the con-
dition can require the selection or non-selection of other features for the inclusion
to be performed (as exemplibed in Listing 1). The fragments come with default
values for cardinalities (i.e., values for th@inOccur andmaxOccur XSD at-
tributes), as specibed in the meta-model in Figure 5. Some features, such as the
max_1_operation _per _.component orthesingle _page features, may need
to modify them. In order to change cardinality values, we provide a dedicated car-
dinality setting function with the following syntax:
<setCardinality

element="[elementID]"

minOccurs="[value]"

maxOccurs="[value]" >

The function has three attributes, which allow us to select which ¥ehent

in the current language specibcation to modify and whigthOccurs and/or
maxOccurs values to assign to the element. It can be noticed that an associationOs
cardinality setting involves only one XSD element. This is because, according to
our translation rules, associations are translated in one element that is nested into
the associated element and, therefore, the cardinality setting needs only to set the
number of possible occurrences of one element, i.e., the nested one.

7.2 Feature constraints language

Feature constraints alvolean conditions that check (i) whether all features-

quired by a given selection of features are contained in the selection and (ii) whether
the selection containsonflicting features. Feature constraints therefore guarantee
for the semantic soundness of a selection of features. Feature constraints are of the
form: constr ::= fbool | A constr | constr op constr.

fbool # FB is a Boolean variable representing the selection (or not) of a feature,
FB={fbj|fb; ="name,val",name = f;.name, f; # F,val = true|false} is the set

of Boolean variables representing all features, anét {$,% &} is one of the log-

ical AND, OR, and XOR operators.

Conceptual Design of Sound, Custom Composition Languages 19

For example, in Listing 1 we have the constrajebntrol _flow AND
blackboard) OR data _flow , since for the debnition of conditions it is re-
quired the presence of some data passing mechanism in the mashup model. This is
an example of constraint assessing the presence of the features required for the se-
lected one. An example of constraint preventing conf3icting features is the one asso-
ciated to the featurmax 0_operation _per _component (e.g., used for simple
Ul widget portals), which may stat&iOT(data _flow OR control _flow)

It would not make sense to support any of these paradigms in a language that by
debnition does not allow communication among components.

In addition to assigning constraints to individual features, we assign a set of base
constraints to the base language, in order to enforce global constraints that guarantee
the integrity of the overall language. For instance, the constfeamtrol _flow
XOR data_flow) OR user _interface asks for the selection of at least one
basic mashup paradigm (e.g., a simple state machine or Ul widget portal).

7.3 Language generation algorithm

Algorithm 1 summarizes the language generation logic. It takes as input a set of
feature names and produces as output either an according combination of composi-
tion and component description languagesu@¥ (in case of constraint conficts).
After initializing the variables holding the language to be generated and the con-
straints to be evaluated (lines 2-3), the algorithm loads the complete feature speci-
Pcations of each feature in input from the feature knowledge base (line 4) and sets
the respective Boolean variablesttae and all the remaining variables (those asso-
ciated to non-selected features)fidse (lines 5-6). This enables the processing of
thecheckSoundness function, which checks whether all the constraints associ-
ated to the selected features are satisbed. For this purpose, the function evaluates
the Boolean formula contained ONSTR based on the variable values assigned

in lines 5-6. If the evaluation returnalse, the function stops processing and re-
turns null (lines 7-10). Otherwise, the algorithm constructs the list of IDs of all
the fragments required by the selected features and the sgCafdinality instruc-

tions needed to update the default cardinalities (lines 11-13). Based on these sets the
algorithm constructs the actual output composition language including all the frag-
ments in thePRAGMENTS set and then updates the cardinalities of the elements of
the resulting composition language based on the instructions containedSaZhe
CARDINS set (lines 14-15). Finally the algorithm returns the composition language
debnition and the component description language debnition, which is extracted by
the former (line 17).

Our current prototype of the language generator comes as a simple command line
tool, which takes as input a text ble with the list of desired language features and,
if successful, produces as output two XSD bles for the composition and component
description languages. The feature knowledge base plain XML ble, which can
easily be extended with new features.

20 Stefano Soi, Florian Daniel, Fabio Casati

Algorithm 1!"#$%$&'($) %#*' #$"

Data: +$(",-". $/$0($1"-$'(*&$"%'2$.I"#$%& Y

Results: (compositionLang, componentDescLang!'0,%('3%3%#"(4$"#$%3$&'($1"0,25,.3(3,%"/'%#
.5$03-30'(3,%" 3%" 6+7" '%1" (4$"'00,&13%#" 0,25,%%$%(" 1$.0&35(3,%" /'Yo#*'#3$" .5$03:
6+78",&(" "3-"(4%"(4$&$"&%$"0,%-/30(.""2,%4%"0,%.(&'3%(." - "(4$". $/$0($1"-$' (*&$.

1 /I the knowledge base F and the set of Boolean variables FB are accessible

through global variable s

S+ - -H#01 9"#'0(#0%2#,%/languageBase is a global variable

345&67'9'8#,98*",.9#-"., :'Ilbase Constrain ts is global variable "

S = 1IN, € FIf . IHS € I"#$%&%' !/ load sel. features from knowledge base F "

-,&"$'04"" € !" 'l setvalues of Boolean variables in FB "

"B <#'9" 1" .name € FnameSel<"="(&*$">"-'1.$:"

-,&"$'04'f € I"#$"II construct set of constraints to be checked "

""CONSTR!! 1"#$%& ! !.Constr:"

3-"checkSoundness; 345&6782 <"99"-'/.$<"(4$%" check soundness "

O 0 O U1 » WN

10 "M&$B(*&%"%*/I:Interrupt processing if constraint conflicts occur "
11 -,&"$'04" ! Fsel™
12 11ME>?@56&D"7=>?@56&1 Teturnlncludes;-<://construct setof frag ments IDs"

[
w

11&81@63=7TABB"1"#$%&'()! !U'returnSets;-<:// construct set of setCardin. opers "
"#$%&'()*+,"-. | FRAGMENTS0dompositionLang23/construct composition language "
%4 &*-'5*)&1"*$!-1'. | SETCARDINScompositionLang23/ update cardinalities "
/I construct result set by generating also the component description language
&$(*&%Ut'ompositionLang, "#$%&#'1(&)%*+ (compositionLang)):"

e
IIR-NRL IS

8 Examples

In the following sections, we apply the conceptual design approach introduced
above to two concrete examples with different requirements.

8.1 mashArt

In Section 2, we stated a set of requirements for the mashArt composition language.
In the following, starting from these requirements, we derive the set of features
(emphasized itCourier font in the following paragraphs) to be given as input to
our generation algorithm to produce a mashup language supporting our scenario.
As said, mashArt aims at integrating data, business logic and user interfaces.
Therefore, data _.component , service _component and ui _component
features are required to support all the different types of needed compo-
nents. All the components must be implemented through JavaScript, there-
fore the featuregavascript ~ _for _data , javascript _for _service and
javascript ~ for _ui have to be included. In particular, data components
must support onlyrequest _response _for _data operations, service com-
ponents bothrequest _response _for _service , one_way_for _service

Conceptual Design of Sound, Custom Composition Languages 21

Mashu
. Name
Operation Input
777777777777777777 N
"Type = request_response * -f- -~ id m 0.1 target
| | one_wa H Name Id
' _way ! 1N 0.N
] I notification; H Type Name
| . Reference Optional
0.N
1N has
Component : O.N on |on
Id Data Type Output 0.1 source o [DfConnector |
Name Id has Parameter d
Type o.N| Name 1 onfId
‘| Binding Debnition Name
., Endpoint 1 T1
pommmmmmm el <
| Type = data_component | 0.1 has
| service_component 1 - .
i Iuiicompone:t; ! has 0.N["Configuration Constant
i] Parameter on|Id |
| Binding = javascript; i 0-N{id 1| Name
Semmmmooooooooooo o ’ Name o1 feeds Value
- Page
displays 0.1 T Viewport 1.N Id 1N
Name Name
URL

Fig. 7 A composition language meta-model supporting the discussed features set

and notification for _service operations and Ul components only
one way _for _ui and notification _for _ui operations. The requirements
do not include isolated Ul components (i.e., widgets), so all components
will have minimum one operation, while no maximum number of oper-
ations per component is requiredngx N operation _per _.component).

Also the number of input and output parameters per operation should
not be constrained to any limit maxN.input _param _per _oper and
max_N_output _param _per _operation). Clearly, it is also required to sup-
port the display and layout of Ul components, which is fulblled by the
user _interface feature. In particular, we require compositions to be consti-
tuted by asingle _page . The componentsO intercommunication, according to the
requirements, must be supported throughda _flow mechanisms. In addition,
merge andbranch features are explicitly required.

The above paragraph provides the list of features supporting our scenario (the
only design artifact to be produced) to be given as input to the language generation
algorithm shown in Algorithm 1. Doing so produces an XSD specibcation for the
composition language that is equivalent to the meta-model illustrated in Figure 7.

For space reasons we cannot include the whole XSD specibcation, which can
be inspected at http://goo.gl/hfkLO. Listing 2, though, provides an excerpt of the
XML dePnition - compliant to this specibcation - representing the example scenario
introduced in Section 2 (i.e., geo-localized search with trafbc information).

<mashup name="GeoLocalSearchWithTraffic">
<component id="C1" name="Yahoo Local Search" type="ui" binding="javascript"
endpoint="http://...">

<.6peration id="OP2-1" name="ltem Selected" type="notification"
reference="itemSelected">

22 Stefano Soi, Florian Daniel, Fabio Casati

<output id="02-1" name="Latitute" dataType="double"/>
<output id="03-1" name="Longitue" dataType="double"/>
<output id="04-1" name="Zoom Level" dataType="int"/>
<output id="05-1" name="Label" dataType="string"/>
</operation>
</component>

<component id="C2" name="Google Map" type="ui" binding="javascript"
endpoint="http://...">

<configurationParameter id="CP1-2" name="latitude" dataType="double"
manuallnput="yes"/>
<configurationParameter id="CP2-2" name="longitude" dataType="double"
manuallnput="yes"/>
<configurationParameter id="CP3-2" name="zoomLevel" dataType="int"
manuallnput="yes"/>

<operation id="OP1-2" name="Show Point" type="one-way" reference="
showPoint">
<input id="11-2" name="longitude" dataType="double" optional="no" />
<input id="12-2" name="latitude" dataType="double" optional="no" />
</operation>
</component>

<component id="C3" name="Geo Names" type="service" binding="javascript"
endpoint="http>//...">

<operation id="OP1-3" name="Get address" type="request-response"
reference="getAddress">
<input id="11-3" name="longitude" dataType="double" optional="no" />
<input id="12-3" name="latitude" dataType="double" optional="no" />
<output id="01-3" name="city" dataType="string"/>
<output id="02-3" name="street" dataType="string"/>
</operation>

</component>

[-]

<constant id="CNST1" name="Latitude" dataType="double" value="46.0667"
feeds_configurationParameter="CP1-2"/>

<constant id="CNST2" name="Longitude" dataType="double" value="11.1333"
feeds_configurationParameter="CP2-2"/>

<constant id="CNST3" name="Zoom Level" dataType="int" value="13"
feeds_configurationParameter="CP3-2"/>

[-]

<dfConnector id="DF1" source_output="02-1" target_input="11-2" />

<dfConnector id="DF2" source_output="03-1" target_input="12-2" />

<dfConnector id="DF3" source_output="01-1" target_input="11-3" />

<dfConnector id="DF4" source_output="02-1" target_input="12-3" />
</mashup>

Listing 2 XML debnition of the example mashup application presented in Section 2

Figure 8 shows how the example scenario can be modeled using the graphical
syntax we adopt in the mashArt editor. It can be noticed that all the main compo-
sition features supported by the existing editor are also supported by the language
produced by our system, which are summarized on the right side of this bgure.

8.2 Yahoo! Pipes

In the following, we derive part of the mashup language underlying the popular
mashup platform Yahoo! Pipes from an example modeled in its graphical editor.

Conceptual Design of Sound, Custom Composition Languages 23

Selected feature names FnameSel

ui_component
Yahoo Local Search Google Map a one_way_for_ui
s e) p notification_for_ui
7/‘ javascript_for_ui
Events . [
... e A [settings service_component
Results found 0 - . request_respone_for_service
pipeUrl l‘::';::/" e one_way_for_service
. notification_for_service
Ttem selected . javascript_for_service
Latitude Longitude Longitude a
Zoom Level Label 111333 ata_component
e request_response_for_data
Zoom level javascript_for_data
e o max_N_operation_per_component
Geo Names Traffic Info e max_N_input_param_per_operation
s 9
> /Iil S RSS/Atom Reader e max_N_output_param_per_operation
KA > 4 p p —
o . e J o configuration_param
(" Getaddress 9 (e < Gt pranch
ranc
-> Longitude Latitude Show feed e merge
o =R 5 Feed
e data_flow
Load feed
Feed URL . user_interface
- single_page

Fig. 8 mashArt example composition model and the set of respective language features

Selected feature names FnameSel

for (text) [2)=lkad where (location) [21=1ed
. o data_flow
Name: searchFor Name: searchWhere _
Prompt: for Prompt where 8 service_component

o = o = REST_for_service
Position: . Position: 0 request_response_for_service
Default: pub Default: miami data_component

Debug: hotel Debug: boston RSS_for_data
= atom_for_data
0 .. | b request_response_for_data
N — .
Yahoo! Local 1= o max_1_operation_per_component
Find|text [wired] ithin 20 miles _ % | of flocation [wired] 1 tout i
@ e max_1_output_param_per_operation
- — ‘lmj e max_N_intput_param_per_operation

(-2
Web Service .
jPost as JSON to Web Service at URL: http://www.example.com/svc ¥ e manual_input
Path to item list: fext %& -

e_ . v o configuration_param
(PipeOutput | © vrancn

Fig. 9 Yahoo Pipes example composition and set of respective language features

Pipes is a data mashup tool for the retrieval and processing of web data feeds. Figure
9 shows an example Pipes model, which we use to analyze PipesO language features.
Pipesis based on tliata _flow paradigm. Itsupportdata _component and
service _component types to retrieve and process data, respectively. Specib-
cally, data source components types R®Sfor _data or atoms _for _data ,
while the only supported service component typ&ESTfor _service . Each
component in Pipes provides exactly one function, that is, each component repre-
sents one single operation. Therefarax 1 _operation _per _.component . All
operations are of type request-responsgjjest _response _for _data and
request _response _for _service). Each operation may have one or more
inputs max_NLinput _param _per _operation) but one and only one output

24 Stefano Soi, Florian Daniel, Fabio Casati

Mashup
- Input Name
o mm e mmm e N 9 Operation Parameter
| Type = request_response; » = = = = = = = = = = = Id 0.1 target
o / Name
1 o.N[Name
Type
Manuallnput 0.1
Reference N
Optional
0.N
1N has
Component ! 0.1 01 |on
Id Data Type Output 0.1 source) o.n [DfConnector |
Name Id has Parameter d
lo— 1
Type o.n| Name 1 o.n|Id
“ | Binding Definition Name
Endpoint 1 1
. feeds
STt N has
| Type = datafcomponem I o
; service_component; : has o.N[Confi ation 0.1 Constant
I Il
! Binding =rest | rss | atom; ! Parameter on|ld —
L.l . 4 O-NFd 1| Name
Name o1 Teeds Value o.N

Fig. 10 A composition language meta-model supporting the discussed features set

(max_1_output _param _per _operation). Manual inputs ifhanual _input)

are used to Pll the values of input Pelds, i.ecarffiguration _parameter (S).

Some inputs can be fed with both an input pipe and a manually set constant value.
Also in this example, the output of a component can be the source for an arbitrary
number of datal3ow connectors, allowing ondtanch the data Row into parallel
Bows. Input parameters, instead, have at most one input pipe; so, there is not need
for anymerge.

The language produced by the language generation algorithm (debned in Algo-
rithm 1) giving as input to it the described features is equivalent to the meta-model
illustrated in Figure 10. The respective language XSD specibcations and the XML
model of the scenario can be inspected online at http://goo.gl/hfkLO.

9 Realated work

The problem we aim to solve in this paper, i.e., supporting the design of custom
mashup/composition languages, has not been addressed before. Most contributions
in the area of mashup and service-oriented computing focus on the design of spe-
cibc languages taking into account, for example, quality of service [10], adaptivity
or context-awareness [11], energy efbciency [12], and similar. We instead propose
a language (the composition features) for the design of languagesdel weav-

ing approach (at the meta-model level) farlack-box composition languages (e.g.,
mashups), in the terminology of Heidenreich et al. [13]. The problem is very com-
plex, but our analysis of a large set of mashup tools and practices has shown that
the design space for non-mission-critical mashups (without fault handling, compen-
sations, transactions, etc.) is limited and manageable, up to the point where we can
provide mashup execution as a service for a large class of custom languages.

Conceptual Design of Sound, Custom Composition Languages 25

If we compare the meta-model in Figure 5 with, for example, that of BPEL [7]
(see also http://www.ebpml.org/wsper/wsper/ws-bpel20b.png) or XPDL, we notice
a bias towardimplicity. The reason for this is that mashup platforms (our target)
aim to simplify composition, typically moving complexity from the composition
to the components. For instance, it is common practice to have a deditated
filter component, instead of a blter construct at language level (see, for example,
Yahoo! Pipes). The meta-model we propose in this paper shares this interpretation
for both the component model and the composition model. Also Saeed and Pautasso
[14] have a similar perspective, but they focus on the design of a generic mashup
component description language only and do not elaborate on their composition.
Their model contains technology aspects (e.g., component wrappers), which are
instead a runtime aspect. We only propose the use of component types and bindings.

A proposal toward the standardization of a generic mashup language, covering
as many different uses as possible, is represented by the Open Mashup AllianceOs
EMML (Enterprise Mashup Markup Language) specibcation [15]. The target of the
initiative is however different: data mashups. In our view the key novelty mashups
brought to software integration is integration at the Ul layer. Hence, the focus on
data mashups only is too narrow, yet the language has already grown very complex
and has not been adopted so far by vendors outside the Alliance itself.

However, especially with the growing importance of cloud computing and com-
position as a service providers (such as mashup platforms or scientibc work3ows
[16]), we expect the importance of customization of composition languages - as a
means of diversibcation - to grow. Also Trummer and Faltings [17] work toward
composition as a service; yet, instead of focusing on custom language design, they
approach the problem from the provider side and study the optimal selection of ser-
vice composition algorithms - a task that could be eased if customers were allowed
to tailor the composition language to be executed to their very specibc needs.

10 Conclusion and future work

Component-based development and composition tools, such as mashup tools, are
an increasingly important reality in todayOs software development landscape. With
this paper, we aim to lower the barriers to the developmenofl composition
tools by approaching a relevant and central aspect of composition, i.e., the design
of composition languages. We specibcally focus on the problem of developing:
tom mashup languages and show that a sensible design of suitable abstractions and
reference specibcations enablegoaceptual development paradigm for mashup
languages that is based on the assisted selection of desired composition features and
allows developers to neglect low-level details. The paradigm improveseness
of design choices and fostersuse of language design knowledge.

In approaching this methodological problem, we also solve a relevant, non-
conventional composition problem per se, i.e., the composition of components (the
language patterns) that ater independent of each other and that require an inte-

26 Stefano Soi, Florian Daniel, Fabio Casati

gration that is much tighter than that of traditional component technologies, such
as web services, alreadyfore composing them. The key to solve this problem is
mapping composition features to a generic language meta-model, an artifact that
aim to rebne and evolullectively with the help of the scientibc community.

The idea is to make the meta-model, the feature reference specibcations, and the
language generator open source and to share it with the community. In this context,
we also want to equip the language design paradigm with an interactive language
design tool and a hosted execution engine that is able to run compositions developed
with any variation of language developed on top of the common meta-model. The
Pnal goal is to provide mashup executi@na service. This will eventually lower
the barriers to the development of custom mashup platforms.

References

1. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding Ul In-
tegration: A survey of problems, technologies and opportunities. Internet Computing, Volume
11, Number 3, May/June 2007, IEEE, Pages 59-66.

2. Daniel, F., Rodriguez, C., Roy Chowdhury, S., Motahari Nezhad, H.R., Casati, F.: Discov-
ery and Reuse of Composition Knowledge for Assisted Mashup Development. WWW 2012
Companion, pp. 493-494.

3. Daniel, F., Imran, M., Kling, F., Soi, S., Casati, F., Marchese, M.: Developing Domain-
Specibc Mashup Tools for End Users. WWW 2012 Companion, pp. 491-492.

4. Daniel, F., Casati, F., Benatallah, B., Shan, M.C.: Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. ER 2009, pp. 428-443.

5. Daniel, F. and Soi, S. and Tranquillini, S. and Casati, F. and Heng, C. and Yan, L. Distributed
orchestration of user interfaces. Information Systems, Volume 37, Number 6, September
2012, Elsevier, Pages 539556.

6. Baresi, L., Guinea, S.: Mashups with Mashlight. ICSOC 2010, pp. 711-712.

7. OASIS: Web Services Business Process Execution Language, Version 2.0, April 2007. [On-
line] http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html

8. OMG: Business Process Model and Notation, Version 2.0, January 2011. [Online]
http://www.omg.org/spec/BPMN/2.0/

9. W3C. Widget Packaging and Conbguration. W3C Working Draft, March 2011. [Online]
http://www.w3.0org/TR/widgets/

10. Mohabbati, B., Gasevic, D., Hatala, M., Asadi, M., Bagheri, E., Boskovic, M.: A Quality
Aggregation Model for Service-Oriented Software Product Lines Based on Variability and
Composition Patterns. ICSOC 2011, pp. 436-451.

11. Hermosillo, G., Seinturier, L., Duchien, L.: Creating Context-Adaptive Business Processes.
ICSOC 2010, pp. 228-242.

12. Hoesch-Klohe, K., Ghose, A.K.: Carbon-Aware Business Process Design in Abnoba. ICSOC
2010, pp. 551-556.

13. Heidenreich, F., Johannes, J}, lann, U., Zschaler, S.: A Close Look at Composition Lan-
guages. ACoM 2008.

14. Saeed, A. and Pautasso, C.: The mashup component description language. iiWAS 2011, pp.
311-316

15. Open Mashup Alliance: Enterprise Mashup Markup Language (EMML), May 2012. [Online]
http://www.openmashup.org/omadocs/v1.0/index.html

16. Blake, M.B., Tan, W., Rosenberg, F.: Composition as a Service. IEEE Internet Computing
14(1), 2010, pp. 78 - 82.

17. Trummer, |., Faltings, B.: Dynamically Selecting Composition Algorithms for Economical
Composition as a Service. ICSOC 2011, pp. 513-522.

