
Dealing with Collaborative Tasks in Process Mashups
Victoria Torres

Centro de Investigación en Métodos
de Producción de Software

Universitat Politècnica de València
46022 Valencia, Spain

vtorres@pros.upv.es

Jose Manuel Pérez
Instituto Valenciano de Vivienda

Generalitat Valenciana
46001 Valencia, Spain

perez_jmaram@gva.es

Florian Daniel
University of Trento

38126 Povo (TN), Italy

daniel@disi.unitn.it

Agnes Koschmider
Institute of Applied Informatics and

Formal Description Methods
Universität Karlsruhe
Karlsruhe, Germany

agnes.koschmider@aifb.uni-
karlsruhe.de

ABSTRACT
The potential that mashups can reach in web applications has not
yet been exploited in practice. In fact, many of the challenges that
introduce some of the most advanced types of mashups are not yet
solved and require new mechanisms that allow their proper speci-
fication and execution. Among the different types of identified
mashups, in this work we focus on process mashups, a type of
mashups where the integration and coordination of people, tasks,
services and UIs is required. Specifically, from the set of charac-
teristics found in this type of mashups we focus on the collabora-
tive aspect found in process tasks. To deal with it we provide a
modeling solution that extends a business process modeling lan-
guage such as BPMN to represent such characteristic. The solu-
tion has been defined within the context of OOWS4BP, a model-
driven engineering approach to deal with the development of
business process-driven web applications.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Languages.

General Terms
Design, Languages

Keywords
Mashups, Collaborative work, Web applications, Model driven
engineering.

1. INTRODUCTION
Mashups have gained high popularity in the last years. One reason
for this approval is the availability of user-friendly, visual mashup
tools for the creation of web applications with low technical and
programming knowledge. The simple creation of mashups attracts
a high user forum, however, the richness of mashups remains not
exploited. In fact, mashups are usually simple applications with
one page and a limited navigation. But mashups can be more than
a “simple” web application. Also the business domain can gain
benefits of advanced features of mashups. Sophisticated mashups

allow enterprises to compose heterogeneous resources in a light-
weight way.

Recently, the concept of a process mashups has emerged as a
more sophisticated form of mashups. Daniel et al. [17] describe a
process mashup through the junction of the three dimensions
called user, page and workflow. According to their definition, a
process mashup should allow concurrent work of multiple users,
incorporate multiple pages, and provide workflow support (speci-
fying control and data flow over human tasks). Even though the
concept of a process mashup shows promise, several challenges
remain to be solved in order to offer tool support for them.

In this work, we specifically focus on collaboration in process
mashups, which requires a broader conception of collaborative
work than the one usually conceived. In particular we want to
specify and build process mashups where different users work
together not just at the process level (as common business process
modeling languages support) but also at the task level. That is, we
strive for an approach in which users share individual tasks and
perform them concurrently. Even though all the involved users are
required to complete the task, the role played in it by each user
can differ significantly (e.g. one role can behave as supervisor
while another one can behave as performer). This differentiation
in behavior can determine the type of task view required by each
user during task execution.

We base our proposal on the model-driven approach developed in
[7] and present an extension to it that deals with the modeling
requirements that introduce process mashups. In the current ap-
proach, a process mashup is designed starting from a process
model, which, after being complemented with other models, is
translated into executable code. The main advantage of this mod-
el-driven approach is that it allows us to separate the system speci-
fication from the technology used to implement such systems.
Currently, mashups are built based on specific data and function-
ality provided by third parties which implies that the system is
highly tied to a specific provider. While this approach speeds up
the combination of different sources in the short term, evolving
such systems becomes difficult since the system is expressed in
terms of a specific partner.

However, the suggested model-driven generation of process
mashups based on process models requires an extension of com-
mon, available process modeling languages. In this paper we will
show how to apply our approach for the Business Process Model-
ing Notation (BPMN), which is commonly used. In particular, the
BPMN standard lacks of concept support for the coordination of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Mashups 2011, September 2011, Lugano, Switzerland
Copyright 2011 ACM 978-1-4503-0823-6/11/09…$10.00.

actors of shared tasks. Even though some approaches discuss
extensions to the notation [10] these just deal with this aspect
superficially, focusing mainly on the graphical representation and
not on the underlying semantics that entails such collaboration.
This means that all aspects of the multi-user dimension (of a
process mashup) cannot be supported yet. This failing calls for
appropriate extensions of BPMN that will be proposed in this
paper. In the web engineering field we find different proposals
(such as OOHDM, UWE, WebML, OOWS4BP, UWAT+ or
MIDAS) that successfully deal with the development of web
applications supporting business processes execution. However,
none of them provides support to the collaborative work required
in the process mashups applications we are interested in.

The remainder of the paper is structured as follows. First, in sec-
tion 2 we present a case study that exemplifies the problem being
faced in this work. Then, in section 3 we briefly explain the pro-
cess mashup concept based on the three dimensions: user, page,
and workflow. In section 4 we make a revision over related works
and tools for process mashup construction. In section 5 we pro-
vide an overview of the model-driven approach suggested for the
construction of process mashups. Next, in section 6 we focus on
the collaborative aspect of process mashups and present the mod-
eling solution proposed in this work. Finally, section 7 provides
some conclusions and further work.

2. CASE STUDY
The case study presented here refers to the service provided by the
Valencian Regional Ministry of Housing (hereafter MoH) to rent
flats to its citizens. The BPMN diagram representing such service
is depicted in Figure 1. In it we can see that the process is per-
formed mainly by two different roles, which are the operator (an
employee from the MoH) and the citizen. However, one of the
tasks included in the process (specifically the flat booking nego-
tiation task) is performed collaboratively by these two roles and
also, if necessary, by a third one. This particularity is represented
in the BPMN diagram by means of an annotation attached to the
flat booking negotiation task due to the lack of support found in
the notation.

The first step in the process refers to the system citizen registra-
tion. In it, the citizen provides, by means of the e-government web
application, her personal data (i.e. name, birth date, nationality or
annual income) as well as information related to flat preferences
(i.e. location or size).

Then, the citizen can either perform the search of the flat by s/her
own or decide to delegate such search to an operator from the
regional ministry. To perform such search the citizen is provided
with a UI that integrates data and functionality coming from dif-
ferent sources. For instance, in addition to a flat textual descrip-
tion that is kept in the organization databases, the citizen is pro-
vided with (1) a map showing the location of the flat (provided by
the Google maps service), (2) a set of pictures from the flat sur-
rounding area (provided by the Flickr service), (3) a translator
service to translate the flat description into different languages
(e.g. provided by the Google translate service), and (4) a currency
converter (e.g. provided by Exchange Rate).

When the flat search and selection is delegated to the operator,
s/he is provided with a different UI to perform such task. The type
of differences found in this UI refers to the displayed data and
also to the provided functionality. On the one hand, the displayed
data includes also citizen data (e.g. housing needs or family de-
tails) and flat data (e.g. flat owner conditions). On the other hand,

the provided functionality includes more advanced filter condi-
tions that allow operators to perform a more detailed flat search.

Once the flat search and selection is completed, the negotiation of
the allocation is started. This task is a collaborative task that is
performed jointly and at the same time by different users. This
means that all the involved users need to participate concurrently
in the task to complete it. Usually, the citizen and the operator
perform the task jointly. However, when there is a conflict be-
cause another citizen has also booked the flat, a third role (the
coordinator) comes into play. The collaborative work is achieved
by means of UIs that are provided to all the involved users. All
these UIs share the same data (all of them visualize the same flat
data - pictures and descriptions) and functionality (i.e. a chat
service). However, based on the user needs these UIs are adapted
by adding extra data and functionality. For instance, the UI pro-
vided to the coordinator includes also citizen’s sensitive data (e.g.
data provided by the Treasury) and functionality (e.g. to reassign
the case to another operator) that need to be hidden to both the
citizen and the operator.

Public Administration
Operator Citizen

Register into
the system

Rental flat search
and selection

Formalize
rental

Yes

Yes

no

Rental flat search
and selection

Flat booking
negotiation

Yes

Perform search?

No

Sucessful
negotiation?

Restart
process?

No

This task is performed
collaboratively by an

operator, the citizen and
excepcionally by a

coordinator

Figure 1 BP diagram for the flat rental process

Finally, if the negotiation task is performed successfully the oper-
ator finalizes the process by formalizing the rental of the flat by
means of a contract. On the contrary, the process can either start
again to look for another flat or finish because the coordinator
decides that there is no flat availability for the applicant.

After describing the rental flat scenario, if we analyze it we ob-
serve that to implement the flat rental process we need to provide

users with UIs that are made up of data and functionality coming
from different sources (maps, pictures, text translators, etc.) avail-
able on the Web. This is similar to what is done in mashups. In
addition, the UIs are driven by a control flow in charge of coordi-
nating the execution of the different steps (tasks) that make up the
flat rental process. This coordination involves also the different
roles taking part in the process and the service invocation that is
done to support the process tasks. Another particularity found in
the scenario relates to task realization. Specifically, we observe
that the flat booking negotiation task is performed collaboratively
at the same time by more than one role. This collaborative work
that can be easily found in many situations in real life cannot be
explicitly represented in the system models (we already men-
tioned that we had to represent such information in the BPMN
diagram by means of a task annotation).

Therefore, among the characteristics found in the flat rental sce-
nario we observe that the system requires the integration and
coordination of tasks, services and people to achieve the flat rental
goal. A similar approach that combines disparate services coming
from different sources is found in mashup applications. However,
it is clear that the scenario here presents new challenges that are
not covered by typical mashup applications. In fact, to deal with
the coordination required in the scenario a more advanced type of
mashup is needed. According to the different types of process
mashups identified by Daniel et al. in [17], the described scenario
corresponds to the most advanced type. In the following section
we make a revision over the key ingredients that define a process
mashup and based on the necessities of the current scenario we
state the requirements that should be fulfilled to properly address
the specification and execution of applications of this type.

3. PROCESS MASHUPS
Process mashups were first introduced by [18] as an advanced
type of mashups where the integration does not only refer to the
data and presentation layers but also to the business process
layer. However, Daniel et al. in [17] went a step further and con-
sidered also the integration of other aspects such as users and
pages. To better understand how to overcome the construction of
web applications supporting a scenario similar to the one present-
ed previously, in this section we take the user, pages and work-
flow dimensions introduced in [17] to explain the process mashup
concept and contextualize it in the flat rental case study. Then, we
state the requirements that should be addressed to properly deal
with the specification and execution of process mashup applica-
tions.

3.1 Multiple users
Giving support to multiple users means allowing two or more
users to concurrently operate on the same instance of a mashup
application. In the flat rental scenario presented before we find
this type of collaboration in the flat booking negotiation task.
There, up to three different roles (citizen, operator and coordina-
tor) work concurrently on the same data to perform this task. The
set of provided data comes from the combination of different
sources (Google Maps, Flickr and a local service developed and
maintained by the MoH) providing flat, citizen and operator de-
tails. However, the view of the combined sources can differ de-
pending on the type of user accessing to it. The main reason to
provide different views over the same mashup would be to adapt
the combined data provided to the user according to her/his needs
(needs that are directly related to the responsibility of the user
over the collaborative task).

3.1.1 Modeling requirements
In order to properly deal with the multiple users feature found in
process mashups we need modeling mechanisms that allows us to:

• Req1. Identify the different types of roles involved in
the process.

• Req2. Identify the type of participation expected from
each type of role (if it requires a collaborative participa-
tion or not).

• Req3. Identify the mashup up view1 required by each
type of role according to their task responsibilities. The
definition of these views would involve not only hiding
some of the components that make up the mashup ac-
cording to the profile of the involved role but also de-
ciding what type of grant access each type of role has
over the mashup components.

3.1.2 Execution requirements
Regarding execution requirements, to ensure the correct execution
of multiple users in a process mashup we need a technological
infrastructure that provides:

• Req4. Access mechanisms that allow adapting the sys-
tem according to the type of user accessing to it.

• Req5. Concurrent access to the same instance of a
mashup when we are dealing with collaborative tasks.

3.2 Multiple pages
Providing support to multiple pages involves organizing the dif-
ferent pieces that make up a mashup into one or more pages. This
organization is done usually according to conceptual issues (the
details of the combined data could be better organized in different
pages) or size issues (the UI gets too overloaded due to amount of
combined sources). For instance, the rental flat search and selec-
tion task combines a set of sources which allows enriching the flat
data that is provided to the citizen. These sources refer to a map
provided by Google maps and pictures provided by Flickr. In this
case, the map and the pictures could be organized in separate
pages that would be reached by the user through different hyper-
links.

3.2.1 Modeling requirements
In order to properly deal with the multiple pages feature we need
modeling mechanisms that allows us to:

• Req6. Organize mashup components in one or multiple
pages.

• Req7. Define a navigational structure that allows users
to access the different pages that may support the execu-
tion of one task. Note that this is different from the tra-
ditional control flow structure that supports “naviga-
tion” (progress) between tasks.

3.2.2 Execution requirements
The technological infrastructure needed to ensure that mashup
components are executed properly independently of their organi-
zation are that:

• Req8. All mashup components can be reached either
from the same page or by navigating through a hyper-
link.

1 A mashup view can be defined as the way in which a specific

user visualizes and/or interacts with the combined sources that
make up the mashup.

• Req9. The state of the mashup is kept while the user
navigates through its structure (different pages).

3.3 Workflow
The workflow dimension refers to the coordination of the different
elements (people, UIs, data and services) that are involved in a
process mashups to accomplish a specific goal. In the flat rental
scenario we can see how different roles (citizen, operator and
coordinator) participate in the process by taking responsibilities
over some of the tasks. To successfully complete their assigned
tasks, each user is provided with a UI that includes all the required
data and functionality required in each case. The provided data
and functionality can come from the MoH system and/or from
external sources, which in turn may be combined to help the user
during the execution of the corresponding task.

3.3.1 Modeling requirements
In order to properly deal with the workflow dimension we need
modeling mechanisms that allows us to:

• Req10. Specify the control flow that establishes the or-
der in which tasks should be executed as well as the
conditions that may diverge or join different process
paths.

• Req11. Specify the data flow that needs to be propagat-
ed not only between connected tasks but also within the
same task (to specify how mashed up UI elements and
services are connected).

• Req12. Specify when a collaborative task can be stated
as completed (this was clear when the task was per-
formed just by one role but when the work is performed
collaboratively this needs to be explicitly defined).

• Req13. Specify the different services that are used and
that are combined to support a specific process task.

3.3.2 Execution requirements
Regarding execution requirements, to ensure the correct execution
of the workflow in a process mashup we need a technological
infrastructure that ensures:

• Req14. That all the roles that are required in a collabora-
tive task participate in it.

• Req15. The finalization of a collaborative task.
• Req16. That all the services supporting a specific task

are invoked properly during task execution.
To properly deal with the construction of process mashups within
a model driven approach it is necessary to address all these re-
quirements at both the modeling and execution level. On the one
hand at the modeling level by providing the expressiveness re-
quired to specify such applications. On the other hand at the exe-
cution level to ensure that applications behave as expected. In the
following section we focus on the requirements at the modeling
level introducing the mechanism that allow specifying such sys-
tems.

4. COLLABORATIVE TASKS
In this section we are going to present the mechanisms that have
been defined to represent collaborative tasks in process mashups
at the modeling level. These mechanisms have been defined in the
context of OOWS4BP [7], a web engineering approach for the
construction of business process-driven web applications. In
OOWS4BP, web applications are described by means of a set of
models aimed at representing different aspects of the system (e.g.
structure, behavior, navigation and presentation). Among these
models we find the business process model that is used to define

all the business processes that need to be supported by the web
application. This model is built in terms of a business process
modeling language (specifically BPMN) and provides a set of
primitives that allows describing processes in terms of tasks, roles
in charge of these tasks and finally the sequence that is allowed to
complete the process. However, the semantics attached to process
tasks refer to work that is performed by a specific type of user (a
user that is represented by an organizational role in the BPMN
notation). Initially, this expressivity may seem enough. Neverthe-
less, we can also require, as highlighted in the presented scenario,
a more powerful expressiveness to represent that two or more
roles participate in the same task at the same time to accomplish
the task goal and to progress within the process. Therefore, we
need new mechanisms that allow us to represent such collabora-
tion. To deal with the collaborative aspect presented in process
mashups in this work we introduce a new model, which is the
roles model. This model allows us to better represent the inner
reality of shared tasks identifying not only the set of roles in-
volved in the task but also their different responsibilities.
In addition, the business process model is linked to other models
to define the behavior and the UI (if required) of each process
task. On the one hand, the behavior is defined by associating a
process task with an operation that is provided either by the organ-
izational system (represented by an operation defined in the struc-
tural model) or by an external partner (represented by an opera-
tion defined in the services model). On the other hand, the UI
required by a process task is defined in the navigational model
associated to the involved role.

Figure 2 depicts the set of models used to represent tasks that are
performed jointly by different roles and that required a different
type of UI according to their responsibility over the collaborative
task.

Ro
le
-­‐2

Ro
le
-­‐1

Task 1
<<collaborative-­‐task>>

Task 2

Task 3

Task 4

Task-­‐2

Behaviour-­‐a Behaviour-­‐b

Role-­‐1 Role-­‐2 Role-­‐3

X

…

Role-­‐3

Roles	
 Model

Business	
 ProcessModel

NavigationalModel

Figure 2 Representing collaborative tasks

In the following subsections we present in more detail each of
these models and make explicit how they deal with the modeling
requirements stated in section 3.

4.1 Business Process Model
To specify in the business process model the existence of tasks
that are preformed jointly by two or more roles we added to the
task concept a new property named “collaborative”. This new
property is defined as Boolean and its value determines whether
the task is defined or not as collaborative. Graphically, these
collaborative tasks can be identified in the diagram by means of
the <<collaborative-task>> label that is included in the task graph-
ical element. Even though these tasks can be placed within any

lane of the diagram, this will not link them to the corresponding
role. Instead, the set of roles in charge of this task are specified
separately in the roles model, which is explained in the following
subsection. Initially, one may think that using directly the expres-
siveness provided by BPMN would be enough to represent such
collaboration (i.e. including a new lane in the diagram that repre-
sents all the involved roles and placing the shared task there,
replicating the shared task for each of the involved roles or plac-
ing the shared task in the diagram in a way that touches all the
involved roles). However, these solutions usually introduce com-
plexity into the diagram and also limit us since they do not allow
us to specify the additional behavior of the involved roles (which
becomes important information to be represented in the model).

Figure 3 shows the business process model for the flat rental case
study using the extension previously explained. As this figure
shows, the complexity of the diagram has not been increased by
the introduced extension. However, it is still very easy to identify
which tasks require the collaboration of some roles.

Public Administration
Operator Citizen

Register into
the system

Rental flat search
and selection

Formalize
rental

Yes

Yes

no

Rental flat search
and selection

«collaborative-task»
Flat booking
negotiation

Yes

Perform
search?

No

Sucessful
negotiation?

Restart
process?

No

Figure 3 BP diagram for the flat rental process

4.1.1 Support for the modeling process Mashups
The expressivity provided by the business process model allows
us to deal with some of the requirements stated in section 3:

• By means of lanes, BPMN allows us to identify the dif-
ferent types of roles involved in a process. Specifically,
in this model we specify those roles that do not share re-
sponsibilities over individual tasks. The rest of roles that
participate collaboratively in some tasks are defined
separately in the roles model (req.1)

• By means of the flow object elements provided by
BPMN (activities, gateways, and events) we can specify
the control flow that defines the different paths that can
be followed during process execution (req.10)

4.2 Roles Model
With the extension defined in the business process model we are
only capable of specifying which tasks are going to be performed
collaboratively by more than one role. However, we still need to
specify which roles are involved in a collaborative task and what
type of responsibility they have over it. Therefore, the roles model
allows us to specify:

(1) The different roles involved in a specific task
(2) The different responsibilities in the task
(3) The optional involvement of a role in a shared task
(4) The role responsible of the task

The roles model has been defined as a feature model [19] where
the different roles that can participate in a collaborative and
shared task are represented as features in the tree. Specifically, the
roles model has been defined as a three-level tree (see Figure 4)
where we specify: the collaborative task (level 1), the different
responsibilities identified over the task (level 2), and the set of
roles involved in the task and behaving as one of the identified
responsibilities (level 3). In addition, associated to the role in-
volvement identified at level 2 we can also specify if such in-
volvements are mandatory or optional. This is depicted graphical-
ly with a white circle attached to the association that links such
involvement with the task at level 1. The roles model metamodel,
both, the task and the role concepts are imported from the BPMN
metamodel. Each task specified in the model as “collaborative”
can be associated with one or more responsibilities (cardinality
defined between task and task responsibility classes). These re-
sponsibilities can be defined either as mandatory or optional. In
turn, task responsibilities can be played by one or more different
roles. The main reason to introduce the “role involvement” con-
cept at level 2 is because normally, for each different responsibil-
ity identified in a task, the associated roles will require a different
software support to participate in the task.

Flat	
 booking
negotiation

customer moderator

Citizen Operator Coordinator

Task

Role	

involvement in	

the task

Roles	
 involved
in	
 the task

optional
mandatory

Task
Responsible role

contractor

Figure 4 Roles model associated to the flat booking negotiation
collaborative task

Figure 4 shows the roles model for the flat booking negotiation
collaborative task. In this case, this task is going to be performed
by several roles that are going to participate in the task with dif-
ferent responsibilities, as customer, contractor and moderator. In
addition, the diagram indicates that while the roles behaving as
customer and contractor are mandatorily participating in the task,
the roles behaving as moderators are optional in the task. Then, at
the bottom level we have three different roles (citizen, operator
and coordinator) each one participating with a different involve-
ment (as customer, contractor and moderator respectively). This

means that all of them have different responsibilities over the task
and different UIs will be required in each case to satisfy their
specific needs. Finally, the operator role has been assigned in
charge of the task, meaning that this role will be responsible for its
completion.

4.2.1 Support for the modeling process mashups
The expressivity provided by the roles model addresses some of
the requirements stated in section 3 as follows:

• The different roles specified at the bottom level in the
tree specify the roles participating collaboratively in a
shared task (req.1)

• The different responsibilities identified at level two in
the tree allows us to specify the different behavior ex-
pected by each of the roles involved in a shared task
(req.2)

• By means of the “responsible” attribute attached to the
task concept we can specify the role responsible of the
task, e.g. the role in charge to complete the task (req.12)

4.3 Navigational Model
Before generating the web application that will give support to the
process mashup, we still need to specify (1) the UIs that are re-
quired by the roles that participate in the process, and (2) the
navigation mechanisms that allow users reaching such UIs. In the
OOWS4BP approach, this specification is done through the navi-
gational model. This model is built in two steps. First of all, an
“Authoring-in-the-large” view of the system is constructed (see
Figure 6).

operator

«context»
Intranet

E

«process-­‐context»
Flat	
 rental

S

«context»
Home

E

«context»
Flat	
 Management

S

«context»
Booking

Management

S

«context»
News

E

Figure 5 “Authoring-in-the-large” view for the operator role

In this view we define part of the navigational structure of the
system for each type of role. This navigational structure is made
up of interaction units (IUs) that can be defined of two types
depending on how these can be reached by the user. On the one
hand, exploration IUs (depicted graphically with an “E” label) are
always accessible via hyperlinks to the user. On the other hand,
sequential IUs (depicted graphically with an “S” label) can only
be reached from an exploration IU. Figure 6 shows an excerpt of
the navigational model defined for the operator role. This model
defines direct access to three different IU (intranet, home and
news) and sequential access to other three (flat management,
booking management and flat rental). One of these sequential IUs
(flat rental) represents the entry point to the flat rental process.

Once the “Authoring-in-the-large” view is completed we can start
with the “Authoring-in-the-small” view (see Figure 6 and Figure
7), which is used to specify in detail the data and functional view
of the system for each type of user. In the OOWS4BP approach

we have a specific type of IU to represent the views that relate to
process tasks. The particularity of these IUs (which are represent-
ed by the “process-context” primitive) is that the navigation fol-
lowed by users is driven by the process (and not by the own user)
to ensure that the user completes her/his assigned tasks. Figure 6
and Figure 7 depict respectively the IUs defined for the operator
and citizen roles for the flat booking negotiation task. As these
figures show, each IU includes an “activity-container” for each
task where the corresponding role participates. The “activity-
container” primitive represents the view of the system to accom-
plish a specific process task. For instance, as Figure 6 and Figure
7 show, these include three different “activity-containers” that
refer to the three different tasks where the operator and the citizen
participate in the process (for space constraints only the flat book-
ing negotiation activity-container is detailed). In addition, these
“activity-containers” are made up of two different types of ele-
ments that refer to “main-AIU” or “complementary-AIU”. On the
one hand, “main-AIUs” are used to include the data and function-
ality that has to be necessarily included to complete the corre-
sponding task. In collaborative tasks, as it is the case for the flat
booking negotiation task, only the role defined in the roles model
as “responsible” of the task will include such “main-AIU” (see
Figure 6). On the other hand, “complementary-AIUs” are used to
provide roles with data and functionality that is used to facilitate
their participation in the task (e.g. providing the coordinator with
data about citizen house properties or debts).

«process-­‐context»
Rental flat

E

«activity-­‐container» flat Booking Negotiation

«main-­‐AIU»
Flat booking negotiation

«class-­‐view»
booking

-­‐allocateFlat()

«complementary-­‐AIU»
Flat Details

«class-­‐view»
flat

-­‐address
-­‐municipality
-­‐country
-­‐numOfRooms
-­‐numOfmeters
-­‐prize

«service-­‐view»
GoogleMaps

+staticmap()

[geographicCoord]

«service-­‐view»
Flickr

+flickr.galleries.getPhotos()

[galleryId]

«class-­‐view»
booking

[id_flat]

«complementary-­‐AIU»
Communication

«service-­‐view»
ChatService

-­‐invited_users

+initiateChat()
+inviteUsers()
+closeChat()
+sendMessage()

«activity-­‐container» Rental flat search and selection

«activity-­‐container» Formalize rental

Figure 6 Operator role Process-context defined for the rental

flat process

Then, within a “main-AIU” and “complementary-AIU” we in-
clude views over the data and services that have already been
defined in the system. This data and functionality can came either
from the own system or from external providers. When the data
comes from the own system we use the “class-view” primitive
which allows us to define the data and functionality associated to
a class defined in the local system that we want to make available
to the user. On the contrary, when the data or functionality comes
from a third party provider we use the “service-view” primitive
which allows us defining the data and functionality that we want
to use in this specific IU. For instance, in Figure 6 we can see that
the “main-AIU” includes a view over the booking class. This view
makes accessible for the operator role the allocateFlat() function
which is the functionality that allows indicating that the task has
been completed.

The different views that are included either in a “main-AIU” or in
a “complementary-AIU” can be connected via relationships which
are called “contextual dependency relationships”. These can be
defined either as “direct” or “indirect”. Direct relationships (which
are represented by a solid arrow) allow passing data between
different views. By doing so, we can retrieve the appropriate data
of the connected view. For instance, in Figure 6 there is a direct
relationship between the booking “class-view” and the flat “class-
view” which is used to pass the identifier of the flat between the
connected views. On the other hand, indirect relationships (which
are represented by a dotted arrow) specify not only the data passed
between views but also that the connected view is reached via a
hyperlink. This type of link can be seen in Figure 7. In this case,
the photos and the map provided by the external providers Google
and Flickr are reached by the user via a hyperlink. By using this
type of link we are splitting the mashed up components into dif-
ferent pages that can be reached through the corresponding hyper-
link.

«process-­‐context»
Rental flat

E

«activity-­‐container» flat Booking Negotiation.customer

«complementary-­‐AIU»
Flat booking negotiation

«class-­‐view»
flat

-­‐address
-­‐municipality
-­‐country
-­‐numOfRooms
-­‐numOfmeters
-­‐prize

«service-­‐view»
GoogleMaps

+staticmap()

[geographicCoord]

«service-­‐view»
Flickr

+flickr.galleries.getPhotos()

«class-­‐view»
booking

-­‐expiration_date [id_flat]

«complementary-­‐AIU»
Communication

«service-­‐view»
ChatService

-­‐invited_users

+acceptChatInvitation ()
+sendMessage()
+leaveChat()

«activity-­‐container» Register into the system

«activity-­‐container» Rental flat search and selection

Figure 7 Citizen role Process-context defined for the rental flat

process

4.3.1 Support for the modeling process Mashups
The expressivity provided by the navigational model addresses
some of the requirements stated in section 3 as follows:

• The “complementary-AIU” primitive allows us to per-
sonalize the UI required by a specific role according to
her/his needs (req.3)

• The organization of Mashup components into one or
multiple pages is implicitly defined by the use of direct
and indirect relationships. While direct relationships
keep all the mashed up components within the same
page, the indirect relationship splits the connected com-
ponents into different pages (one per each relationship)
(req.6)

• The navigation that results from the use of indirect rela-
tionships constitutes the mechanisms used to navigate
through the different pages that contain the mashed up
components (req.7)

• The attributes that are associated to direct and indirect
relationships allows us to define the data that is passed
from one component to another and that serves as input
parameter for the connected component. (req.11)

• The “main-AIU” primitive allows us to specify the
functionality that is associated to the process task and
whose execution drives to the completion of the task
(req.13)

5. RELATED WORK
The different challenges that arise for the specification and con-
struction of process mashups lead us to consider approaches and
tools developed by the web engineering, the mashup, and the
business process communities.

Within the web engineering community we find a set of model
driven approaches (OOHDM [4], UWE [5], OO-H [5], WebML
[3], OOWS [7], UWAT+ [1], [2], Hera [8], MIDAS [6]) that
allow the specification and construction of web applications sup-
porting the execution of business processes. These proposals
gather in a set of models the different aspects that represent a web
application (e.g. structure, behavior, navigation and presentation
application). Then, based on the application of model transfor-
mations these models are transformed into a ready to use web
application that is implemented in a specific technology. Even
though these proposals deal with the challenges that introduce the
execution of a business processes within the context of a web
application (proper navigation between tasks, collaboration of
different users to accomplish a specific goal or process state
maintenance), none of them provides support to the collaborative
work required in the process mashups applications we are inter-
ested in. This particularity cannot be defined in the models that
represent the system and therefore it is not considered during the
generation process.

Regarding the mashup community we find a plethora of commer-
cial tools (e.g., Yahoo! Pipes or JackBe Presto) and prototypes
designed in research projects (e.g. MashArt or ServFace) to sup-
port the mashup creation. Out of these tools only a limited number
of tools allows to collaboratively work on a mashup. In fact, most
of them are conceived to build mashup pages that are used by a
single user not requiring the coordination of UIs and people re-
quired in a process mashup. Opposite to this we find MarcoFlow
[9], a design and execution environment that allows orchestrating
distributed UIs based on BPEL4UI, a BPEL extension to deal with
UI and user management. MarcoFlow supports the development
of mashups that can be concurrently used by multiple users, but it
does not do so by systematically distinguishing the roles and
responsibilities of the involved actors as proposed in this paper.
BPEL4UI is at a much lower level of abstraction.

In the literature we do not find many proposals addressing such
collaboration. In fact, we only have found the solution presented
by Müller and Rogge-Solti in [10]. In it, the authors propose to
represent roles by colors instead of lanes. The idea is associating
roles with colors and using these colors in tasks to represent the
assignment to a specific role. As a result, when a task is per-
formed by just one role, the task will be colored with the corre-
sponding color. On the contrary when the task is performed by
more than one role, the task is represented either as many times as
roles are involved in the task (each one with the corresponding
color) or as a task with vertical stripes including the colors that
represent the involved roles.

Finally, to deal with the access control required in collaborative
tasks we need mechanisms to manage the different access rights
associated to each involved role. The most popular access right
mechanism is the RBAC model [12], which has been applied for
business processes [13, 14]. In case that the organizational model
changes, access rights need also to be adopted. [15, 16] suggested

an approach to cope with changes in organizational models and to
propagate these changes to process models.

6. CONCLUSIONS AND FURTHER WORK
In this paper we have stated the different challenges that entail the
specification of process mashups and, focusing on the collabora-
tive aspect, we have presented the extension designed in the
OOWS4BP model-driven approach at the modeling level to deal
with it. Introducing such semantics within a BP model turns cru-
cial since we are proposing a development process based on mod-
el transformations. This means that all the information that is not
represented in the models cannot be used during the transfor-
mation process and therefore will require manual changes over the
generated artifacts.

The introduction of the roles model to detail the set of roles in-
volved in a shared task allows us to enrich the business process
model without increasing its complexity. Even that within a mod-
el-driven development process models are used are input artifacts
for the generation process, these are also intended for human
beings. Therefore, it is very important to maintain the understand-
ing and simplicity of such models.

As future work we plan to address also the challenges that we
have identified at the execution level. For such purpose we will
explore the most appropriate technological infrastructure to ensure
the proper execution of process mashups. In addition, we also
want to define and implement the model transformations that
allow us to generate process mashups from the system specifica-
tion. These model transformations will be implemented within the
Bizzy project (http://www.pros.upv.es/labs/projects/bizzy/) as an
extension to the OOWS approach to provide the required tool
support for the construction of process mashups.

7. ACKNOWLEDGEMENTS
This work has been developed with the support of MICINN under
the project EVERYWARE TIN2010-18011

8. REFERENCES
[1] Distante, D., Rossi, G., & Canfora, G. 2007. Modeling busi-

ness processes in web applications: an analysis framework.
In Y. Cho, R. L. Wainwright, H. Haddad, S. Y. Shin, & Y. W.
Koo (Eds.) SAC, 1677–1682.

[2] Distante, D., Rossi, G., Canfora, G., & Tilley, S. R. 2007. A
comprehensive design model for integrating business pro-
cesses in web applications. Int. J. Web Eng. Technol., 3(1),
43–72.

[3] Brambilla, M., Ceri, S., Fraternali, P., & Manolescu, I. 2006.
Process modeling in web applications. ACM Trans. Softw.
Eng. Methodol., 15(4), 360–409.

[4] Schmid, H. A., & Rossi, G. 2004. Modeling and designing
processes in e-commerce applications. IEEE Internet Compu-
ting, 8(1), 19–27.

[5] Koch, N., Kraus, A., Cachero, C., & Meliá, S. 2004. Integra-
tion of business processes in web application models. J. Web
Eng., 3(1), 22–49.

[6] Koch, N., Kraus, A., Cachero, C., & Meliá, S. 2004. Integra-
tion of business processes in web application models. J. Web
Eng., 3(1), 22–49.

[7] Torres, V.; Giner, P. & Pelechano, V. 2010. Developing BP-
driven web applications through the use of MDE techniques.
Software and Systems Modeling, Springer Berlin / Heidel-
berg

[8] Houben, G.-J., van der Sluijs, K., Barna, P., Broekstra, J.,
S. C., Fiala, Z., & Frasincar, F. 2008. Web Engineering:
Modelling and Implementing Web Applications, chap. HE-
RA, 263–301. Human-Computer Interaction Series. Springer
London.

[9] Daniel, F.; Soi, S. & Casati, F. 2010: Distributed User Inter-
face Orchestration: On the Composition of Multi-User
(Search) Applications. SeCO Workshop, 182-191

[10] Müller, R. & Rogge-Solti, A. 2011. BPMN for Healthcare
Processes. In Proceedings of the 3rd Central-European
Workshop on Services and their Composition, ZEUS 2011,
Karlsruhe, Germany, CEUR-WS.org, 705, 65-72

[11] OMG: Business Process Model and Notation (BPMN) –
Version 2.0 (January 2011)

[12] Sandhu, R., Coyne, E., Feinstein, H. & Youman, C. 1996.
Role-Based Access Control Models. IEEE Computer, 29(2).

[13] Liu, P. & Chen, Z. 2004. An Extended RBAC Model for
Web Services in Business Process. E-Commerce Technology
for Dynamic E-Business, IEEE International Conference on,
CEC-East, IEEE Computer Society, 0, 100-107

[14] Strembeck, M. & Mendling, J. 2010. Generic Algorithms for
Consistency Checking of Mutual-Exclusion and Binding
Constraints in a Business Process Context. OTM Conferences
(1), 204-221

[15] Rinderle, S. & Reichert, M. 2005. On the Controlled Evolu-
tion of Access Rules in Cooperative Information Systems
OTM Conferences (1), 238-255

[16] Rinderle-Ma, S. & Reichert, M. 2008. Managing the Life
Cycle of Access Rules in CEOSIS EDOC, 257-266

[17] Daniel, F., Koschmider, A., Nestler, T., Roy, M. & Namoun,
A. 2010. Toward Process Mashups: Key Ingredients and
Open Research Challenges. Proceedings of the Workshop on
Web APIs and Service Mashups (Mashups), ACM.

[18] Young, G.; Daley, E.; Gualtieri, M.; Lo, H. & Ashour, M.
The Mashup Opportunity. Forrester Report

[19] Czarnecki, K. 1998. Generative Programming: Principles
and Techniques of Software Engineering Based on Automat-
ed Configuration and Fragment-Based Component Models.
PhD thesis, Technical University of Ilmenau.

