
Se
rv

ic
e

M
as

hu
ps

44 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

Understanding
Mashup Development

Jin Yu
and Boualem Benatallah
University of New South Wales

Fabio Casati
and Florian Daniel
University of Trento

Web mashups are Web applications developed using contents and services

available online. Despite rapidly increasing interest in mashups over the past

two years, comprehensive development tools and frameworks are lacking,

and in most cases mashing up a new application implies a significant manual

programming effort. This article overviews current tools, frameworks, and

trends that aim to facilitate mashup development. The authors use a set of

characteristic dimensions to highlight the strengths and weaknesses of some

representative approaches.

W eb mashups1 are Web applica-
tions generated by combining
content, presentation, or ap-

plication functionality from disparate
Web sources. They aim to combine
these sources to create useful new ap-
plications or services. Content and pre-
sentation elements typically come in
the form of RSS or Atom feeds, vari-
ous XML formats, or as HTML, Shock-
Wave Flash (SWF), or other graphical
elements. Publicly available APIs (in
JavaScript, for example) typically pro-
vide application functionality. Content,
functionality, and presentation are then
glued together in disparate ways: via
JavaScript in the browser, server-side
scripting languages such as Hypertext
Preprocessor (PHP) or Ruby, or tradi-
tional languages such as Java or C#.

“Mashup” has become one of the
hottest buzzwords in the Web applica-
tions area, and many companies and
institutions are rushing to provide
mashup solutions (or to relabel exist-
ing integration solutions as mashup
tools). Amidst this frenzy, it’s difficult
to distinguish between mashups and
traditional integration efforts. This
article aims to provide some clarity in
regard to

what a mashup is (and isn’t);
how mashups resemble or differ
from traditional forms of integra-
tion, such as application, data, and
presentation integration;
what fundamental characteristics
and dimensions mashup approach-
es share; and

•
•

•

SEPTEMBER/OCTOBER 2008 45

Understanding Mashup Development

how current tools compare with respect to
these characteristics and dimensions.

Specifically, we overview some of the popular
mashup tools and show how they facilitate the
development of rich Internet applications. Our
aim isn’t to identify the kinds of available sup-
port in terms of mashup development but rather
to understand and identify emerging character-
istics and dimensions under which we can com-
pare and analyze the tools and approaches.

Mashup Development Approaches
Mashup development differs from tradition-
al component-based application development
mainly in that mashups typically serve a spe-
cific situational (short-lived) need and are com-
posed of the latest, easy-to-use Web technologies
(such as Representational State Transfer [REST-
ful] Web services or RSS/Atom feeds). As such,
the Web is their natural environment.

The HousingMaps (www.housingmaps.com)
application in Figure 1 is an example of a suc-
cessful mashup. It combines property listings
from Craigslist with map data from Google
Maps to assist people moving from one city
to another and searching for housing. Typi-
cally, when people are browsing through a list
of properties, a property’s address doesn’t give
them enough information if they aren’t yet fa-
miliar with the new city. HousingMaps gives
users a list of properties and plots the respec-
tive locations and property information on the
map upon selection (using the popup cloud vis-
ible in Figure 1).

We could manually develop such a mashup
application using conventional Web program-
ming technologies. However, dedicated mashup
tools could benefit such development, eventu-
ally letting even end users compose their own
mashups.

Manual Mashup Development
Generally, integrating enterprise data and ap-
plications into a coherent and value-adding
application requires programming skills and
intimate knowledge about the schemes and se-
mantics of data sources or the business protocol
conventions for message exchange. Fortunately,
new technologies, such as Ajax and RESTful
services, and microformats, such as RSS and
Atom, have simplified mashup development. In
addition, intelligent source components largely

•

assist the integration of contents, application
logic, and user interfaces. Nevertheless, manual
mashup development is still a prerogative of
skilled developers.

Assuming you have no specific develop-
ment tools, what’s involved in manually devel-
oping an application like HousingMaps? First,
you must become familiar with the two source
applications (Craigslist and Google Maps) and
identify how you will reuse or extract data from
the two sites. Whereas Google Maps offers a
publicly available JavaScript API that you can
leverage, Craigslist provides its listings via RSS.
Therefore, to extract property and address data,
you must parse and interpret the RSS feed from
Craigslist. To configure the clickable markers
that will display the property information in a
popup cloud window upon a click, you must in-
teract with the Google Maps JavaScript API. En-
abling the automatic popup of this cloud requires
a specific JavaScript function that listens for the
property selection and reacts by invoking the
Google Maps API to select the respective marker.
Although Google Maps has its own user inter-
face, letting users select properties wrapped from
Craigslist requires that you fill and appropriately
format a suitable table. Finally, you must lay out
the two components properly to form the com-
posite application’s user interface. Such intricate
and time-consuming tasks prevent average users
from programming their own mashups.

Figure 1. The HousingMaps application. HousingMaps integrates
Craigslist housing offers with Google Maps into a homogeneous
user interface.

Service Mashups

46 www.computer.org/internet/ IEEE INTERNET COMPUTING

Tool-Assisted Mashup Development
To speed the overall mashup development proc-
ess, but also to enable even inexperienced end
users to mash up their own Web applications,
numerous mashup-specific development tools
and frameworks have recently emerged. These
instruments typically come with a variety
of features and a mixture of composition ap-
proaches. A close look at them lets us identify
the open issues and research challenges charac-
terizing the mashup phenomenon.

For presentation purposes, we selected the
most popular or representative approaches of
end-user mashup tools and show how they can
support the HousingMaps application’s devel-
opment. We discuss a few alternative or com-
plimentary approaches in the “Related Work in
Reusable Components” sidebar.

Yahoo Pipes. Yahoo Pipes (http://pipes.yahoo.
com) lets you mix popular data feeds to create
data mashups via a visual editor. A pipe is a data-
processing pipeline consisting of one or more data
sources (for example, RSS/Atom feeds or XML
sources) and a set of interconnecting operators,
each of which performs a specific task. It includes
operators for manipulating data feeds (for exam-
ple, sorting or filtering) and operators for features
such as looping, regular expressions, or counting.
It also supports more advanced features, such as
location extraction (for example, geocoordinates
identified and converted from location informa-
tion found in text fragments) or term extraction
(for example, keywords). Yahoo Pipes aims to let
users design data-processing pipelines that filter,
transform, enrich, and combine data feeds and
are again exposed as RSS feeds.

Consider how Yahoo Pipes could aid the
development of the HousingMaps example.
Because Pipes doesn’t provide user interfaces
— that is, it outputs an RSS feed — we can’t
implement the user interface shown in Figure
1. Instead, we could use Pipes to process the
Craigslist feed and identify location informa-
tion (geocodes) by leveraging the pipes’ location
extractor. We could use the identified location
information to augment the Craigslist feed with
a link that lets users display the property’s ad-
dress on the map by passing the geocodes to
Google Maps.

Google Mashup Editor. GME (http://editor.google
mashups.com) provides a template-based envi-

ronment for mashup development. It offers a
set of standard modules that lets users encap-
sulate and lay out external data. For example,
the list module represents an RSS/Atom feed
as a list, whereas the item module represents
a single item in a feed. Modules can fire pre-
defined events, which other modules can cap-
ture and act on accordingly. Creating mashups
involves developing user interface templates
that contain a mixture of XML control tags
and HTML/CSS layout elements with embed-
ded JavaScript code. At runtime, GME fills the
user interface templates and presents them as
Web pages.

For the HousingMaps application, we could
integrate the Craigslist feed using a list module
and use the item module to show a particular
property’s details. GME’s map module natively
supports Google Maps. When the user clicks on
a property in the Craigslist module, the module
emits a “select” event, which the map module
can capture to pop up the cloud window on top
of the marker and display information about the
selected property. We must embed the Craigslist
module and Google Maps into the user interface
template that specifies the actual mashup appli-
cation’s layout.

Microsoft Popfly. Popfly (www.popfly.ms) of-
fers a component-based, visual environment for
developing mashups. In Popfly, reusable com-
ponents, or blocks, can act as middlemen be-
tween externally provisioned services, such as
Web services,2 or implement a useful function
(in JavaScript) — for example, a function that
calculates a circle’s area given a radius. Blocks
have operations with inputs and outputs, which
are specified in a dedicated XML descriptor. A
block might also act as a display surface — that
is, a piece of user interface that takes data from
other blocks and displays them, letting the user
interact with them and enabling the mashup
developer to lay out the mashup application.

To build the HousingMaps application, we
need three blocks:

an RSS feed block for the Craigslist feed,
a map block, and
a table block.

If we use Virtual Earth (http://microsoft.com/
virtualearth) instead of Google Maps, the three
blocks are already available. We must therefore

•
•
•

SEPTEMBER/OCTOBER 2008 47

Understanding Mashup Development

drag the blocks onto the mashup design surface
and then connect the output of the RSS block’s
getItems operation to the two display blocks for
the RSS and Virtual Earth. Correctly config-
uring the initial set of markers might require
extending the RSS block with a suitable Java-
Script operation.

Intel Mash Maker. Mash Maker (http://mash
maker.intel.com) provides an environment for
integrating data from annotated source Web
pages based on a powerful, dedicated browser
plug-in. Rather than taking input from struc-
tured data sources such as RSS or Atom, Mash
Maker lets users annotate Web pages’ structure
while browsing and use such annotations to
scrap contents from annotated pages. Advanced
users can leverage the integrated structure edi-
tor to input XPath expressions using FireBug’s
DOM Inspector (a plug-in for the Firefox Web
browser). Composing mashups with Mash Maker
occurs via a copy-and-paste paradigm, based
on two modes of merging contents:

whole page merging, in which the user in-
serts one page’s content as a header into an-
other page; and
item-wise merging, in which the user com-
bines contents from two pages at row level,
based on additional user annotations.

You can use the two techniques to merge more
than two pages.

For the HousingMaps example, we first an-
notate the appropriate Craigslist page’s structure
because Mash Maker operates on regular HTML
content rather than on RSS. Next, we merge the
Craigslist page with the Google Maps page using
the copy-and-paste mechanism. Specifically, we
adopt item-wise merging because we plot each
item from the Craigslist page as an individual
marker on the map.

Quick and Easily Done Wiki. QedWiki (http://
services.alphaworks.ibm.com/qedwiki) is IBM’s
proposal for a wiki-based “mashup maker,”
fully running inside the client browser and al-
lowing access to IBM’s Mashup Hub (http://
services.alphaworks.ibm.com/mashuphub). The
Hub supports the creation of data feeds and
user interface widgets and incorporates Data
Mashup Fabric for Intranet Applications (Da-
mia)3 for data assembly and manipulation. As

•

•

a wiki environment, it lets users edit, immedi-
ately view, and easily share mashups. Mashups
are assembled from JavaScript- or PHP-based
widgets, whose wiring determines the mashup’s
behavior. Widgets represent application compo-
nents and might or might not have their own
user interface. To assemble a mashup, a user se-
lects a page layout (an HTML template) and then
drags and drops widgets onto the page grid and
interactively configures them.

To develop the HousingMaps application
with QedWiki, we first create a new wiki page
and select a grid layout. In our case, we opt for
a layout that lets us place Google Maps and the
housing offers side by side (in two columns).
We then search for the GoogleMap widget in
the widget palette, drag it over the grid layout,
and drop it over the left column. We use the
LoadFeed widget to access the Craigslist RSS
feed and populate a ShowData widget with the
housing offers (by telling the ShowData widget
that it should source data from the LoadFeed
widget). To locate properties on the map, we
can now simply drag addresses from the Show-
Data widget at runtime and drop them onto the
GoogleMap widget.

Characterizing Mashup Approaches
As you’ll have noticed, the tools we’ve described
differ in two complementary aspects:

the mashup paradigm at the basis of the ap-
proach and
the software instrument that implements the
chosen paradigm.

Much like in data and application integration,
we characterize the mashup paradigm by look-
ing at the objects of integration (the compo-
nents) and how such objects are glued together
(the composition logic). As for the software in-
strument, it’s important to separately look at
the design-time support (the development envi-
ronment) and the runtime support (the runtime
environment) provided.

Component Model
The component model determines the nature
of components and influences how they can be
glued together — that is, how they can be com-
posed. A well-defined component interface, for
instance, facilitates reusability, whereas a flex-
ible component interface ensures extensibil-

•

•

Service Mashups

48 www.computer.org/internet/ IEEE INTERNET COMPUTING

ity. We characterize a component model using
three properties.

The first property is type. A component can
be a data (DA), application logic (AL), or user in-
terface (UI) type, depending on whether it acts
as a pure data source, a component providing
access to application logic, or a component that
also provides a GUI to users.

Second, we look at the model’s interface.
A component might expose a create-read-
 update-delete (CRUD) interface, APIs in specific
programming languages or in IDL/WSDL, XML/
HTML markup, or it might only expose GUI ele-
ments to the end users. A component might also
expose a combination of these elements.

Finally, the extensibility property explains
whether the user can create new components or
extend the component model to accommodate
specific application requirements, such as new
operations.

Yahoo Pipes supports DA and AL compo-
nents through operators that provide access to
RSS/Atom feeds and external Web services. DA
components have a read-only interface, and ex-
ternal Web services have a RESTful interface
based on JavaScript Object Notation (JSON) or
RSS. Yahoo Pipes component models are fixed.

GME supports DA, AL, and UI components.
DA components are typically interfaced via
markup, AL components via JavaScript, and UI
components via both markup and JavaScript.
GME component models are flexible.

Popfly also supports DA, AL, and UI compo-
nents. In Popfly, all components are interfaced
using JavaScript, and component models are
extensible.

Intel Mash Maker supports DA components
extracted from annotated Web pages (for ex-
ample, table and map). Their interface can be
interpreted as XML markup, and the component
models are fixed.

QedWiki focuses mainly on UI components
(the Mashup Hub supports DA and AL compo-
nents). Components are equipped with a Java-
Script interface and can be extended.

In traditional integration, extensible applica-
tion-level components with application-specific
APIs would characterize Web services. Data
integration4 applications are instead character-
ized by data-driven components that are often
fixed or have limited extensibility. For example,
extract, transform, load (ETL) applications have
a large set of built-in modules that perform join

or lookup operations on relational database or
XML documents. Custom behavior is typically
supported through a generic SQL component.

Composition Model
The composition model determines how com-
ponents are integrated to form the mashup,
assuming components are readily available.
To facilitate end-user compositions, the com-
position model should be as simple as pos-
sible. A composition model has several distinct
characteristics.

First, we distinguish the model’s output type.
As with components in input, composition out-
put can be of type DA, AL, or UI, depending on
whether the composition provides data, program-
mable APIs, or applications with a user interface.

The second characteristic is orchestration
style. Orchestrating components implies specify-
ing how you’ll define and synchronize the com-
ponents’ execution. Three main approaches exist:

Flow-based styles define orchestration as
sequencing or partial order among tasks or
components and are expressed through flow
chart-like formalisms.
Event-based approaches use publish–
 subscribe models. They’re particularly pow-
erful for maintaining synchronized behavior
among components.
In the layout-based style, components (with
or without user interfaces) are arranged in
the composite application’s common layout.
Each component’s behavior is specified indi-
vidually by accounting for the other compo-
nents’ reactions to user interactions.

Third, we look at the model’s data-passing
style. We define two data-passing approaches:

a dataflow approach, in which data flows
from component to component; and
a blackboard approach, in which data is writ-
ten to variables, which serve as the source
and target of operation invocation on compo-
nents, much like in programming languages.

In addition, a composition can be instance-
based or continuous. An instance-based model
is the traditional service composition model, in
which a certain kind of message’s arrival ac-
tivates a new instance of the composition, and
the system executes the instance within the

•

•

•

•

•

SEPTEMBER/OCTOBER 2008 49

Understanding Mashup Development

same main thread and context (much like a pro-
gram run).

Conceptually, the continuous model has
one instance per component in the composition
model. Each component works as a thread, pro-
cessing the input data feed and transforming or
filtering it to generate the output.

Another property relates to exceptions and
transactions. A composition model might or
might not support exception and transaction
handling. If supported, exception handling
can follow the throw-and-catch approach (Java
style) or can be rule based (using event-condi-
tion-action [ECA] rules coupled to the composi-
tion). Transactions, if supported, always follow
some variation of the Saga model.5

Yahoo Pipes is probably the best represen-
tative of DA output (pipes are RSS feeds). Its
graphical modeling language is flow-based; ac-
cordingly, data is also passed via data flows.
Pipes is instance-based; it doesn’t provide ex-
ception handling or support transactions.

GME produces UI output. GME is event-
based and achieves data passing through event
parameters in a dataflow fashion. In addition,
UI components are continuous. Finally, GME
doesn’t support exceptions and transactions.

Popfly produces UI output. It uses an event-
based orchestration style and a dataflow
approach for data passing. Components are con-
tinuous. Like GME, Popfly doesn’t support ex-
ceptions and transactions.

Intel Mash Maker focuses on UI output. In
Mash Maker, contents are glued together in a
layout-based style (whole page merging) or in
a flow-like style (item-wise merging). It uses
data extracted from annotated Web pages in a
blackboard style. Mash Maker’s instance model
is most similar to the instance-based one, and it
doesn’t support exceptions and transactions.

Like GME, Popfly, and Mash Maker, QedWiki
produces UI output. It proposes a layout-based or-
chestration style and components pass data in a
blackboard fashion. Widgets are continuous. Qed-
Wiki doesn’t support exceptions or transactions.

Traditional integration is typically flow-
based (think of the Business Process Execution
Language [BPEL] and most ETL processes), with
an XML-based data model following a black-
board approach for service-oriented architec-
tures (SOA) and a relational data model with
data flow for ETL. Both use an instance-based
instantiation model. However, in SOA, an in-

stance is created with the arrival of a certain
message (such as a purchase order), whereas
in ETL, an instance is created periodically (for
each data extraction). Traditional integration
produces DA or AL output, whereas mashups
typically include some form of integration at
the UI level. In terms of exception and trans-
action, traditional integration offers Java-like
exception handling and Saga-like transaction
support, with predefined but extensible excep-
tion types (for example, SOAP faults in BPEL or
DB errors in ETL).

Development Environment
The characteristics of the mashup tools’ devel-
opment environments affect mashup develop-
ment efficiency and determine the tools’ success.
Mashup tools vary greatly in the level of support

they provide to their users. Some tools are strictly
for developers, whereas others are more oriented
toward end users. Several properties character-
ize mashup development environments.

The first property is the environment’s in-
terface paradigm and target users. Mashup
tools can support design via different interface/
modeling paradigms, such as visual drag-and-
drop features, textual editors, or a combination
of the two. The interface can target average
Web users, advanced (tech-savvy) users, or pro-
grammers. The interface’s ease of use is the key
factor in bringing mashup capability to average
and advanced Internet users.

A development environment is also char-
acterized by system requirements. The mashup
tool’s execution might require specific addition-
al modules, plug-ins, or browser features, whose
absence might prevent the instrument’s use.

Yahoo Pipes provides a pure visual drag-
and-drop Ajax editor targeted at users with ba-
sic programming skills. The editor is executed
in a standard Web browser with support for the
XMLHttpRequest JavaScript object.

Mashups are about simplicity, usability,
and ease of access. This simplicity
has the upper hand over feature
completeness or full extensibility.

Service Mashups

50 www.computer.org/internet/ IEEE INTERNET COMPUTING

GME’s browser-based textual Ajax editor
with syntax highlighting and automatic tag
completion is targeted at programmers. It can
be fully executed in a standard Web browser.

Microsoft Popfly offers a graphical and tex-
tual editor with drag-and-drop support for Web
users. Popfly is based on Microsoft’s Silverlight
(www.microsoft.com/silverlight) technology, a
mandatory browser plug-in.

Similarly, Intel Mash Maker supports a point-
and-click user interface that lets advanced users
and programmers annotate pages and nonexpert
Web users extract and merge data via copy-and-
paste. Mash Maker requires a dedicated plug-in
that extends the browser with mashup features.

QedWiki comes with an easy-to-use drag-
and-drop interface for advanced users. In this
interface, components are immediately visual-
ized. QedWiki runs in a standard Web browser
and doesn’t require any plug-ins.

Unlike these mashup tools, traditional inte-
gration technologies typically offer desktop de-
velopment applications rather than browser-based
ones. In addition, they require a steeper learning
curve because they’re more sophisticated and
feature-rich. Traditional approaches, which al-
ways target programmers, offer neither end-user
data integration nor application integration.

Runtime Environment
Typically, each mashup tool also provides a
separate runtime environment that enables
the execution of the tool’s mashups and deter-
mines how it will deliver the mashups to its
users. Possible system requirements imposed
by the runtime environment might affect the
adoption of mashups developed with the re-
spective tools. We distinguish four properties
in the runtime environment.

The first property is the deployment style.
As with conventional Web applications, you
can deploy a mashup application in a stand-
alone fashion on any Web server managed by
the mashup developer, or through a third-party
Web server (typically belonging to the mashup
development environment provider).

Another property is the runtime location.
You can assemble mashups at the server side (for
example, via PHP or Ruby), the client side (for
example, inside a Web browser via JavaScript),
or both. If the integration occurs at the server
side, the browser merely displays the resulting
composite application. Server-side approaches

can use an engine-based or Webapp-based im-
plementation style. The engine-based approach
implies that a mechanism analogous to a process
engine executes the mashup (for example, col-
lects and processes the feeds). In the Webapp-
based approach, the mashup is implemented as
a Web application, so the Web and application
servers execute the mashup.

The third property of a runtime environment
is system requirements. Similar to the develop-
ment environments, a mashup’s execution can
depend on the availability of additional browser
plug-ins or extensions.

Finally, we look at the environment’s scal-
ability. We can consider scalability from three
perspectives:

the number of data sources,
the number of models (compositions), or
the number of users.

In general, client-side approaches don’t suf-
fer from scalability problems. The mashup is
executed on the client, so no bottleneck exists
(except from the overload on the data sources
themselves, but this is outside the mashup’s
control). Here, the scalability problems relate to
the number of instances and, hence, the number
of users and the mashup’s complexity (which is
related to the number of sources and the related
data processing). In all cases, client-side ap-
proaches use the same scalability techniques as
do traditional integration or Web applications,
relying on workflow scalability techniques for
engine-based runtimes and on Web application
scalability for Web-application-based runtimes.

Yahoo Pipes compositions are hosted on a
Yahoo server. The system computes and assem-
bles pipes at the server side (apparently engine-
based), so executing a pipe doesn’t pose any
particular system requirements on the client.
However, the server-side engine that executes
the pipes might suffer if many pipes are run, if
numerous users access the same pipe, or if the
pipe consists of hundreds of sources.

GME mashups are hosted on a Google serv-
er. Mashups are executed at the server side and
have no particular system requirements. The
system compiles mashups into conventional
Web applications.

Popfly mashups are hosted on a Microsoft
server. Execution of a Popfly application, how-
ever, occurs at the client side and typically re-

•
•
•

SEPTEMBER/OCTOBER 2008 51

Understanding Mashup Development

quires the availability of the Silverlight plug-in.
The client-side execution facilitates scalability
because the integration of multiple sources oc-
curs mostly at the client side.

Intel Mash Maker mashups are stored on
the client PC and are executed inside the Web
browser using the Mash Maker plug-in. Al-
though it seems unlikely that large numbers of
sources will be mashed up, Mash Maker should
be able to scale adequately.

QedWiki pages are hosted on an IBM server.
Mashups are executed mostly on the client side,
and a standard Web browser can execute QedWiki
pages. The wiki engine might encounter difficul-
ties if it must integrate numerous sources.

SOA or ETL deployments typically have a
centralized engine server that runs the process
definition by invoking services or data storages.
Distributing the workload over multiple engines
guarantees scalability.

Going Forward
Many of the differences between mashups and
traditional forms of integration descend from
the basic observation that mashups focus main-
ly on opportunistic integration occurring on the
Web for an end user’s personal use and for non-
business-critical applications. Traditional com-
position (for example, BPEL-like), on the other
hand, focuses on systematic and repeatable en-

terprise processes. Enterprise processes also
have a wide set of nonfunctional requirements,
such as security and reliability, that few mash-
ups share and that make languages, tools, and
the overall development fairly complex. Also,
unlike conventional Web applications, many of
today’s mashups still have a limited audience
(such as individuals or small user groups) so
scalability isn’t a big issue. This might become a
problem if and when a “killer mashup” appears.

In general, mashups are about simplicity,
usability, and ease of access. This simplicity
has the upper hand over feature completeness
or full extensibility (as in SOA or BPEL). With
improved tool support (such as a better user
interface) and the abundance of components
or modules, end users will be able to compose
their own mashups. In this context, we also see
a need for end-user-oriented integration para-
digms for allowing easy and simple exploration,
organization, search, and integration of mash-
ups. This will help move mashup development
from manual and time-consuming scripting to
a set of easy-to-find and extensible parameter-
ized patterns that characterize most of the het-
erogeneities among mashup services. Mashup
component search is also likely to improve over
time, not only because of Google-like search
mechanisms but also because of an emerging
trend toward online communities of mashup

Related Work in Reusable Components

The tools we describe in the main text effectively let end
users easily compose data and application logic start-

ing from reusable components. E. Michael Maximilien and his
colleagues propose a programming language that’s specific to
mashups of Web services (for example, Representational State
Transfer [REST], SOAP, RSS, or Atom services);1 however, the
language is more oriented toward developers. Nonetheless,
the approach is in line with the “approachable programming
model” that characterizes mashups in general.2

Portals focus on the integration of components with their
own user interface (portlets3). They represent an affirmed
solution in the development of large-scale Web applications
but generally offer weak support for intercomponent com-
munication and end-user-oriented development.4 Integrating
portlets sourced from the Web is still hard, but work is ongo-
ing.5 Tools such as Dapper (www.dapper.net) and Openkapow
(http://openkapow.com), instead, are popular for developing
components. They provide powerful support for data or user
interface extraction (wrapping) from existing Web sources.
The OpenAjax Alliance (www.openajax.org) aims to develop

a standardized client-side hub for a publish–subscribe-based
event communication among Ajax components, which are in-
creasingly becoming the natural environment for mashup com-
ponents. Component development, however, is out of this
article’s scope.

References
E.M. Maximilien et al., “A Domain-Specific Language for Web APIs and Ser-

vices Mashups,” Service-Oriented Computing (ICSOC 07), LNCS 4749, Spring-

er, 2007, pp. 13–26.

S. Watt, “Mashups — The Evolution of the SOA, Part 2: Situational Appli-

cations and the Mashup Ecosystem,” IBM DeveloperWorks, 2007; www.ibm.

com/developerworks/webservices/library/ws-soa-mashups2 .

A. Abdelnur and S. Hepper, Java Portlet Specification, 2003; http://jcp.org/en/

jsr/detail?id=168.

F. Daniel et al., “Understanding User Interface Integration: A Survey of

Problems, Technologies, and Opportunities,” IEEE Internet Computing, vol.

11, no. 3, 2007, pp. 59–66.

OASIS Web Services for Remote Portlets (WSRP) technical committee,

www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp.

1.

2.

3.

4.

5.

Service Mashups

52 www.computer.org/internet/ IEEE INTERNET COMPUTING

taggers and bloggers, following the style of the
social Web.

Therefore, mashups can learn useful lessons
from traditional integration. Specifically, to
simplify mashup development, we need a user
interface component model, so mashup develop-
ers can abstract and reuse a user interface as in
traditional services. A user interface component
model will likely have aspects similar to tradi-
tional components in addition to user interface-
specific items. It should also be fundamentally
simpler, consistent with the Web’s philosophy.

In addition, we need middleware for user in-
terface integration. Today’s middleware is essen-
tially the Web, which offers no mashup-specific
support. Perhaps the Web is sufficient, but mid-
dleware paradigms, such as publish–subscribe,
which have been extremely successful in EAI,
are also well-suited to mashups. This suitabil-
ity is due to the nature of mashups, which are
strongly event-based (they’re essentially reac-
tive applications sensitive to events from sources
such as news feed content or user interactions).

Finally, we must bridge user interface inte-
gration with traditional forms of integration.
Mashups are evolving toward components that
are a mix of user interface aspects and tradi-
tional application logic. The challenge here is
identifying component and composition models
that can cater to the needs of both kinds of in-
tegration. One is more event-driven and user-
oriented, the other is more orchestrational and
enterprise-oriented.

Without these elements, mashup develop-
ment will largely be an ad hoc effort requiring
programming skills that typical Web users don’t
possess, or it will be restricted to specific tech-
nologies or domains.

W e’ve begun to investigate these issues in a
framework called Mixup.6,7 However, we’ve

just scratched the surface of these research
problems. Mixup is an instance of a trend that
brings together the different forms of integra-
tion (user interface, application, and data) while
ensuring ease of development and maintenance
with minimum learning curves.

References
D. Merrill, “Mashups: The New Breed of Web Ap-

plication,” IBM DeveloperWorks, 2006, www-128.

ibm.com/developerworks/library/x-mashups.html?ca

1.

=dgr-lnxw16MashupChallenges.

G. Alonso et al., Web Services: Concepts, Architectures,

and Applications, Springer, 2004.

M. Altinel et al., “Damia: A Data Mashup Fabric for In-

tranet Applications,” Proc. Very Large Databases Conf.

(VLDB 07), VLDB Endowment, 2007, pp. 1370–1373.

M. Lenzerini, “Data Integration: A Theoretical Per-

spective,” Proc. Symp. Principles of Database Systems

(PODS 02), ACM Press, 2002, pp. 233–246.

H. Garcia-Molina and K. Salem, “Sagas,” Proc. ACM

Special Interest Group on Management of Data 1987

Ann. Conf. (SIGMOD 87), ACM Press, 1987, pp. 249–259.

J. Yu et al., “A Framework for Rapid Integration of Pre-

sentation Components,” Proc. Int’l World Wide Web

Conf. (WWW 07), ACM Press, 2007, pp. 923–932.

J. Yu et al., “Mixup: A Development and Runtime En-

vironment for Integration at the Presentation Layer,”

Proc. Web Eng. (ICWE 07), LNCS 4607, Springer, 2007,

pp. 479–484.

Jin Yu is a PhD candidate at the School of Computer Sci-

ence and Engineering, University of New South Wales,

Sydney. He also serves as the VP of Engineering at

Martsoft Corporation. His research focuses on rich In-

ternet applications and user interface integration. He

is a member of the IEEE and the ACM. Contact him at

jyu@cse.unsw.edu.au.

Boualem Benatallah is a professor in the School of Computer

Science and Engineering at the University of New South

Wales, Sydney. His research interests lie in the areas of

Web services, business processes, and data integration.

Benatallah has a PhD in computer science from Greno-

ble University, France. He is member of the IEEE and

the ACM. Contact him at boualem@cse.unsw.edu.au.

Fabio Casati is a professor of computer science at the Uni-

versity of Trento. He has a PhD in computer science

from Politecnico di Milano, Italy. Casati is coauthor

of a book on Web services, a member of the editorial

board of ACM Transactions on the Web, and a member

of the steering committee of the international confer-

ences on service-oriented computing and business pro-

cess management. Contact him at casati@dit.unitn.it.

Florian Daniel is a postdoctoral researcher at the University

of Trento. His research interests include Web engineer-

ing, mashups, and business intelligence applications.

He has a PhD in information technology from Politec-

nico di Milano. He is a member of the organizing com-

mittee of the Adaptation and Evolution in Web Systems

Engineering Workshop and the WebML research group.

Contact him at daniel@disi.unitn.it.

2.

3.

4.

5.

6.

7.

