
Toward Web Service Dependency Discovery
for SOA Management

Sujoy Basu
HP Laboratories

1501 Page Mill Road
Palo Alto, CA 94304, USA

001 650 236 2044

sujoy.basu@hp.com

Fabio Casati
University of Trento
Via Sommarive 14

38050 Povo (TN), Italy
0039 0461 88 2044

casati@dit.unitn.it

Florian Daniel
University of Trento
Via Sommarive 14

38050 Povo (TN), Italy
0039 02 2399 3667

daniel@dit.unitn.it

ABSTRACT

The Service-Oriented Architecture (SOA) has become today’s
reference architecture for modern distributed systems. As SOA
concepts and technologies become more and more widespread and
the number of services in operation within enterprises increases,
the problem of managing these services becomes manifest. One of
the most pressing needs we hear from customers is the ability to
"discover", within a maze of services each offering functionality
to (and in turn using functionality offered by) other services,
which are the actual dependencies between such services.
Understanding dependencies is essential to performing two
functions: impact analysis (understanding which other services are
affected when a service becomes unavailable) and service-level
root-cause analysis (which is the opposite problem: under-
standing the causes of a service failure by looking at the other
services it relies on). Discovering dependencies is essential as the
hope that the enterprise maintains documentation that describe
these dependencies (on top of a complex maze and evolving
implementations) is vane. Hence, we have to look for
dependencies by observing and analyzing the interactions among
services.

In this paper we identify the importance of the problem of
discovering dynamic dependencies among Web services and we
propose a solution for the automatic identification of traces of
dependent messages, based on the correlation of messages
exchanged among services. We also discuss our lessons learned
and results from applying the techniques to data related to HP
processes and services.

Keywords
SOA Management, Service Dependency, Discovery.

1. INTRODUCTION
Discovery of dependencies among components of large
distributed systems is an important technology for management
software. In enterprise IT systems, many tools for discovery exist
that find the relationships among components, e.g., by looking
into configuration files. These tools can discover for example that
an application running in a J2EE application server depends on an
Oracle server running on another host. It proves very effective
when discovering static dependencies among coarse-grained
systems.
However, customers are increasingly asking for the capability to
discover dynamic dependencies among services. In fact, many
business applications today are based on a service-oriented

architecture (SOA), which implies that they are composed of
loosely-coupled, reusable services. When a service has a failure or
performance degradation, all other services that depend directly or
indirectly on this service might be impacted. It is important to
understand what these dependencies are, so that management
tools can display and alert users about the business impact of
failures and performance degradations. Furthermore, knowledge
of dependencies considerably simplifies service-level root-cause
analysis, that is, trying to understand the origin of a failure.
The dependencies can be explored in tools such as HP OpenView
SOA Manager, and the performance metrics of all the dependent
services are captured. However, currently the dependencies must
be explicitly specified in SOA Manager. This works in theory
when enterprises enforce change management processes strictly.
Any change in dependencies of a SOA business application on the
underlying services can then be captured in a database and
updated in SOA Manager. In practice, these processes are not
always followed. Furthermore, the specification of the
dependencies may include some inaccuracies. This is why
customers have repeatedly requested to endow SOA Manager
with a dependency discovery module, which derives dependencies
by looking at message exchanges among services.
In this paper we present a module that automatically analyzes
service execution data to discover dynamic dependencies among
services. The problem is far from trivial as it requires
understanding correlations among message exchanges between
services. For example, if we observe that service A invokes
service B, and service B invokes service C, in which cases can we
say that the second invocation is caused by the first and that there
is, therefore, a dependency between A and C? This is already a
problem in this simple scenario with three services, and it
becomes a much more complex problem when there are multiple
services used in different combinations and delivering different
kinds of functionality. Hence, the problem is important from a
business standpoint and is challenging from a research
perspective.
This paper is structured as follows. In Section 2 we describe our
reference architecture and formalize the problem addressed in this
paper. In Section 3 we position the problem with respect to related
work, while in Section 4 we describe our own approach to the
discovery of dependencies among Web services, and we discuss
the underlying algorithm in more detail. In Section 5 we report on
our first experiments and the results obtained so far. Finally, in
Section 6 we conclude the work and provide an outlook over
ongoing and future work.

2. CONTEXT OF INVESTIGATION AND
PROBLEM STATEMENT
The discovery of dependencies between Web service executions
in distributed environments is a challenging problem in general.
Due to the wealth of possible different software and hardware
infrastructures and the considerable number of different protocol
specifications that can be used in a specific implementation, the
dependency discovery problem comes in a variety of different
flavors. In order to be able do define the problem under study, we
thus first describe the platform we aim at extending, i.e. HP’s
OpenView SOA Manager [6].

2.1 Reference Architecture
Figure 1 describes the reference architecture of our dependency
discovery platform, where our initial concern is the capturing of
message traces and the identification of communicating
components (i.e. the services).
Message traces can easily be captured by the logging mechanism
already provided by SOA Manager. SOA Manager intercepts any
message sent to a service it manages. This can be done in two
different fashions: (i) by means of a handler or agent running in
supported Web service containers, such as BEA WebLogic and
.Net containers, or (ii) by means of suitable interception proxies
(brokers) for services running in all other environments. An agent
runs code provided with the SOA Manager product and has access
to message headers. Many fields from the headers are logged in an
audit database. Brokers on the other hand are executed outside the
container and must intercept all messages sent to the service they
manage, so that the message headers can be similarly logged.
Clients and other services invoking the brokered service must be
configured to use the brokered endpoint rather than the original
service endpoint.

Intercepting messages and their responses using either of these
two approaches is primarily for the purpose of computing metrics
such as response time or request frequencies. However, the
intercepted message traces are also stored in a centralized
database to enable auditing. Dependencies among services can
thus be discovered by analyzing these message traces.
As our study aims to identify dependencies based on real log data
and without requiring SOA Manager to provide any additional
logging feature, there are a few considerations that need to be
taken into account and that constrain the possible solution space:

 We cannot rely on any protocol-specific correlation or
addressing information possibly encoded in the body of
intercepted messages, as for example provided by WS-
Coordination or WS-Addressing. Although such protocol
extensions are good practice, they still lack widespread
use. The result is that, given any set of messages, we
cannot determine in general if two messages belong to the
same conversation. Even if WS-Coordination or WS-
Addressing are used, the scope of the coordination
typically encompasses only the interaction among a few
services, and does not follow all dependencies (indeed, it
would otherwise violate the very same loose coupling
principle on which SOA are based).

 We cannot analyze the body of traced messages, because
although the logging mechanism does support the logging
of message bodies, this feature is in general disabled by
system administrators: the load is often too much unless in
trivial lab tests.

 For a given message, in general we only know the
destination service/operation and the network address of
the node that hosts the source service, unless WS-
Addressing is used. If WS–Addressing had widespread
support, this would not be a problem. But since this is not
yet the case (and it is not clear when this standard will
become widely used), the availability of only the IP
address of the sending service complicates the problem of
inferring dependencies between messages, since multiple
services can be located at an individual IP address.

 Finally, we observe that logged data only contains
messages sent by or directed to services managed by SOA
Manager. Possible service dependencies outside the
managed environment cannot be derived.

2.2 Problem Statement
Given the above considerations and an assignment of Web
services Si∈S (1≤i≤n, S being the set of Web services managed by
SOA Manager) to the nodes Nj∈N (1≤i≤m, N being the set of
computing nodes managed by SOA Manager) by means of the a
function loc:S→N, we can formalize a message M as tuple
M=(Ns,Sd,t), where Ns is the IP address of the source node, Sd is
the destination service, and t is the time the message is received
by Sd .
Being L=(M1,M2,…,Mlast) the chronologically ordered message
log with t1<t2<…<tlast and being tlast the time corresponding to the
last logged message, our problem of discovering dependencies
among Web services can be reformulated as the discovery from
the log data of all those message traces T=(M1,M2,…,Mk) with
t1<t2<…<tk, k≤tlast and Sd,i located on Ns,i+1 and Mi+1 generated by
Sd,i in response to Mi for all 1≤i≤k-1. In short, we need to identify
traces of messages that are causally (e.g. functionally) dependent.

Web
Service

WSM Agent

WS
Container

Brokered
Service

WSM Broker

Web
Service

WS
Container

Network
Services
Server

SOAP
Clients

SOAP/HTTP(S)

SOAP/HTTP(S)

SOAP/HTTP(S)

HTTP(S)

HTTP(S)

Business
Service
Explorer

Broker
Configurator

Figure 1 SOAM deployment architecture for resource

management.

Consider for example the messages exchanged among the Web
services shown in Figure 2; messages from a service S1 to a
service S2 are represented by arrows, and labels correspond to the
temporal order of the messages. There are four nodes that host
different numbers of Web services and, in particular, four services
that exchange messages in a chronologically ordered and causal
logic that represents the message trace T=(M1,M2,…,M5) to be
discovered. Typically, the generation of such a message trace is
driven by a particular coordination agreement (i.e. a protocol)
among the cooperating services, which we however assume
unknown.
More precisely, let us assume that in Figure 2, message 2 from
service S2 to S3 is the result of message 1 from S1 to S2. However
S2 might have spent time on computation before sending message
2 to S3. It is also likely that S2 is multithreaded and therefore has
received and sent other messages between receiving message 1
and sending message 2. Hence we have to solve the problem of
identifying the correlated messages 1 and 2 (and hence a
dependency of S1 on S3) from a log where they are not adjacent
entries. In the absence of support for WS-Addressing, when
message 2 is intercepted at S3, only the IP address of node B can
be logged. The fact that S2 sent the message is not known. There
is no general solution for intercepting the message when it leaves
node B since S2 may not be running in a J2EE or .Net container
(e.g. because it is implemented in C++).

3. RELATED WORK
Research works. The illustrated problem is not a trivial one.
There are several works in literature that address similar issues,
prevalently in the area of sequence or pattern mining.
Itemset mining, as an instance of sequence mining technique, is
used above all in marketing and CRM applications to identify
repeated patterns in a sequence of (business) transactions. In [5]
the authors describe for example an interesting approach to
sequential pattern mining (GSP) that also leverages user-defined
taxonomies during the mining process and outperforms their
previously proposed AprioriAll algorithm. For an overview of
frequent itemset and association rule mining the reader is referred
to [7].
Unfortunately, itemset mining techniques are not applicable in our
case, as we do not have any notion of confined and identifiable
transactions. We are given a flat, sequential log stemming from a
distributed computing environment where possible correlated
communications, i.e. conversations, are not tagged by a unique

conversation identifier, and their message sequences are typically
interleaved in the log file.
Our problem thus resembles more closely the one addressed by
another sequence mining technique, i.e. string or episode mining.
String mining (see for example [8]) is heavily adopted in
bioinformatics, while episode mining (see for example [4] and
[9]) rather concentrates on large event sequences, e.g. in the
telecommunications domain.
Especially the work presented in [4] could be promising in our
context, but there are two main constraints that differentiate our
problem from the one studied by the authors in [4]: (i) a log entry
(i.e. a message sent from service S1 to service S2) does not
uniquely identify the source service, as we only are given the
source IP address, at which there might be located several
different services possibly generating the message; (ii) we are in
presence of both short-running conversations and long-running
business processes, which makes it difficult to identify suitable
time windows for the mining process and, thus, heavily would
increase computation times.
In [2] the authors concentrate on performance debugging in
distributed systems, a conceptually similar problem to the one
discussed in this paper. They propose two interesting approaches,
which are not based on mining techniques: an algorithm based on
the nesting of request and response messages in RPC style
communications, and an algorithm based on signal processing for
free-form message-based communications. While the former
algorithm is not applicable to our domain, the latter, again,
presents the problem of sizing a suitable time window a priori in
presence of long-running business processes. In [3] the authors
present their message-linking algorithm, an evolution of the work
presented in [2], which assumes that causal delays between an
incoming and an outgoing message follow an exponential
distribution. If the time difference between an incoming and an
outgoing message exceeds four times the average delay that can
be derived for the two messages from the event log, no causal
dependency is assumed anymore; this corresponds to adopting a
different time window for each pair of incoming and outgoing
messages at each node of the system.
Competitive approaches and products. The main constraint
imposed by our reference scenario is that we cannot run agent
code in all service containers, which would allow us to tag
correlated messages with a unique identifier, and dependent
messages could be identified with certainty on the basis of the
identifier. This is however the approach taken by several vendors
in the SOA management space, such as Actional (Sonic Software)
and IBM. The patented solution by Actional [10], for example, is
based on agents that operate on the application protocol level and
have visibility of both inbound and outbound messages. Agents
tag messages with correlation data (both in input and in output)
and feed a proper Agent Analyzer module with the enriched
message records, which is then able to accurately trace all
dependencies that exist among the running services.
This approach however does not work for Web services that do
not run in containers, as might be the case for legacy applications
to which Web service interfaces have been added. Instead, it is
our goal to also support Web services that run outside service
containers.

4. DEPENDENCY DISCOVERY
We now present our approach to dependency discovery. The
problem of dependency discovery is complex because in many
situations there is a large number of invocations on a fairly large

S1

S4

S2

Node A Node B

Node C

Node D

S3

1

2

3

4
5

Figure 2 Example sequence of message exchanges among

managed services. Circles represent computing nodes,
rectangles represent Web services.

number of services. Hence, if we restrict our approach to the
simplistic determination of checking that when service A is
invoked, then service B is invoked shortly afterwards, we would
be out of luck, since both A and B are frequently invoked and it is
not possible to say that two given invocations are dependant. The
more frequent service invocations are, the more complex the
problem becomes, and in general it is impossible to be “certain”
about a dependency. Hence the philosophy we have taken in this
work is to find a set of “suspicions” (rather than evidences) that
two services are dependant. When we have sufficient suspicions
we conclude that a dependency exists.
Specifically, our approach to the discovery of dependencies
among Web services according to the definitions given in Section
2.2 and in consideration of the works discussed above is
composed of four consecutive steps:

1. Inference of a causal dependency within message pairs in
the log, where the first message is received at the service
node from which the second message originates. In this
part we adopt and combine different techniques to detect
potential dependencies.

2. Construction of a probabilistic dependency graph as
concatenation of all identified dependencies between pairs
of messages by taking into account the assignment of
services to nodes loc:S→N. Edges are labeled with a
confidence level, which is the probability of the identified
dependency.

3. Pruning of the dependency graph by applying a user-
specified threshold Tp to the probabilities associated with
the edges of the graph, thus simplifying the graph and
keeping only “relevant” edges.

4. Construction of paths from the pruned graph and mining
of the audit log to decide which of the paths indeed occur
with a frequency greater than a given threshold Tf.

Further details on these four phases are given below.

4.1 Inference of Causal Dependencies
Inferring causal dependencies within message pairs is the first and
basic step toward the identification of entire traces (i.e. paths) of
dependent messages. In our current work we investigate three
different dependency identification algorithms that leverage the
following ideas in order to associate a dependency probability to
pairs of messages:

 Occurrence frequency of logged message pairs;
 Distribution of service execution times;
 Histogram of execution time differences.

In this paper we show results based on all three approaches.
However for the second and third approach, we have not yet
automated the selection of dependencies since thresholds need to
be tuned. We are currently performing this tuning using SOA
applications from different domains, and will present the results in
the camera-ready version of the paper.

4.1.1 Occurrence Frequency
The first approach is based on the frequency of the occurrence of
message pairs in the log data, i.e. it is based on the conditional
probability that a message M2 can be found in the log data,
knowing that M1 has been found.
We fix a time window size w (1≤w≤tlast), which corresponds to the
limit on the execution time of a service from the time a message is

received by the service until a dependent message is sent out by
the service. If the conditional probability of message M2 appearing
within the time window whenever message M1 occurs in the
database exceeds some threshold, we infer that message M2 is
dependent on message M1.
The detailed algorithm is described by the following pseudo-code:

Algorithm:
Get conditional message dependency probabilities

Initialize i=1.
Initialize an empty set CM of message counters.
Scan the audit log data L in order of increasing timestamps,
and execute for each message Mi∈L, 1≤ti≤tlast:

Step 1: Initialize the time window Wi corresponding to
message Mi with Wi=(Mi-w,…,Mi), Wi⊆L and Mj∈L for ti-
w≤tj≤ti.
Step 2: Initialize an empty set Si of message signatures
and an empty set CPi of message counters. A message
signature of a message M consists of a hash function
computed over sender, receiver and invoked operation
corresponding to M.
Step 3: Start at the earliest message in the time window
if Mi is not present in the time window (tp =ti-w).
Alternately start at the message following the most
recent occurrence of Mi in the time window (tp). Execute
for each message Pi,j (p≤j<i) from the starting point to the
end of the time window:

Step 3a: If there is a potential causal dependency
from Pi,j to Mi indicated by the destination service of
Pi,j being located at the same node at which Mi is
generated, compute the signature Si,j of Pi,j.
Step 3b: If Si,j ∈ Si, set i=i+1 and CPi,j= CPi,j+1 and
go to Step 3.
Step 3c: Add signature Si,j to Si, set CPi,j=1 and add
the counter CPi,j to the set CPi. Got to Step 3.

Step 4: If CMi∈CM set CMi=CMi+1, else set CMi=1 and
add the counter CMi to the set CM.
Step 5: Increment i=i+1 and go to Step 1.

After the scan of the log database is completed, the
conditional probability P(Pi,jMi/Pi,j) is easily computed as
P(Pi,jMi/Pi,j)=CPi,j/CMj

4.1.2 Execution Time Distribution
The second approach is based on the statistical distribution of
service execution times from the instant a message is received
until a dependent message is sent out.
We assume that service execution times follow a specific
statistical distribution (e.g. a normal distribution or an exponential
distribution, as suggested in [3]). To verify whether a specific
message pair is indicative of dependency, a distribution test will
be applied to the time differences between the specific incoming
and outgoing messages, which can be derived from the message
log data. We look in particular for normal distributions. Only
those message pairs whose distribution of time differences fits the
statistical distribution with a confidence level exceeding a
predefined threshold will be considered dependent. Several
statistical approaches and tools to find distributions are available

so our goal is not to create a new approach to discovering
distributions here.
Multiple instances of a message pair may be interleaved; hence,
identifying an instance of a message pair will involve heuristics
like skipping a certain number of occurrences of messages or
deriving a suitable maximum time window to consider. The
preliminary tests performed on some real service log data (see
Section 5) confirmed our initial intuition that in absence of
interleaved message pairs, dependent messages yield a normal
distribution, while in presence of interleaved message pairs,
dependent messages yield an exponential distribution.

4.1.3 Time Difference Histogram
The third approach is based on the computation of a histogram of
the time differences for all instances of the message pairs, without
assuming any predefined statistical distribution a priori.
The presence of a small number of consecutive buckets of the
histogram with counts much higher than the average count across
all buckets is a likely indicator of the messages having a
dependency. As we will show in the following section, this
technique is especially suited to the human user inspecting the
service log data and looking for dependencies.

The current weakness of the previous two approaches is that we
have not yet performed a thorough data analysis on different
datasets to be able to state with precision which thresholds are
appropriate. Such a thorough analysis is underway and will need
to be completed before these two additional techniques for
dependencies are included in the tool. However, data confirms the
intuitions described above in terms of distributions and
histograms.

4.2 Creating the Dependency Graph
Once causal dependencies within pairs of messages have been
identified, a probabilistic dependency graph is created with nodes
corresponding to services and edges corresponding to messages.
The construction of the dependency graph is based on inferred
dependencies among messages, the association of messages to
services, and the assignment of services to nodes loc:S→N.
Since all the techniques illustrated in the previous step produce
results of probabilistic nature, each edge or message of the graph
is labeled with a probability that expresses the confidence level of
the inferred dependency and the probability of the message to
source service assignment performed during the construction of
the dependency graph.

4.3 Pruning the Dependency Graph
The so created probabilistic dependency graph summarizes the
associations of probabilities to messages, of messages to services,
and of services to nodes that could be derived from the log data.
In order to discriminate paths in the dependency graph with low
probabilities, we now prune the edges of the graph by applying a
predefined threshold Tp. Varying the threshold determines how

selective we are about the dependencies that are found. A low
threshold only generates dependencies of which the system is
more certain. A high threshold implies more dependencies, but of
which we can be less confident. Graphically, this translates into a
slider that shows dependencies at the changing of the threshold in
the slider.

4.4 Identifying Frequent Paths
From the pruned dependency graph created in the previous step,
we now identify all possible paths representing traces of
dependent message exchanges among the managed services, i.e.
web service conversations. The identification of a conversation
requires computing the effective support of the paths by
inspecting once again the audit log data. The audit database is thus
mined to decide which of the listed paths occur with a frequency
exceeding a predefined threshold Tf; paths with a high enough
support represent likely conversations, paths with a low support
are discarded.
At the end of these steps, we obtain the graph of dependencies.
Since composite applications built on SOA principles use only
some of the services as entry points, we can assume that these
services are provided as input to the dependency discovery
process. In the previous step, only the frequent paths rooted in
these services need to be identified. These frequent paths together
form trees rooted in these entry points. These trees are provided as
dependencies to SOA Manager. Any alert in a monitored service
is then propagated along the edges of the trees, and helps in
quickly identifying the service where the root-cause of a problem
lies.

5. EXPERIMENTS AND RESULTS
Our first experiments with dependency discovery focus on the
derivation of the conditional probabilities as described in Section
4.1.1. We based our analysis on HP-internal data about the
execution of business processes invoking various services within
HP. In the following we will first describe how we converted this
data into a format that is compliant with our algorithm (i.e.
compatible with SOA Manager audit log data), then we will
present the results of our experiments.

5.1 Data Collection and Preparation
Our data set consists of 2 tables of process execution data, which
through some elaborations can be transformed into Web service
audit log data. The first table lists all the nodes (activities) in the
workflow graphs. Each entry has a node ID and a descriptive
name. Since there are multiple workflows, each entry also has a
flow ID representing the workflow to which the node belongs.
The second table lists all the instances of the workflows described
in the first table, that were executed between 6th and 15th July,
2005. Each entry in this table has the node ID from the first table,
a begin and an end timestamp of the activity, a unique node
instance ID, and a flow instance ID that correlates all node
instances of the same workflow.

To preprocess this data set and generate the message trace that our
algorithm can accept as input, we analyzed the first table to
identify all workflows. Figure 3 shows the result of this analysis
in form simplified BPMN1 process specifications. The log data
contains data coming from three different workflows, where
workflow 1 is further characterized by the presence of two
different paths.
We observed by extracting all entries for a flow instance ID (i.e. a
workflow) in the second table that the end timestamp of a node
was the same as the begin timestamp of the successor node,
according to the activity order depicted in Figure 3. This was
verified for several flow instance IDs and could thus be expected
to be generally true for this dataset since it consists of workflows.
We used this peculiarity as the basis for generating message
traces.
Each entry in this message database consists of a pair of nodes
and the timestamp at which the first completed and the second
started. Since the SOA Manager audit database would contain the
actual message sent from the first to the second service, we create
that field of the entry by taking a hash of the two node names. In
the following we characterize a message from a service S1 to a
service S2 as a tuple (1,2) of their identifiers (cf. Figure 3 for the
identifiers of the activity instances in our experimental data.

5.2 Experimental Results
Using the occurrence frequency approach of section 4.1.1, we
were able to identify all the dependencies existing among the
messages in the log data prepared in the previous step, i.e. we
were able to identify all the dependencies existing among the
workflow activities depicted in Figure 3. Table 1 shows the
probabilities that could be computed and that represent the
confidence level with which an outgoing message is causally
dependent on an incoming message.
The dependencies reported in Table 1 match what occurs in the
actual implementation (see Figure 3). The technique based on
conditional probabilities is therefore able to find dependencies
that go beyond the obvious and direct ones.

1 Business Process Modeling Notation

Incoming
message

Outgoing
message Probability

(6,7) (7,8) 0.83

(5,6) (6,7) 0.89

(2,3) (3,4) 0.94

(0,1) (1,2) 0.95

(1,2) (2,3) 0.95

(9,10) (10,11) 1.00

(10,11) (11,12) 1.00

(13,14) (14,15) 1.00

(14,15) (15,16) 1.00

Table 1 Identified dependencies with confidence levels.

We have mentioned earlier that the techniques in section 4.1.2 and
4.1.3 currently depend on the user’s intuition for the thresholds to
be set correctly. We provide two examples in Figure 4 and Figure
5. Figure 4 shows the application of the execution time
distribution test from Section 4.1.2 to our test data. As can be seen
in the figure, the values of the test for dependent messages are
clearly lower than the values of the test for independent messages.
This proves that the distribution test is suited for the automated
identification of dependencies, yet appropriate thresholds need to
be defined. Figure 5 shows the application of the histogram
technique from section 4.1.3. We have highlighted dependent
messages, namely the transmission of a document to the OCR
system as a result of the transmission of its scanned image to the
archival system. The exponential shape of this histogram is
characteristic of dependant messages with interleaved message
pairs. For independent messages, the histogram typically depicts
bars of fairly uniform size. We need to train a classifier to
determine whether the messages corresponding to a histogram
should be classified as dependant or independent.

Receive and
Scan

Transmit to
Archive Archive Transmit to

OCR OCR Import

0

Receive PO Compare Get Approval Pay

Load page Seeing Web
page Reload Leave page

New form
submitted Approve Second level

approve Approved

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Workflow 1 Path 1

Path 2

Workflow 2

Workflow 3

Figure 3 Process models underlying the workflow data used for the experiment. Workflow activities are numbered to
characterize messages by means of their source and destination activities.

Figure 5 Two screen shots of the execution time distribution test (see Section 4.1.2). The first image shows the values of the test

performed on independent messages, the second image shows the results of the test performed on dependent messages. The lower
the value of the test, the better the measured time differences follow the chosen reference distribution.

Figure 5 In this time difference histogram (see Section 4.1.3), we have highlighted two dependent messages. In the histogram at

the at the right hand side one can easily identify the exponential distribution.

6. CONCLUSION AND FUTURE WORK
In our research we focus on the (semi)automated discovery of
complete Web service coordination protocols from unstructured
message logs, a relevant research topic in SOA-based distributed
systems. In [1], we describe how we have implemented a tool that
discovers the model underlying the interaction between services,
in terms of state machines for each individual service, given a set
of correlated message traces. The models for the different services
can be composed to derive the model describing the overall
interaction, i.e. the coordination protocol. The solution proposed
in this paper complements and extends the work presented in [1]
by deriving the necessary correlated message traces from
unstructured service execution log data.

We have shown that understanding and discovering dependencies
in SOA-based distributed systems is however a complex task and
that it is not easy (if not unfeasible in certain situations) to derive
dependencies with certainty. The quality of the probabilistic
dependency models that can be derived from audit logs is strictly
related to the quality of the logged data. As a consequence, in the
absence of uniquely identifiable message exchanges – as
discussed in this paper – sometimes we may only be able to infer
dependency with high probability rather than absolute certainty.
Despite this uncertainty, in this paper we have shown that it can
anyway be possible to derive useful correlation data from such
kind of audit log data.

Although in this paper we discussed the problem of dependency
discovery among Web services in the context of HP SOA
Manager, we would like to emphasize that the problem is general
in nature. Unfortunately, situations where only very poor message
log data is available are the majority, e.g. due to the use of
different vendor technologies or incompatible audit logging
policies.

Our future work will be experiments for determining thresholds
for the distribution and histogram techniques. We also intend to
algorithmically combine these two techniques with the occurrence
frequency technique to make the dependency discovery more
accurate, and free the user from the task of deciding which
technique will work best in a new situation.

7. ACKNOWLEDGMENTS
We would like to thank the SOA Manager product R&D team for
many useful discussions.

8. REFERENCES
[1] F. Casati, B. Benatallah, H. Motahari, R. Saint Paul. Pro-

tocol Discovery for Web services. In Openview University
Association Workshop (OVUA), Nice, France, May 2006.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, A.
Muthitacharoen. Performance Debugging for Distributed
Systems of Black Boxes. SOSP’03, Bolton Landing, NY,
USA, October 2003.

[3] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, A.
Vahdat. WAP5: Black-Box Performance Debugging for
Wide-Area Systems. Proceedings of WWW’06, Edinburgh,
Scotland, May 2006.

[4] H. Mannila, D. Rusakov. Decomposition of Event Se-
quences into Independent Components. First SIAM Data
Mining Conference, April 2001, Chicago, IL, USA.

[5] R. Srikant, R. Agrawal. Mining Sequential Patterns. Gen-
eralizations and Performance Improvements. Proceedings of
the 5th International Conference on Extending Data-base
Technology (EDBT), 1996.

[6] Hewlett-Packard Company. SOA Manager.
http://h20229.www2.hp.com/products/soa/

[7] B. Goethals. Survey on Frequent Pattern Mining. University
of Antwerp, Belgium, 2006.
http://www.adrem.ua.ac.be/~goethals/software/

[8] S. D. Lee, L. De Rade. An Efficient Algorithm for Mining
String Databases Under Constraints. KDID 2004, pages 108-
129.ù

[9] N. Méger, C. Rigotti. Constraint-based mining of episode
rules and optimal window sizes. In Proceedings of the 8th
European Conference on Principles and Practice of
Knowledge Discovery in Databases, Pisa, Italy, 2004, pages
313 – 324.

[10] Actional/Progress Software Corporation.. Business Process
Visibility. White paper, 2006. http://www.actional.com/

