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ABSTRACT 

The Service-Oriented Architecture (SOA) has become today’s 
reference architecture for modern distributed systems. As SOA 
concepts and technologies become more and more widespread and 
the number of services in operation within enterprises increases, 
the problem of managing these services becomes manifest. One of 
the most pressing needs we hear from customers is the ability to 
"discover", within a maze of services each offering functionality 
to (and in turn using functionality offered by) other services, 
which are the actual dependencies between such services. 
Understanding dependencies is essential to performing two 
functions: impact analysis (understanding which other services are 
affected when a service becomes unavailable) and service-level 
root-cause analysis (which is the opposite problem: under-
standing the causes of a service failure by looking at the other 
services it relies on). Discovering dependencies is essential as the 
hope that the enterprise maintains documentation that describe 
these dependencies (on top of a complex maze and evolving 
implementations) is vane. Hence, we have to look for 
dependencies by observing and analyzing the interactions among 
services. 

In this paper we identify the importance of the problem of 
discovering dynamic dependencies among Web services and we 
propose a solution for the automatic identification of traces of 
dependent messages, based on the correlation of messages 
exchanged among services. We also discuss our lessons learned 
and results from applying the techniques to data related to HP 
processes and services. 
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1. INTRODUCTION 
Discovery of dependencies among components of large 
distributed systems is an important technology for management 
software. In enterprise IT systems, many tools for discovery exist 
that find the relationships among components, e.g., by looking 
into configuration files. These tools can discover for example that 
an application running in a J2EE application server depends on an 
Oracle server running on another host. It proves very effective 
when discovering static dependencies among coarse-grained 
systems. 
However, customers are increasingly asking for the capability to 
discover dynamic dependencies among services. In fact, many 
business applications today are based on a service-oriented 

architecture (SOA), which implies that they are composed of 
loosely-coupled, reusable services. When a service has a failure or 
performance degradation, all other services that depend directly or 
indirectly on this service might be impacted. It is important to 
understand what these dependencies are, so that management 
tools can display and alert users about the business impact of 
failures and performance degradations. Furthermore, knowledge 
of dependencies considerably simplifies service-level root-cause 
analysis, that is, trying to understand the origin of a failure. 
The dependencies can be explored in tools such as HP OpenView 
SOA Manager, and the performance metrics of all the dependent 
services are captured.  However, currently the dependencies must 
be explicitly specified in SOA Manager. This works in theory 
when enterprises enforce change management processes strictly. 
Any change in dependencies of a SOA business application on the 
underlying services can then be captured in a database and 
updated in SOA Manager. In practice, these processes are not 
always followed. Furthermore, the specification of the 
dependencies may include some inaccuracies. This is why 
customers have repeatedly requested to endow SOA Manager 
with a dependency discovery module, which derives dependencies 
by looking at message exchanges among services.  
In this paper we present a module that automatically analyzes 
service execution data to discover dynamic dependencies among 
services. The problem is far from trivial as it requires 
understanding correlations among message exchanges between 
services. For example, if we observe that service A invokes 
service B, and service B invokes service C, in which cases can we 
say that the second invocation is caused by the first and that there 
is, therefore, a dependency between A and C? This is already a 
problem in this simple scenario with three services, and it 
becomes a much more complex problem when there are multiple 
services used in different combinations and delivering different 
kinds of functionality. Hence, the problem is important from a 
business standpoint and is challenging from a research 
perspective.  
This paper is structured as follows. In Section 2 we describe our 
reference architecture and formalize the problem addressed in this 
paper. In Section 3 we position the problem with respect to related 
work, while in Section 4 we describe our own approach to the 
discovery of dependencies among Web services, and we discuss 
the underlying algorithm in more detail. In Section 5 we report on 
our first experiments and the results obtained so far. Finally, in 
Section 6 we conclude the work and provide an outlook over 
ongoing and future work. 



2. CONTEXT OF INVESTIGATION AND 
PROBLEM STATEMENT 
The discovery of dependencies between Web service executions 
in distributed environments is a challenging problem in general. 
Due to the wealth of possible different software and hardware 
infrastructures and the considerable number of different protocol 
specifications that can be used in a specific implementation, the 
dependency discovery problem comes in a variety of different 
flavors. In order to be able do define the problem under study, we 
thus first describe the platform we aim at extending, i.e. HP’s 
OpenView SOA Manager [6]. 

2.1 Reference Architecture 
Figure 1 describes the reference architecture of our dependency 
discovery platform, where our initial concern is the capturing of 
message traces and the identification of communicating 
components (i.e. the services).  
Message traces can easily be captured by the logging mechanism 
already provided by SOA Manager. SOA Manager intercepts any 
message sent to a service it manages. This can be done in two 
different fashions: (i) by means of a handler or agent running in 
supported Web service containers, such as BEA WebLogic and 
.Net containers, or (ii) by means of suitable interception proxies 
(brokers) for services running in all other environments. An agent 
runs code provided with the SOA Manager product and has access 
to message headers. Many fields from the headers are logged in an 
audit database. Brokers on the other hand are executed outside the 
container and must intercept all messages sent to the service they 
manage, so that the message headers can be similarly logged. 
Clients and other services invoking the brokered service must be 
configured to use the brokered endpoint rather than the original 
service endpoint.  

Intercepting messages and their responses using either of these 
two approaches is primarily for the purpose of computing metrics 
such as response time or request frequencies. However, the 
intercepted message traces are also stored in a centralized 
database to enable auditing. Dependencies among services can 
thus be discovered by analyzing these message traces.  
As our study aims to identify dependencies based on real log data 
and without requiring SOA Manager to provide any additional 
logging feature, there are a few considerations that need to be 
taken into account and that constrain the possible solution space: 

 We cannot rely on any protocol-specific correlation or 
addressing information possibly encoded in the body of 
intercepted messages, as for example provided by WS-
Coordination or WS-Addressing. Although such protocol 
extensions are good practice, they still lack widespread 
use. The result is that, given any set of messages, we 
cannot determine in general if two messages belong to the 
same conversation. Even if WS-Coordination or WS-
Addressing are used, the scope of the coordination 
typically encompasses only the interaction among a few 
services, and does not follow all dependencies (indeed, it 
would otherwise violate the very same loose coupling 
principle on which SOA are based).   

 We cannot analyze the body of traced messages, because 
although the logging mechanism does support the logging 
of message bodies, this feature is in general disabled by 
system administrators: the load is often too much unless in 
trivial lab tests. 

 For a given message, in general we only know the 
destination service/operation and the network address of 
the node that hosts the source service, unless WS-
Addressing is used. If WS–Addressing had widespread 
support, this would not be a problem. But since this is not 
yet the case (and it is not clear when this standard will 
become widely used), the availability of only the IP 
address of the sending service complicates the problem of 
inferring dependencies between messages, since multiple 
services can be located at an individual IP address.  

 Finally, we observe that logged data only contains 
messages sent by or directed to services managed by SOA 
Manager. Possible service dependencies outside the 
managed environment cannot be derived. 

2.2 Problem Statement 
Given the above considerations and an assignment of Web 
services Si∈S (1≤i≤n, S being the set of Web services managed by 
SOA Manager) to the nodes Nj∈N (1≤i≤m, N being the set of 
computing nodes managed by SOA Manager) by means of the a 
function loc:S→N, we can formalize a message M as tuple 
M=(Ns,Sd,t), where Ns is the IP address of the source node, Sd is 
the destination service, and t is the time the message is received 
by Sd . 
Being L=(M1,M2,…,Mlast) the chronologically ordered message 
log with t1<t2<…<tlast and being tlast the time corresponding to the 
last logged message, our problem of discovering dependencies 
among Web services can be reformulated as the discovery from 
the log data of all those message traces T=(M1,M2,…,Mk) with 
t1<t2<…<tk, k≤tlast and Sd,i located on Ns,i+1 and Mi+1 generated by 
Sd,i in response to Mi for all 1≤i≤k-1. In short, we need to identify 
traces of messages that are causally (e.g. functionally) dependent. 
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Figure 1 SOAM deployment architecture for resource 

management.  



Consider for example the messages exchanged among the Web 
services shown in Figure 2; messages from a service S1 to a 
service S2 are represented by arrows, and labels correspond to the 
temporal order of the messages. There are four nodes that host 
different numbers of Web services and, in particular, four services 
that exchange messages in a chronologically ordered and causal 
logic that represents the message trace T=(M1,M2,…,M5) to be 
discovered. Typically, the generation of such a message trace is 
driven by a particular coordination agreement (i.e. a protocol) 
among the cooperating services, which we however assume 
unknown. 
More precisely, let us assume that in Figure 2, message 2 from 
service S2 to S3 is the result of message 1 from S1 to S2. However 
S2 might have spent time on computation before sending message 
2 to S3. It is also likely that S2 is multithreaded and therefore has 
received and sent other messages between receiving message 1 
and sending message 2. Hence we have to solve the problem of 
identifying the correlated messages 1 and 2 (and hence a 
dependency of S1 on S3) from a log where they are not adjacent 
entries. In the absence of support for WS-Addressing, when 
message 2 is intercepted at S3, only the IP address of node B can 
be logged. The fact that S2 sent the message is not known. There 
is no general solution for intercepting the message when it leaves 
node B since S2 may not be running in a J2EE or .Net container 
(e.g. because it is implemented in C++).  

3. RELATED WORK  
Research works. The illustrated problem is not a trivial one. 
There are several works in literature that address similar issues, 
prevalently in the area of sequence or pattern mining.  
Itemset mining, as an instance of sequence mining technique, is 
used above all in marketing and CRM applications to identify 
repeated patterns in a sequence of (business) transactions. In [5] 
the authors describe for example an interesting approach to 
sequential pattern mining (GSP) that also leverages user-defined 
taxonomies during the mining process and outperforms their 
previously proposed AprioriAll algorithm. For an overview of 
frequent itemset and association rule mining the reader is referred 
to [7]. 
Unfortunately, itemset mining techniques are not applicable in our 
case, as we do not have any notion of confined and identifiable 
transactions. We are given a flat, sequential log stemming from a 
distributed computing environment where possible correlated 
communications, i.e. conversations, are not tagged by a unique 

conversation identifier, and their message sequences are typically 
interleaved in the log file. 
Our problem thus resembles more closely the one addressed by 
another sequence mining technique, i.e. string or episode mining. 
String mining (see for example [8]) is heavily adopted in 
bioinformatics, while episode mining (see for example [4] and 
[9]) rather concentrates on large event sequences, e.g. in the 
telecommunications domain. 
Especially the work presented in [4] could be promising in our 
context, but there are two main constraints that differentiate our 
problem from the one studied by the authors in [4]: (i) a log entry 
(i.e. a message sent from service S1 to service S2) does not 
uniquely identify the source service, as we only are given the 
source IP address, at which there might be located several 
different services possibly generating the message; (ii) we are in 
presence of both short-running conversations and long-running 
business processes, which makes it difficult to identify suitable 
time windows for the mining process and, thus, heavily would 
increase computation times. 
In [2] the authors concentrate on performance debugging in 
distributed systems, a conceptually similar problem to the one 
discussed in this paper. They propose two interesting approaches, 
which are not based on mining techniques: an algorithm based on 
the nesting of request and response messages in RPC style 
communications, and an algorithm based on signal processing for 
free-form message-based communications. While the former 
algorithm is not applicable to our domain, the latter, again, 
presents the problem of sizing a suitable time window a priori in 
presence of long-running business processes. In [3] the authors 
present their message-linking algorithm, an evolution of the work 
presented in [2], which assumes that causal delays between an 
incoming and an outgoing message follow an exponential 
distribution. If the time difference between an incoming and an 
outgoing message exceeds four times the average delay that can 
be derived for the two messages from the event log, no causal 
dependency is assumed anymore; this corresponds to adopting a 
different time window for each pair of incoming and outgoing 
messages at each node of the system. 
Competitive approaches and products. The main constraint 
imposed by our reference scenario is that we cannot run agent 
code in all service containers, which would allow us to tag 
correlated messages with a unique identifier, and dependent 
messages could be identified with certainty on the basis of the 
identifier. This is however the approach taken by several vendors 
in the SOA management space, such as Actional (Sonic Software) 
and IBM. The patented solution by Actional [10], for example, is 
based on agents that operate on the application protocol level and 
have visibility of both inbound and outbound messages. Agents 
tag messages with correlation data (both in input and in output) 
and feed a proper Agent Analyzer module with the enriched 
message records, which is then able to accurately trace all 
dependencies that exist among the running services.  
This approach however does not work for Web services that do 
not run in containers, as might be the case for legacy applications 
to which Web service interfaces have been added. Instead, it is 
our goal to also support Web services that run outside service 
containers. 

4. DEPENDENCY DISCOVERY  
We now present our approach to dependency discovery. The 
problem of dependency discovery is complex because in many 
situations there is a large number of  invocations on a fairly large 
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Figure 2 Example sequence of message exchanges among 

managed services. Circles represent computing nodes, 
rectangles represent Web services. 



number of services. Hence, if we restrict our approach to the 
simplistic determination of checking that when service A is 
invoked, then service B is invoked shortly afterwards, we would 
be out of luck, since both A and B are frequently invoked and it is 
not possible to say that two given invocations are dependant. The 
more frequent service invocations are, the more complex the 
problem becomes, and in general it is impossible to be “certain” 
about a dependency.  Hence the philosophy we have taken in this 
work is to find a set of “suspicions” (rather than evidences) that 
two services are dependant. When we have sufficient suspicions 
we conclude that a dependency exists. 
Specifically, our approach to the discovery of dependencies 
among Web services according to the definitions given in Section 
2.2 and in consideration of the works discussed above is 
composed of four consecutive steps: 

1. Inference of a causal dependency within message pairs in 
the log, where the first message is received at the service 
node from which the second message originates. In this 
part we adopt and combine different techniques to detect 
potential dependencies. 

2. Construction of a probabilistic dependency graph as 
concatenation of all identified dependencies between pairs 
of messages by taking into account the assignment of 
services to nodes loc:S→N. Edges are labeled with a 
confidence level, which is the probability of the identified 
dependency. 

3. Pruning of the dependency graph by applying a user-
specified threshold Tp to the probabilities associated with 
the edges of the graph, thus simplifying the graph and 
keeping only “relevant” edges. 

4. Construction of paths from the pruned graph and mining 
of the audit log to decide which of the paths indeed occur 
with a frequency greater than a given threshold Tf. 

Further details on these four phases are given below.  

4.1 Inference of Causal Dependencies 
Inferring causal dependencies within message pairs is the first and 
basic step toward the identification of entire traces (i.e. paths) of 
dependent messages. In our current work we investigate three 
different dependency identification algorithms that leverage the 
following ideas in order to associate a dependency probability to 
pairs of messages: 

 Occurrence frequency of logged message pairs; 
 Distribution of service execution times; 
 Histogram of execution time differences. 

In this paper we show results based on all three approaches. 
However for the second and third approach, we have not yet 
automated the selection of dependencies since thresholds need to 
be tuned. We are currently performing this tuning using SOA 
applications from different domains, and will present the results in 
the camera-ready version of the paper. 

4.1.1 Occurrence Frequency 
The first approach is based on the frequency of the occurrence of 
message pairs in the log data, i.e. it is based on the conditional 
probability that a message M2 can be found in the log data, 
knowing that M1 has been found. 
We fix a time window size w (1≤w≤tlast), which corresponds to the 
limit on the execution time of a service from the time a message is 

received by the service until a dependent message is sent out by 
the service. If the conditional probability of message M2 appearing 
within the time window whenever message M1 occurs in the 
database exceeds some threshold, we infer that message M2 is 
dependent on message M1. 
The detailed algorithm is described by the following pseudo-code:  

Algorithm: 
Get conditional message dependency probabilities 

Initialize i=1. 
Initialize an empty set CM of message counters. 
Scan the audit log data L in order of increasing timestamps, 
and execute for each message Mi∈L, 1≤ti≤tlast: 

Step 1: Initialize the time window Wi corresponding to 
message Mi with Wi=(Mi-w,…,Mi), Wi⊆L and Mj∈L for ti-
w≤tj≤ti. 
Step 2: Initialize an empty set Si of message signatures 
and an empty set CPi of message counters. A message 
signature of a message M consists of a hash function 
computed over sender, receiver and invoked operation 
corresponding to M. 
Step 3: Start at the earliest message in the time window 
if Mi is not present in the time window (tp =ti-w). 
Alternately start at the message following the most 
recent occurrence of Mi in the time window (tp). Execute 
for each message Pi,j (p≤j<i) from the starting point to the 
end of the time window: 

Step 3a: If there is a potential causal dependency 
from Pi,j to Mi indicated by the destination service of 
Pi,j being located at the same node at which Mi is 
generated, compute the signature Si,j of Pi,j. 
Step 3b: If Si,j ∈ Si, set i=i+1 and CPi,j= CPi,j+1 and 
go to Step 3.  
Step 3c: Add signature Si,j to Si, set CPi,j=1 and add  
the counter CPi,j to the set CPi. Got to Step 3. 

Step 4: If CMi∈CM set CMi=CMi+1, else set CMi=1 and 
add the counter CMi to the set CM. 
Step 5: Increment i=i+1 and go to Step 1. 

After the scan of the log database is completed, the 
conditional probability P(Pi,jMi/Pi,j) is easily computed as 
P(Pi,jMi/Pi,j)=CPi,j/CMj 

4.1.2 Execution Time Distribution 
The second approach is based on the statistical distribution of 
service execution times from the instant a message is received 
until a dependent message is sent out.  
We assume that service execution times follow a specific 
statistical distribution (e.g. a normal distribution or an exponential 
distribution, as suggested in [3]). To verify whether a specific 
message pair is indicative of dependency, a distribution test will 
be applied to the time differences between the specific incoming 
and outgoing messages, which can be derived from the message 
log data.  We look in particular for normal distributions. Only 
those message pairs whose distribution of time differences fits the 
statistical distribution with a confidence level exceeding a 
predefined threshold will be considered dependent. Several 
statistical approaches and tools to find distributions are available 



so our goal is not to create a new approach to discovering 
distributions here. 
Multiple instances of a message pair may be interleaved; hence, 
identifying an instance of a message pair will involve heuristics 
like skipping a certain number of occurrences of messages or 
deriving a suitable maximum time window to consider. The 
preliminary tests performed on some real service log data (see 
Section 5) confirmed our initial intuition that in absence of 
interleaved message pairs, dependent messages yield a normal 
distribution, while in presence of interleaved message pairs, 
dependent messages yield an exponential distribution. 

4.1.3 Time Difference Histogram 
The third approach is based on the computation of a histogram of 
the time differences for all instances of the message pairs, without 
assuming any predefined statistical distribution a priori.  
The presence of a small number of consecutive buckets of the 
histogram with counts much higher than the average count across 
all buckets is a likely indicator of the messages having a 
dependency. As we will show in the following section, this 
technique is especially suited to the human user inspecting the 
service log data and looking for dependencies. 

The current weakness of the previous two approaches is that we 
have not yet performed a thorough data analysis on different 
datasets to be able to state with precision which thresholds are 
appropriate. Such a thorough analysis is underway and will need 
to be completed before these two additional techniques for 
dependencies are included in the tool. However, data confirms the 
intuitions described above in terms of distributions and 
histograms. 

4.2 Creating the Dependency Graph 
Once causal dependencies within pairs of messages have been 
identified, a probabilistic dependency graph is created with nodes 
corresponding to services and edges corresponding to messages. 
The construction of the dependency graph is based on inferred 
dependencies among messages, the association of messages to 
services, and the assignment of services to nodes loc:S→N.  
Since all the techniques illustrated in the previous step produce 
results of probabilistic nature, each edge or message of the graph 
is labeled with a probability that expresses the confidence level of 
the inferred dependency and the probability of the message to 
source service assignment performed during the construction of 
the dependency graph. 

4.3 Pruning the Dependency Graph 
The so created probabilistic dependency graph summarizes the 
associations of probabilities to messages, of messages to services, 
and of services to nodes that could be derived from the log data. 
In order to discriminate paths in the dependency graph with low 
probabilities, we now prune the edges of the graph by applying a 
predefined threshold Tp. Varying the threshold determines how 

selective we are about the dependencies that are found. A low 
threshold only generates dependencies of which the system is 
more certain. A high threshold implies more dependencies, but of 
which we can be less confident. Graphically, this translates into a 
slider that shows dependencies at the changing of the threshold in 
the slider. 

4.4 Identifying Frequent Paths 
From the pruned dependency graph created in the previous step, 
we now identify all possible paths representing traces of 
dependent message exchanges among the managed services, i.e. 
web service conversations. The identification of a conversation 
requires computing the effective support of the paths by 
inspecting once again the audit log data. The audit database is thus 
mined to decide which of the listed paths occur with a frequency 
exceeding a predefined threshold Tf; paths with a high enough 
support represent likely conversations, paths with a low support 
are discarded.  
At the end of these steps, we obtain the graph of dependencies. 
Since composite applications built on SOA principles use only 
some of the services as entry points, we can assume that these 
services are provided as input to the dependency discovery 
process. In the previous step, only the frequent paths rooted in 
these services need to be identified. These frequent paths together 
form trees rooted in these entry points. These trees are provided as 
dependencies to SOA Manager. Any alert in a monitored service 
is then propagated along the edges of the trees, and helps in 
quickly identifying the service where the root-cause of a problem 
lies. 

5. EXPERIMENTS AND RESULTS 
Our first experiments with dependency discovery focus on the 
derivation of the conditional probabilities as described in Section 
4.1.1. We based our analysis on HP-internal data about the 
execution of business processes invoking various services within 
HP. In the following we will first describe how we converted this 
data into a format that is compliant with our algorithm (i.e. 
compatible with SOA Manager audit log data), then we will 
present the results of our experiments.  

5.1 Data Collection and Preparation 
Our data set consists of 2 tables of process execution data, which 
through some elaborations can be transformed into Web service 
audit log data. The first table lists all the nodes (activities) in the 
workflow graphs. Each entry has a node ID and a descriptive 
name. Since there are multiple workflows, each entry also has a 
flow ID representing the workflow to which the node belongs. 
The second table lists all the instances of the workflows described 
in the first table, that were executed between 6th and 15th July, 
2005. Each entry in this table has the node ID from the first table, 
a begin and an end timestamp of the activity, a unique node 
instance ID, and a flow instance ID that correlates all node 
instances of the same workflow.  



To preprocess this data set and generate the message trace that our 
algorithm can accept as input, we analyzed the first table to 
identify all workflows. Figure 3 shows the result of this analysis 
in form simplified BPMN1 process specifications. The log data 
contains data coming from three different workflows, where 
workflow 1 is further characterized by the presence of two 
different paths. 
We observed by extracting all entries for a flow instance ID (i.e. a 
workflow) in the second table that the end timestamp of a node 
was the same as the begin timestamp of the successor node, 
according to the activity order depicted in Figure 3. This was 
verified for several flow instance IDs and could thus be expected 
to be generally true for this dataset since it consists of workflows. 
We used this peculiarity as the basis for generating message 
traces. 
Each entry in this message database consists of a pair of nodes 
and the timestamp at which the first completed and the second 
started. Since the SOA Manager audit database would contain the 
actual message sent from the first to the second service, we create 
that field of the entry by taking a hash of the two node names. In 
the following we characterize a message from a service S1 to a 
service S2 as a tuple (1,2) of their identifiers (cf. Figure 3 for the 
identifiers of the activity instances in our experimental data. 

5.2 Experimental Results 
Using the occurrence frequency approach of section 4.1.1, we 
were able to identify all the dependencies existing among the 
messages in the log data prepared in the previous step, i.e. we 
were able to identify all the dependencies existing among the 
workflow activities depicted in Figure 3. Table 1 shows the 
probabilities that could be computed and that represent the 
confidence level with which an outgoing message is causally 
dependent on an incoming message. 
The dependencies reported in Table 1 match what occurs in the 
actual implementation (see Figure 3). The technique based on 
conditional probabilities is therefore able to find dependencies 
that go beyond the obvious and direct ones. 
 

                                                             
1 Business Process Modeling Notation 

Incoming  
message 

Outgoing  
message Probability 

(6,7) (7,8) 0.83 

(5,6) (6,7) 0.89 

(2,3) (3,4) 0.94 

(0,1) (1,2) 0.95 

(1,2) (2,3) 0.95 

(9,10) (10,11) 1.00 

(10,11) (11,12) 1.00 

(13,14) (14,15) 1.00 

(14,15) (15,16) 1.00 

Table 1 Identified dependencies with confidence levels. 

We have mentioned earlier that the techniques in section 4.1.2 and 
4.1.3 currently depend on the user’s intuition for the thresholds to 
be set correctly. We provide two examples in Figure 4 and Figure 
5. Figure 4 shows the application of the execution time 
distribution test from Section 4.1.2 to our test data. As can be seen 
in the figure, the values of the test for dependent messages are 
clearly lower than the values of the test for independent messages. 
This proves that the distribution test is suited for the automated 
identification of dependencies, yet appropriate thresholds need to 
be defined. Figure 5 shows the application of the histogram 
technique from section 4.1.3. We have highlighted dependent 
messages, namely the transmission of a document to the OCR 
system as a result of the transmission of its scanned image to the 
archival system. The exponential shape of this histogram is 
characteristic of dependant messages with interleaved message 
pairs. For independent messages, the histogram typically depicts 
bars of fairly uniform size. We need to train a classifier to 
determine whether the messages corresponding to a histogram 
should be classified as dependant or independent. 
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Figure 3 Process models underlying the workflow data used for the experiment. Workflow activities are numbered to 
characterize messages by means of their source and destination activities.  



 

 

 
Figure 5 Two screen shots of the execution time distribution test (see Section 4.1.2). The first image shows the values of the test 

performed on independent messages, the second image shows the results of the test performed on dependent messages.  The lower 
the value of the test, the better the measured time differences follow the chosen reference distribution. 

 
 

 

 
Figure 5 In this time difference histogram (see Section 4.1.3), we have highlighted two dependent messages. In the histogram at 

the at the right hand side one can easily identify the exponential distribution. 
 

 



6. CONCLUSION AND FUTURE WORK 
In our research we focus on the (semi)automated discovery of 
complete Web service coordination protocols from unstructured 
message logs, a relevant research topic in SOA-based distributed 
systems. In [1], we describe how we have implemented a tool that 
discovers the model underlying the interaction between services, 
in terms of state machines for each individual service, given a set 
of correlated message traces. The models for the different services 
can be composed to derive the model describing the overall 
interaction, i.e. the coordination protocol. The solution proposed 
in this paper complements and extends the work presented in [1] 
by deriving the necessary correlated message traces from 
unstructured service execution log data. 

We have shown that understanding and discovering dependencies 
in SOA-based distributed systems is however a complex task and 
that it is not easy (if not unfeasible in certain situations) to derive 
dependencies with certainty. The quality of the probabilistic 
dependency models that can be derived from audit logs is strictly 
related to the quality of the logged data. As a consequence, in the 
absence of uniquely identifiable message exchanges – as 
discussed in this paper – sometimes we may only be able to infer 
dependency with high probability rather than absolute certainty. 
Despite this uncertainty, in this paper we have shown that it can 
anyway be possible to derive useful correlation data from such 
kind of audit log data. 

Although in this paper we discussed the problem of dependency 
discovery among Web services in the context of HP SOA 
Manager, we would like to emphasize that the problem is general 
in nature. Unfortunately, situations where only very poor message 
log data is available are the majority, e.g. due to the use of 
different vendor technologies or incompatible audit logging 
policies. 

Our future work will be experiments for determining thresholds 
for the distribution and histogram techniques. We also intend to 
algorithmically combine these two techniques with the occurrence 
frequency technique to make the dependency discovery more 
accurate, and free the user from the task of deciding which 
technique will work best in a new situation. 
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