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Mashup languages offer new graphic interfaces for service composition. 

Normally, composition is limited to simple services, such as RSS or Atom 

feeds, but users can potentially use visual mashup languages for complex 

service compositions, with typed parameters and well-defined I/O interfaces. 

Composing search services introduces new issues, however, such as determining 

the optimal sequence of search invocations and separately composing ranked 

entries into a globally ranked result. Enabling end users to mash up services 

through suitable abstractions and tools is a viable option for improving service-

based computations.

T he past few years have witnessed 
end users’ increasing involve­
ment in the content creation proc­

ess of modern Web applications (as 
with Wikipedia) and the emergence 
of social Web applications (such as 
YouTube or MySpace). Although these 
applications benefit from collective 
user-generated content, a growing user 
community is also trying to profit 
from existing content and services by 
developing its own Web applications. 
The phenomenon, commonly known 
as Web mashups, is driven mostly by 
skilled users because reusing third-
party content and services is a non­
trivial task. This is especially true for 
Web services, which are based on the 
notion of programmable interface; for 
instance, integrating Amazon’s search 
service with currency conversion 

or shipment services requires pro­
gramming skills. Service mashups, or 
user-driven Web service integration 
approaches, gain momentum by also 
targeting less skilled users. They ef­
fectively alleviate the burden of ser­
vice composition, but users still need 
to manage the flow of service calls 
and their I/O interaction.

In this article, we propose an en­
hanced service mashup language for 
graphically composing and automati­
cally executing queries over online 
data-sharing services — that is, ser­
vices that let users query remote data 
sources. We distinguish between ex­
act and search services. Exact ser-
vices provide answers that consist of 
unranked data items that aren’t as­
sociated with any assessment of their 
confidence or quality with respect to 
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the input data. Due to a potentially large num­
ber of items, search services, on the other hand, 
require ranking composition and properly man­
aging result sets. When composing answers 
from multiple services, we must produce the 
output in a global ranking that appropriately 
combines the various partial rankings. This 
explicit distinction between service types dis­
tinguishes our approach from other mashup 
languages, such as Yahoo Pipes (http://pipes.
yahoo.com/pipes/) or Damia (http://services. 
alphaworks.ibm.com/damia/).1

Our proposed approach operates without in­
dividual business protocols regulating possible 
long-lasting interactions between a client and 
the service. Our services are stateless because 
subsequent invocations of the same service are 
independent, and there’s no need to pass cor­
relation data from one call to another. Service 
composition scenarios that preserve the state 
of computations require more sophisticated in­
struments — such as the Business Process Ex­
ecution Language (BPEL; www.oasis-open.org/ 
committees/wsbpel/) — and are beyond ordinary 
users’ reach; therefore, they are out of the scope 
of our formalism. Nonetheless, our proposed 
approach is expressive enough to cover a wide 
range of complex queries over the Web.

Designing Service Mashups
Let’s consider a complex query that an academic 
user belonging to the local database community 
might issue: “Find all database conferences held 
within the next six months in locations with 
an average temperature at the time of the event 
above 28°C, reachable by a low-cost flight from 
Milan, and offering affordable accommodation 
in a five-star hotel.”

Presently, no general-purpose search engine, 
Google or Yahoo, can satisfactorily answer such 
a multidomain query. Although a search ser­
vice might cover a single domain, the user must 
orchestrate their interaction. In fact, without 
appropriate support for search-service composi­
tion, the only feasible way to deal with such a 
query is to separately invoke dedicated services 
and then feed one search’s results as inputs to 
another, or to compare search results manually. 
We propose a mashup language that can express 
this query as well as a system architecture that 
can accept, optimize, and process the query and 
then produce the result.

In our visual language, we divert the focus 

away from Web services’ technical aspects (such 
as standards and description languages) and 
simply regard each service as a signature with 
a name and a list of attributes. Each attribute is 
associated with a domain. Instead of concrete do­
mains, such as String, we use abstract domains, 
which have an underlying concrete domain and 
let us distinguish strings representing, for exam­
ple, city names from strings representing confer­
ence topics. We organize the abstract domains 
into a hierarchical taxonomy that represents the 
shared knowledge necessary to support service 
interoperability. We further classify attributes as 
either input or output attributes. This character­
izes the data flow corresponding to a service in­
vocation: the caller provides values for all input 
attributes and, in response, receives values for 
all output attributes. Technically speaking, the 
language lets us build directed acyclic graphs 
with nodes that are service invocations and arcs 
that are connections between services represent­
ing parameter passing (from a service’s output to 
another service’s input).

Services are made available for use in the 
framework or platform via explicit registra­
tion. For each service, the framework designer 
(an expert in service integration who knows the 
services’ semantic domains) specifies its signa­
ture and declares the abstract domain of each 
input and output parameter. The framework de­
signer is responsible for choosing an existing 
domain or creating a new one to comply with 
the semantics of the service being registered. 
Once registration occurs, the framework can 
then check compatibility between parameters 
and even suggest join paths. Indeed, registra­
tion is crucial for the actual joinability of pa­
rameters from different services.

A huge amount of work has been done (and 
still needs to be done) on semantic issues to sup­
port and automate data integration and schema 
matching. (See related work for an interesting 
survey on the topic.2) In this article, we avoid 
data-integration issues and rely on the frame­
work designer’s knowledge and skills to resolve 
interoperability issues. Of course, not all servic­
es will lend themselves to seamless registration, 
despite the framework designer’s best effort.

Figure 1 shows the user interface’s two re­
gions. The canvas region (the blank space at the 
right-hand side in the figure, not including the 
legend) contains the user’s query and covers the 
whole screen, except for the left margin, which 
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contains the registered services region. The lat­
ter lists the names of all services (all in rounded 
boxes, with search services explicitly labeled) 
that are available to users to be mashed up to 
compose their query. Users can drag and drop 
the rounded boxes onto the canvas. Once on the 
canvas, a service is displayed in larger rounded 
boxes with two areas: attributes and condition.

The attributes area lists all of the service’s 
attributes, each of which is equipped with a con­
nector; the inputs have the connector on the left-
hand side, the outputs on the right-hand side. 
Input attributes are further provided with input 
fields — that is, text boxes in which the user can 
type a constant value for that attribute. 

The condition area contains an input field 
that helps specify a filtering condition, such as 
a comparison between an attribute and a con­
stant value, or a threshold to restrict how many 
of the answers returned by the service are to 
be considered. Typically, conditions for exact 
services are Boolean selections on the service’s 
attributes, whereas conditions for search ser­
vices limit the size of the result set to a fixed 
number.

Placing a service on the canvas corresponds 
to adding an invocation of that service in the 
user’s mashup. Out of the answers to the invo­
cation, only those satisfying the selection con­
dition contribute to the result. To enable the 
service invocation, users must bind a service’s 
input attributes to an input value, which they 
can specify by entering the value in the cor­

responding input field or linking the input con­
nector to another service’s output connector. 
Linking thus expresses a precedence relation 
between service invocations. Of course, typ­
ing a constant into an input field disables the 
ability to attach a connector to that field and, 
symmetrically, attaching a connector disables 
the text box. Users can place a service on the 
canvas several times; in this case, the graphical 
interface adds a number as a subscript to the 
service name to distinguish the occurrences.

To conclude this simple syntax of graphical 
operations (summarized in the legend in Figure 
1), the user can select some of the services’ out­
put attributes as result attributes for the query. 
In such cases, the corresponding connector is 
marked in green and has an outgoing arrow. In 
practice, all search services should provide at 
least an output value because the actual rank­
ing provided by a search service must be sub­
ject to users’ validation and judgment.

Figure 1 shows four available services:

confSchedule, an exact service requiring an 
input value for the topic attribute and re­
turning city, start date, end date, and name 
of conferences covering that topic;
weather, an exact service returning the tem­
perature of a given city at a given date;
hotel, a search service returning accommo­
dation offers (hotel name and price), sorted 
by price, corresponding to a given city, cate­
gory, and check-in and check-out dates; and
flight, a search service returning price, de­
parture time, and return time (sorted by 
price) for low-cost travel solutions corre­
sponding to the given origin, destination, 
and dates.

Users form the first part of the query by fill­
ing in the constant value “Database” in the in­
put field corresponding to confSchedule’s topic 
attribute and imposing as a condition in the 
respective panel that the conference’s start and 
end date are between the current date (captured 
by the environmental variable $today) and 180 
days after that.

The City, Start, and End output attributes 
feed the input arguments of the other three ser­
vices on the canvas. City is also used as input 
for weather and hotel and as a flight destina­
tion. Because we know the abstract domains of 
all the registered services’ attributes, it’s easy 

•

•

•

•

Figure 1. Graphical environment for user-driven composition of 
service mashups. A user can drag registered services from the 
registered services region onto the canvas at the right, where 
the selected services are mashed up (composed) graphically by 
drawing connectors. Each added box represents a service call, and 
the connectors represent parameter passing. 
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to draw connections between services. When a 
user clicks on an output attribute, the system 
highlights all attributes (on other services) with 
a compatible domain and, as soon as the user 
selects one, draws the corresponding connec­
tion. For example, when City in confSchedule 
is selected, the system highlights City in hotel, 
weather, and from and to flight. The behavior is 
similar when the user clicks on an input attri­
bute, except that it isn’t possible to draw a con­
nection between two input attributes.

The rest of the query is self-explanatory: 
some input values are hard-coded in the query 
in the corresponding input fields (“Five stars” as 
hotel category and “Milan” as departure city), 
the relevant conditions (city and flight cost) 
are indicated in the respective condition pan­
els, and the other input attributes that aren’t fed 
with a constant value are matched with the cor­
responding outputs from confSchedule. Before 
executing a query, the system checks its exe­
cutability. Namely, each service on the canvas 
must be callable — that is, either each of its in­
puts is filled with a constant or, inductively, if it 
is not filled with a constant then it is connected 
to an output of a callable service.

With this approach, the user query is speci­
fied declaratively: the semantics of the service 
graph in the canvas corresponds (using data­
base terminology) to the Cartesian product of 
the involved services. The three classical re­
lational query primitives (selection, join, and 
projection) are expressed as follows: selections 
are expressed in the various condition panels, 
the connections express equality between the 
values of two attributes (equi-joins, in formal 
database terminology), and projections on the 
output attributes are expressed by the green 
arrows. Each selection is addressed to a single 
service, and each join is an equi-join. Enriching 
the expressive power would require introducing 
less intuitive constructs, such as join and selec­
tion nodes. In our proposed formalism, instead, 
all nodes are services. The query’s structure 
doesn’t yet dictate the exact order of service 
calls, and several degrees of optimization ex­
ist concerning, for example, the execution se­
quence for partially ordered service calls and 
the degree of parallelism versus pipelining. The 
execution engine builds an access plan compat­
ible with the implicit ordering determined by 
the connections that express the mapping of 
outputs to inputs (which imposes, for example, 

to invoke confSchedule before weather) and 
decides how to interact with services.

Currently available interactive feed aggrega­
tors, such as Yahoo Pipes and Damia, instead use 
a fully procedural approach: the user graphically 
assembles data feeds by fully specifying the data 
flows among the services as well as the operators 
used to combine them, and no mediation occurs 
between the language description and the under­
lying language implementation. Previous work3 
proposed an alternative procedural approach 
that uses a service-mashup-specific program­
ming language for the Swashup platform; data 
mediators, service APIs, protocols, choreogra­
phies, and UIs are first-class language concepts 
immediately available to the developer who pro­
grams the mashup. In principle, Yahoo Pipes, Da­
mia, and Swashup could express mashups over 
search services, but due to the lack of an explicit 
notion of search service, they can’t handle such 
cases properly. In particular, these approaches 
don’t support paging large result sets or combin­
ing ranked results from different services.

Executing Service Mashups
Our work on integrated search services is part 
of a more general research project, named Next 
Generation Search (NGS), funded by the Ministry 
of University of Italy (MIUR).4 The project aims 
to integrate techniques for query answering over 
Web data sources5 with strategies for joining re­
sults from different search engines.6 Executing 
a mashup query requires instantiating several 
degrees of freedom, not fixed in the declara­
tive user query, such as generating the actual 
schedule of service invocations, orchestrating 
and synchronizing such invocations, or joining 
the results from different services into a ranked 
list of outputs with global ordering that must be 
consistent with each of the partial orderings in­
duced by the results of each search service. 

We address such issues in part by translat­
ing the user query into a physical service ac­
cess plan (at compile time) and in part during a 
plan’s actual execution (at runtime). In particu­
lar, orchestrating the query’s execution means 
scheduling and timing the invocations so as 
to ideally maximize the degree of parallelism, 
minimize the size of intermediate results, and 
promptly provide the user with the best results 
first. With this, we aim to generate the most 
promising physical access plan by leveraging 
several aspects:
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Chunking. Several Web services return re­
sults in chunks (or pages). The most popular 
example (at the user interface level) is the 
way in which Google returns paged results, 
with 10 references per page. For such ser­
vices, the system that orchestrates the query 
execution must perform multiple fetches to 
retrieve their complete result set. In such 
cases, successive service calls represent one 
logical invocation because the result produc­
tion after a given number of chunk requests 
continues with the next chunk. Chunking 
is an important optimization opportunity 
because it prevents the query engine from 
waiting for complete service responses and 
enables query processing over partial re­
sponse sets. Also, it lets us pipeline the que­
ry execution.
Parallelism versus pipelining. Depending on 
the precedence constraints that the input 
and output bindings enforce, it might still be 
possible to decide whether to invoke two (or 
more) services in a series or in parallel. As 
the invocation globally returns a single se­
quence of results, in both cases we say that 
the two services are joined. The execution 
engine exploits parallelism when it invokes 
independent services in parallel and proc­
esses the results as they’re retrieved. Even 
when service calls have precedence depen­
dencies, determined by the input and out­
put bindings, it isn’t necessary to wait for 
the first service to completely execute (in 
a blocking style) because its results can be 
fed as input to the second service as soon as 
they’re available, in essence pipelining the 
join execution.
Merge-scan versus nested-loop join strate-
gies. The execution engine performs parallel 
joins by comparing items from two possibly 
ranked lists returned by two services. If we 
think of two Cartesian axes representing 
such lists, the points in the plan the axes de­
fine represent candidate results to be tested 
by the join condition, and the plan repre­
sents the search space for finding the best 
results — that is, those with higher ranking 
that also satisfy the join condition. Different 
join strategies correspond to different explo­
rations of the search space.6 Among the vari­
ous strategies, we chose nested loop (NL) and 
merge scan (MS) because these classical join 
strategies (with their roots in traditional da­

•

•

•

tabase optimization) provide two alternative 
ways to join services by taking into account 
their characteristics. The generation process 
of the physical access plan uses NL when one 
service dominates the other’s invocation, ei­
ther because it has a lower execution cost 
or because it produces all the good results 
with few fetches. In this case, the query en­
gine explores the result space by executing 
all the relevant fetches for the dominating 
service and then a variable, user-controlled 
number of fetches for the other service. The 
generation process uses MS when there’s no 
a priori distinction between the services to 
be joined. In this case, the query engine ex­
ecutes fetches in parallel for both services 
and produces results in output by traversing 
the search space diagonally.

These aspects show that, for a given query, 
multiple physical access plans might be able to 
produce a requested output. 

Optimization Opportunities
Depending on the way in which the aforemen­
tioned aspects are utilized, there might be dif­
ferent optimization strategies for generating the 
access plan and orchestrating its execution. For 
instance, we might have a strategy that maximiz­
es the parallelism among all services and another 
that minimizes the number of calls to search ser­
vices by choosing an appropriate join strategy. 
The search for the best access plan is based on 
a branch-and-bound method, leveraging a set of 
strategy-specific heuristics based on information 
available from registration and service profiling.

Figure 2 gives the notation we use for mod­
eling and representing physical access plans. 
An access plan has a unique start node (repre­
senting the user’s input values) and a unique 
end node (representing the final result in out­
put). As in an earlier work,7 we define selectiv-
ity as the average number of tuples a service 
outputs in response to an invocation. Accord­
ingly, a service is selective if its selectivity is at 
most 1, proliferative otherwise. Selective, exact 
services are represented as simple boxes; prolif­
erative, exact services are represented as boxes 
labeled with a *. Search services are represent­
ed as boxes shaded by a gray trapezium icon,  
representing, from left to right, the decrease in 
results ranking as we move from the initial re­
sults to the final ones. 
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In the physical access plan, it’s important 
to specify whether each service is invoked via 
chunking or not so we can estimate the service’s 
cost. Services called with output chunking have 
vertical lines splitting the box into smaller box­
es. Search services that support chunking are 
always invoked in this way, whereas exact ser­
vices are always invoked without chunking (in 
many cases, they return a single result tuple). 

The notation also distinguishes between 
types of joins. A parallel join is represented by a 
join symbol with an NL or MS label expressing 
the chosen join strategy. The pipe join is denot­
ed by an arc connecting two boxes, indicating 
that the join is computed by feeding the reached 
box with the other box’s output. 

Figure 2 shows alternative plans for our run­
ning example. In Figure 2a, the query engine 
invokes all services sequentially; it passes the 
locations of the first chunk of conferences to 
the weather service, and then passes those with 
the desired temperature to the search service for 
hotels (together with the binding on the dates 
instantiated by the first service’s invocation). 
Finally, the engine invokes the flight service for 
those destinations with the cheapest five-star 
hotels available. In Figure 2b, the first returned 

conferences bind the locations and dates passed 
first to the weather service and then in paral­
lel to the remaining services. Flights and hotels 
are joined by fixing a flight and trying to com­
bine it with several hotels before moving to the 
next flight. 

From a system perspective, there’s a funda­
mental difference in how we cache partial re­
sults and in the order of invocations, but this is 
transparent to the end user. The most remark­
able difference from the user’s perspective is the 
order in which the query engine returns results 
because chunks are processed in a different 
order. If the user imposes a strict limit on the 
final output’s size, the results produced by the 
strategies will be different, but still compatible 
with all single-service rankings. As an exten­
sion to this, we intend to provide optimization-
aware users with interfaces for fine-tuning the 
optimization logic.

Cost Models
The access plan generation process compares 
candidate physical access plans according to a 
suitable cost metric so as to associate a cost es­
timation to each and find the optimal plan. Of 
course, we can define optimality with respect 
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Figure 2. Graphical models of (a) and (b) two possible plans for the running example. The legend introduces the 
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to different criteria. We can apply the following 
metrics (or their combination) to our scenario:

The bottleneck metric considers the slowest 
service in the query (that is, the most de­
manding in terms of computation and re­
sponse time) as the dominant one.
The request-response metric is based on the 
overall number of service invocations and 
accounts for settings in which the transfer 
of data over the network is the dominating 
cost factor.
The time-to-screen metric is based on the 
time required to present the user with the 
first output chunk, accounting for settings in 
which the user expects a prompt interaction.

Applying a cost metric thus lets us choose the 
plan that finally can be executed by the query 
engine in our service mashup platform.

Service Mashup Platform
Figure 3 shows our service mashup platform’s 
functional architecture, which enables the host­
ed definition and execution of service mashups. 
The platform supports the following: 

Service registration. As anticipated, users 
can only compose services that have been 
previously registered with the platform. Reg­
istering a new service requires specifying its 
name and input and output attributes, each 

•

•

•

•

associated to its respective domain. This in­
formation is needed to assist the user in the 
interactive mashup definition. Also, the ser­
vice must be classified as either an exact or 
search service. If a Web service exposes mul­
tiple operations, each operation requires its 
own service registration, which is performed 
via the service manager Web interface. Reg­
istered services are stored in a dedicated ser­
vice registry. The service manager provides 
cooperative service-management features, 
such as browsing, searching, viewing, and 
so on, and is open to the public. 
Service mashup. The Ajax-based mashup 
editor implements the service mashup inter­
face and allows for the server-side storage 
of completed mashups on the platform, in a 
“mashup repository,” for execution and later 
editing. Mashup designs must be deployed 
by invoking the optimizer, which parses the 
mashup query and outputs the best access 
plan according to the techniques. An access 
plan repository collects deployed mashups’ 
plans and enables the final execution.
Preview and test. To assess the designed ser­
vice mashups and the quality of the results, 
the platform provides a preview browser, 
which gives the user an immediate graphi­
cal response. The preview function builds on 
the internal engine, which is in charge of the 
physical access plan’s execution and, hence, 
automatically invokes the necessary services. 
Thus, the query designer can easily debug, 
modify, and redeploy existing mashups. The 
final output is a flat list of all parameters in 
the service mashup environment.
RSS consumption. Deployed mashups are 
also immediately online and ready for con­
sumption via a dedicated RSS interface. The 
platform assigns each mashup a unique URI 
representing an RSS resource on the platform 
(created during the mashup’s deployment), 
which, when accessed, enables the query’s 
on-demand execution and the easy integra­
tion of the mashup into other applications.

Orthogonally to these features, the platform 
provides suitable identification and authentica­
tion mechanisms to enable users to decide which 
mashups are publicly accessible and which are 
private. In the current version, private mashups’ 
final RSS mashup endpoints adopt a basic HTTP 
access authentication based on a username and 

•

•

•
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Figure 3. Functional platform architecture. The user mashes up 
registered services via the mashup editor and stores the result in 
the mashup repository; the optimizer translates the mashed up 
query into an executable plan; the engine executes the plan by 
invoking the respective services; and the user previews the result  
or consumes it via the RSS interface.
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password that users provide when accessing the 
RSS resource. We’re currently finalizing the 
implementation of the Web front ends, and the 
platform’s internals (repositories, optimizer, and 
engine) are in their test phase.

S ervice mashup systems are still highly un­
structured, and applications often rely on 

hacked Web pages or services. In this respect, 
mashing up Web services poses several inter­
esting challenges:

The inherent complexity of service com­
position must be adequately abstracted (for 
example, using graphical modeling formal­
isms) to give end users easy-to-use develop­
ment environments.
Abstract formalisms must be equipped with 
suitable runtime environments capable of 
deriving executable service invocation 
strategies.
Users must be able to master more complex 
dependencies among services (such as busi­
ness protocols or choreographies8), override 
the optimization choices, and handle com­
plex data formats.
Advanced issues such as long-lasting ser­
vice compositions, reliability, and transac­
tion support must be provided to establish 
service mashups in business contexts.

This article addresses the first two issues. 
We’ve shown an intuitive visual modeling 
paradigm that lets users declaratively compose 
services in a drag-and-drop fashion and hides 
low-level implementation details. Our frame­
work handles advanced issues, such as select­
ing an optimal invocation order of services 
and composing results extracted from multiple 
services. In the future, we expect to extend the 
framework to offer suitable interfaces to its in­
ternals and to provide support for long-lasting, 
reliable, and transactional services, thus cover­
ing the third and fourth issues.�
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