
Se
rv

ic
e

M
as

hu
ps

16 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

Mashing Up Search Services

Daniele Braga,
Stefano Ceri,
and Davide Martinenghi
Politecnico di Milano, Italy

Florian Daniel
University of Trento, Italy

Mashup languages offer new graphic interfaces for service composition.

Normally, composition is limited to simple services, such as RSS or Atom

feeds, but users can potentially use visual mashup languages for complex

service compositions, with typed parameters and well-defined I/O interfaces.

Composing search services introduces new issues, however, such as determining

the optimal sequence of search invocations and separately composing ranked

entries into a globally ranked result. Enabling end users to mash up services

through suitable abstractions and tools is a viable option for improving service-

based computations.

T he past few years have witnessed
end users’ increasing involve­
ment in the content creation proc­

ess of modern Web applications (as
with Wikipedia) and the emergence
of social Web applications (such as
YouTube or MySpace). Although these
applications benefit from collective
user-generated content, a growing user
community is also trying to profit
from existing content and services by
developing its own Web applications.
The phenomenon, commonly known
as Web mashups, is driven mostly by
skilled users because reusing third-
party content and services is a non­
trivial task. This is especially true for
Web services, which are based on the
notion of programmable interface; for
instance, integrating Amazon’s search
service with currency conversion

or shipment services requires pro­
gramming skills. Service mashups, or
user-driven Web service integration
approaches, gain momentum by also
targeting less skilled users. They ef­
fectively alleviate the burden of ser­
vice composition, but users still need
to manage the flow of service calls
and their I/O interaction.

In this article, we propose an en­
hanced service mashup language for
graphically composing and automati­
cally executing queries over online
data-sharing services — that is, ser­
vices that let users query remote data
sources. We distinguish between ex­
act and search services. Exact ser-
vices provide answers that consist of
unranked data items that aren’t as­
sociated with any assessment of their
confidence or quality with respect to

SEPTEMBER/OCTOBER 2008� 17

Mashing Up Search Services

the input data. Due to a potentially large num­
ber of items, search services, on the other hand,
require ranking composition and properly man­
aging result sets. When composing answers
from multiple services, we must produce the
output in a global ranking that appropriately
combines the various partial rankings. This
explicit distinction between service types dis­
tinguishes our approach from other mashup
languages, such as Yahoo Pipes (http://pipes.
yahoo.com/pipes/) or Damia (http://services.
alphaworks.ibm.com/damia/).1

Our proposed approach operates without in­
dividual business protocols regulating possible
long-lasting interactions between a client and
the service. Our services are stateless because
subsequent invocations of the same service are
independent, and there’s no need to pass cor­
relation data from one call to another. Service
composition scenarios that preserve the state
of computations require more sophisticated in­
struments — such as the Business Process Ex­
ecution Language (BPEL; www.oasis-open.org/
committees/wsbpel/) — and are beyond ordinary
users’ reach; therefore, they are out of the scope
of our formalism. Nonetheless, our proposed
approach is expressive enough to cover a wide
range of complex queries over the Web.

Designing Service Mashups
Let’s consider a complex query that an academic
user belonging to the local database community
might issue: “Find all database conferences held
within the next six months in locations with
an average temperature at the time of the event
above 28°C, reachable by a low-cost flight from
Milan, and offering affordable accommodation
in a five-star hotel.”

Presently, no general-purpose search engine,
Google or Yahoo, can satisfactorily answer such
a multidomain query. Although a search ser­
vice might cover a single domain, the user must
orchestrate their interaction. In fact, without
appropriate support for search-service composi­
tion, the only feasible way to deal with such a
query is to separately invoke dedicated services
and then feed one search’s results as inputs to
another, or to compare search results manually.
We propose a mashup language that can express
this query as well as a system architecture that
can accept, optimize, and process the query and
then produce the result.

In our visual language, we divert the focus

away from Web services’ technical aspects (such
as standards and description languages) and
simply regard each service as a signature with
a name and a list of attributes. Each attribute is
associated with a domain. Instead of concrete do­
mains, such as String, we use abstract domains,
which have an underlying concrete domain and
let us distinguish strings representing, for exam­
ple, city names from strings representing confer­
ence topics. We organize the abstract domains
into a hierarchical taxonomy that represents the
shared knowledge necessary to support service
interoperability. We further classify attributes as
either input or output attributes. This character­
izes the data flow corresponding to a service in­
vocation: the caller provides values for all input
attributes and, in response, receives values for
all output attributes. Technically speaking, the
language lets us build directed acyclic graphs
with nodes that are service invocations and arcs
that are connections between services represent­
ing parameter passing (from a service’s output to
another service’s input).

Services are made available for use in the
framework or platform via explicit registra­
tion. For each service, the framework designer
(an expert in service integration who knows the
services’ semantic domains) specifies its signa­
ture and declares the abstract domain of each
input and output parameter. The framework de­
signer is responsible for choosing an existing
domain or creating a new one to comply with
the semantics of the service being registered.
Once registration occurs, the framework can
then check compatibility between parameters
and even suggest join paths. Indeed, registra­
tion is crucial for the actual joinability of pa­
rameters from different services.

A huge amount of work has been done (and
still needs to be done) on semantic issues to sup­
port and automate data integration and schema
matching. (See related work for an interesting
survey on the topic.2) In this article, we avoid
data-integration issues and rely on the frame­
work designer’s knowledge and skills to resolve
interoperability issues. Of course, not all servic­
es will lend themselves to seamless registration,
despite the framework designer’s best effort.

Figure 1 shows the user interface’s two re­
gions. The canvas region (the blank space at the
right-hand side in the figure, not including the
legend) contains the user’s query and covers the
whole screen, except for the left margin, which

Service Mashups

18 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

contains the registered services region. The lat­
ter lists the names of all services (all in rounded
boxes, with search services explicitly labeled)
that are available to users to be mashed up to
compose their query. Users can drag and drop
the rounded boxes onto the canvas. Once on the
canvas, a service is displayed in larger rounded
boxes with two areas: attributes and condition.

The attributes area lists all of the service’s
attributes, each of which is equipped with a con­
nector; the inputs have the connector on the left-
hand side, the outputs on the right-hand side.
Input attributes are further provided with input
fields — that is, text boxes in which the user can
type a constant value for that attribute.

The condition area contains an input field
that helps specify a filtering condition, such as
a comparison between an attribute and a con­
stant value, or a threshold to restrict how many
of the answers returned by the service are to
be considered. Typically, conditions for exact
services are Boolean selections on the service’s
attributes, whereas conditions for search ser­
vices limit the size of the result set to a fixed
number.

Placing a service on the canvas corresponds
to adding an invocation of that service in the
user’s mashup. Out of the answers to the invo­
cation, only those satisfying the selection con­
dition contribute to the result. To enable the
service invocation, users must bind a service’s
input attributes to an input value, which they
can specify by entering the value in the cor­

responding input field or linking the input con­
nector to another service’s output connector.
Linking thus expresses a precedence relation
between service invocations. Of course, typ­
ing a constant into an input field disables the
ability to attach a connector to that field and,
symmetrically, attaching a connector disables
the text box. Users can place a service on the
canvas several times; in this case, the graphical
interface adds a number as a subscript to the
service name to distinguish the occurrences.

To conclude this simple syntax of graphical
operations (summarized in the legend in Figure
1), the user can select some of the services’ out­
put attributes as result attributes for the query.
In such cases, the corresponding connector is
marked in green and has an outgoing arrow. In
practice, all search services should provide at
least an output value because the actual rank­
ing provided by a search service must be sub­
ject to users’ validation and judgment.

Figure 1 shows four available services:

confSchedule, an exact service requiring an
input value for the topic attribute and re­
turning city, start date, end date, and name
of conferences covering that topic;
weather, an exact service returning the tem­
perature of a given city at a given date;
hotel, a search service returning accommo­
dation offers (hotel name and price), sorted
by price, corresponding to a given city, cate­
gory, and check-in and check-out dates; and
flight, a search service returning price, de­
parture time, and return time (sorted by
price) for low-cost travel solutions corre­
sponding to the given origin, destination,
and dates.

Users form the first part of the query by fill­
ing in the constant value “Database” in the in­
put field corresponding to confSchedule’s topic
attribute and imposing as a condition in the
respective panel that the conference’s start and
end date are between the current date (captured
by the environmental variable $today) and 180
days after that.

The City, Start, and End output attributes
feed the input arguments of the other three ser­
vices on the canvas. City is also used as input
for weather and hotel and as a flight destina­
tion. Because we know the abstract domains of
all the registered services’ attributes, it’s easy

•

•

•

•

Figure 1. Graphical environment for user-driven composition of
service mashups. A user can drag registered services from the
registered services region onto the canvas at the right, where
the selected services are mashed up (composed) graphically by
drawing connectors. Each added box represents a service call, and
the connectors represent parameter passing.

SEPTEMBER/OCTOBER 2008� 19

Mashing Up Search Services

to draw connections between services. When a
user clicks on an output attribute, the system
highlights all attributes (on other services) with
a compatible domain and, as soon as the user
selects one, draws the corresponding connec­
tion. For example, when City in confSchedule
is selected, the system highlights City in hotel,
weather, and from and to flight. The behavior is
similar when the user clicks on an input attri­
bute, except that it isn’t possible to draw a con­
nection between two input attributes.

The rest of the query is self-explanatory:
some input values are hard-coded in the query
in the corresponding input fields (“Five stars” as
hotel category and “Milan” as departure city),
the relevant conditions (city and flight cost)
are indicated in the respective condition pan­
els, and the other input attributes that aren’t fed
with a constant value are matched with the cor­
responding outputs from confSchedule. Before
executing a query, the system checks its exe­
cutability. Namely, each service on the canvas
must be callable — that is, either each of its in­
puts is filled with a constant or, inductively, if it
is not filled with a constant then it is connected
to an output of a callable service.

With this approach, the user query is speci­
fied declaratively: the semantics of the service
graph in the canvas corresponds (using data­
base terminology) to the Cartesian product of
the involved services. The three classical re­
lational query primitives (selection, join, and
projection) are expressed as follows: selections
are expressed in the various condition panels,
the connections express equality between the
values of two attributes (equi-joins, in formal
database terminology), and projections on the
output attributes are expressed by the green
arrows. Each selection is addressed to a single
service, and each join is an equi-join. Enriching
the expressive power would require introducing
less intuitive constructs, such as join and selec­
tion nodes. In our proposed formalism, instead,
all nodes are services. The query’s structure
doesn’t yet dictate the exact order of service
calls, and several degrees of optimization ex­
ist concerning, for example, the execution se­
quence for partially ordered service calls and
the degree of parallelism versus pipelining. The
execution engine builds an access plan compat­
ible with the implicit ordering determined by
the connections that express the mapping of
outputs to inputs (which imposes, for example,

to invoke confSchedule before weather) and
decides how to interact with services.

Currently available interactive feed aggrega­
tors, such as Yahoo Pipes and Damia, instead use
a fully procedural approach: the user graphically
assembles data feeds by fully specifying the data
flows among the services as well as the operators
used to combine them, and no mediation occurs
between the language description and the under­
lying language implementation. Previous work3
proposed an alternative procedural approach
that uses a service-mashup-specific program­
ming language for the Swashup platform; data
mediators, service APIs, protocols, choreogra­
phies, and UIs are first-class language concepts
immediately available to the developer who pro­
grams the mashup. In principle, Yahoo Pipes, Da­
mia, and Swashup could express mashups over
search services, but due to the lack of an explicit
notion of search service, they can’t handle such
cases properly. In particular, these approaches
don’t support paging large result sets or combin­
ing ranked results from different services.

Executing Service Mashups
Our work on integrated search services is part
of a more general research project, named Next
Generation Search (NGS), funded by the Ministry
of University of Italy (MIUR).4 The project aims
to integrate techniques for query answering over
Web data sources5 with strategies for joining re­
sults from different search engines.6 Executing
a mashup query requires instantiating several
degrees of freedom, not fixed in the declara­
tive user query, such as generating the actual
schedule of service invocations, orchestrating
and synchronizing such invocations, or joining
the results from different services into a ranked
list of outputs with global ordering that must be
consistent with each of the partial orderings in­
duced by the results of each search service.

We address such issues in part by translat­
ing the user query into a physical service ac­
cess plan (at compile time) and in part during a
plan’s actual execution (at runtime). In particu­
lar, orchestrating the query’s execution means
scheduling and timing the invocations so as
to ideally maximize the degree of parallelism,
minimize the size of intermediate results, and
promptly provide the user with the best results
first. With this, we aim to generate the most
promising physical access plan by leveraging
several aspects:

Service Mashups

20 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

Chunking. Several Web services return re­
sults in chunks (or pages). The most popular
example (at the user interface level) is the
way in which Google returns paged results,
with 10 references per page. For such ser­
vices, the system that orchestrates the query
execution must perform multiple fetches to
retrieve their complete result set. In such
cases, successive service calls represent one
logical invocation because the result produc­
tion after a given number of chunk requests
continues with the next chunk. Chunking
is an important optimization opportunity
because it prevents the query engine from
waiting for complete service responses and
enables query processing over partial re­
sponse sets. Also, it lets us pipeline the que­
ry execution.
Parallelism versus pipelining. Depending on
the precedence constraints that the input
and output bindings enforce, it might still be
possible to decide whether to invoke two (or
more) services in a series or in parallel. As
the invocation globally returns a single se­
quence of results, in both cases we say that
the two services are joined. The execution
engine exploits parallelism when it invokes
independent services in parallel and proc­
esses the results as they’re retrieved. Even
when service calls have precedence depen­
dencies, determined by the input and out­
put bindings, it isn’t necessary to wait for
the first service to completely execute (in
a blocking style) because its results can be
fed as input to the second service as soon as
they’re available, in essence pipelining the
join execution.
Merge-scan versus nested-loop join strate-
gies. The execution engine performs parallel
joins by comparing items from two possibly
ranked lists returned by two services. If we
think of two Cartesian axes representing
such lists, the points in the plan the axes de­
fine represent candidate results to be tested
by the join condition, and the plan repre­
sents the search space for finding the best
results — that is, those with higher ranking
that also satisfy the join condition. Different
join strategies correspond to different explo­
rations of the search space.6 Among the vari­
ous strategies, we chose nested loop (NL) and
merge scan (MS) because these classical join
strategies (with their roots in traditional da­

•

•

•

tabase optimization) provide two alternative
ways to join services by taking into account
their characteristics. The generation process
of the physical access plan uses NL when one
service dominates the other’s invocation, ei­
ther because it has a lower execution cost
or because it produces all the good results
with few fetches. In this case, the query en­
gine explores the result space by executing
all the relevant fetches for the dominating
service and then a variable, user-controlled
number of fetches for the other service. The
generation process uses MS when there’s no
a priori distinction between the services to
be joined. In this case, the query engine ex­
ecutes fetches in parallel for both services
and produces results in output by traversing
the search space diagonally.

These aspects show that, for a given query,
multiple physical access plans might be able to
produce a requested output.

Optimization Opportunities
Depending on the way in which the aforemen­
tioned aspects are utilized, there might be dif­
ferent optimization strategies for generating the
access plan and orchestrating its execution. For
instance, we might have a strategy that maximiz­
es the parallelism among all services and another
that minimizes the number of calls to search ser­
vices by choosing an appropriate join strategy.
The search for the best access plan is based on
a branch-and-bound method, leveraging a set of
strategy-specific heuristics based on information
available from registration and service profiling.

Figure 2 gives the notation we use for mod­
eling and representing physical access plans.
An access plan has a unique start node (repre­
senting the user’s input values) and a unique
end node (representing the final result in out­
put). As in an earlier work,7 we define selectiv-
ity as the average number of tuples a service
outputs in response to an invocation. Accord­
ingly, a service is selective if its selectivity is at
most 1, proliferative otherwise. Selective, exact
services are represented as simple boxes; prolif­
erative, exact services are represented as boxes
labeled with a *. Search services are represent­
ed as boxes shaded by a gray trapezium icon,
representing, from left to right, the decrease in
results ranking as we move from the initial re­
sults to the final ones.

SEPTEMBER/OCTOBER 2008� 21

Mashing Up Search Services

In the physical access plan, it’s important
to specify whether each service is invoked via
chunking or not so we can estimate the service’s
cost. Services called with output chunking have
vertical lines splitting the box into smaller box­
es. Search services that support chunking are
always invoked in this way, whereas exact ser­
vices are always invoked without chunking (in
many cases, they return a single result tuple).

The notation also distinguishes between
types of joins. A parallel join is represented by a
join symbol with an NL or MS label expressing
the chosen join strategy. The pipe join is denot­
ed by an arc connecting two boxes, indicating
that the join is computed by feeding the reached
box with the other box’s output.

Figure 2 shows alternative plans for our run­
ning example. In Figure 2a, the query engine
invokes all services sequentially; it passes the
locations of the first chunk of conferences to
the weather service, and then passes those with
the desired temperature to the search service for
hotels (together with the binding on the dates
instantiated by the first service’s invocation).
Finally, the engine invokes the flight service for
those destinations with the cheapest five-star
hotels available. In Figure 2b, the first returned

conferences bind the locations and dates passed
first to the weather service and then in paral­
lel to the remaining services. Flights and hotels
are joined by fixing a flight and trying to com­
bine it with several hotels before moving to the
next flight.

From a system perspective, there’s a funda­
mental difference in how we cache partial re­
sults and in the order of invocations, but this is
transparent to the end user. The most remark­
able difference from the user’s perspective is the
order in which the query engine returns results
because chunks are processed in a different
order. If the user imposes a strict limit on the
final output’s size, the results produced by the
strategies will be different, but still compatible
with all single-service rankings. As an exten­
sion to this, we intend to provide optimization-
aware users with interfaces for fine-tuning the
optimization logic.

Cost Models
The access plan generation process compares
candidate physical access plans according to a
suitable cost metric so as to associate a cost es­
timation to each and find the optimal plan. Of
course, we can define optimality with respect

Name

Name

Name

q

r

*

Name

Name

*

q
*

r

confSchedule Weather FlightHotel

F2F1

Legend

q
*

r
confSchedule Weather

Flight

Hotel

MS
F2

F1

Nested loop Merge scan

User query’s input

Query result

Pipe join

Selective exact service
without/with chunking

Proliferative exact service
without/with chunking

Search service
with chunking

Parallel join:
Nested loop (NL)
or Merge scan (MS)

(a) (b)

NL/MS

Response set service 1

R
es

po
ns

e
se

t
se

rv
ic

e
2

Response set service 1

R
es

po
ns

e
se

t
se

rv
ic

e
2

Figure 2. Graphical models of (a) and (b) two possible plans for the running example. The legend introduces the
adopted modeling notation and explains the nested-loop and merge-scan join strategies in more detail.

Service Mashups

22 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

to different criteria. We can apply the following
metrics (or their combination) to our scenario:

The bottleneck metric considers the slowest
service in the query (that is, the most de­
manding in terms of computation and re­
sponse time) as the dominant one.
The request-response metric is based on the
overall number of service invocations and
accounts for settings in which the transfer
of data over the network is the dominating
cost factor.
The time-to-screen metric is based on the
time required to present the user with the
first output chunk, accounting for settings in
which the user expects a prompt interaction.

Applying a cost metric thus lets us choose the
plan that finally can be executed by the query
engine in our service mashup platform.

Service Mashup Platform
Figure 3 shows our service mashup platform’s
functional architecture, which enables the host­
ed definition and execution of service mashups.
The platform supports the following:

Service registration. As anticipated, users
can only compose services that have been
previously registered with the platform. Reg­
istering a new service requires specifying its
name and input and output attributes, each

•

•

•

•

associated to its respective domain. This in­
formation is needed to assist the user in the
interactive mashup definition. Also, the ser­
vice must be classified as either an exact or
search service. If a Web service exposes mul­
tiple operations, each operation requires its
own service registration, which is performed
via the service manager Web interface. Reg­
istered services are stored in a dedicated ser­
vice registry. The service manager provides
cooperative service-management features,
such as browsing, searching, viewing, and
so on, and is open to the public.
Service mashup. The Ajax-based mashup
editor implements the service mashup inter­
face and allows for the server-side storage
of completed mashups on the platform, in a
“mashup repository,” for execution and later
editing. Mashup designs must be deployed
by invoking the optimizer, which parses the
mashup query and outputs the best access
plan according to the techniques. An access
plan repository collects deployed mashups’
plans and enables the final execution.
Preview and test. To assess the designed ser­
vice mashups and the quality of the results,
the platform provides a preview browser,
which gives the user an immediate graphi­
cal response. The preview function builds on
the internal engine, which is in charge of the
physical access plan’s execution and, hence,
automatically invokes the necessary services.
Thus, the query designer can easily debug,
modify, and redeploy existing mashups. The
final output is a flat list of all parameters in
the service mashup environment.
RSS consumption. Deployed mashups are
also immediately online and ready for con­
sumption via a dedicated RSS interface. The
platform assigns each mashup a unique URI
representing an RSS resource on the platform
(created during the mashup’s deployment),
which, when accessed, enables the query’s
on-demand execution and the easy integra­
tion of the mashup into other applications.

Orthogonally to these features, the platform
provides suitable identification and authentica­
tion mechanisms to enable users to decide which
mashups are publicly accessible and which are
private. In the current version, private mashups’
final RSS mashup endpoints adopt a basic HTTP
access authentication based on a username and

•

•

•

Service registry
Mashup

repository

Engine

NGS platform

Service
manager

Mashup
editor

Preview
browser

RSS
interface

Registration

Usage

Storage

Deployment

Execution

Access plan
repository

Optimizer

Figure 3. Functional platform architecture. The user mashes up
registered services via the mashup editor and stores the result in
the mashup repository; the optimizer translates the mashed up
query into an executable plan; the engine executes the plan by
invoking the respective services; and the user previews the result
or consumes it via the RSS interface.

SEPTEMBER/OCTOBER 2008� 23

Mashing Up Search Services

password that users provide when accessing the
RSS resource. We’re currently finalizing the
implementation of the Web front ends, and the
platform’s internals (repositories, optimizer, and
engine) are in their test phase.

S ervice mashup systems are still highly un­
structured, and applications often rely on

hacked Web pages or services. In this respect,
mashing up Web services poses several inter­
esting challenges:

The inherent complexity of service com­
position must be adequately abstracted (for
example, using graphical modeling formal­
isms) to give end users easy-to-use develop­
ment environments.
Abstract formalisms must be equipped with
suitable runtime environments capable of
deriving executable service invocation
strategies.
Users must be able to master more complex
dependencies among services (such as busi­
ness protocols or choreographies8), override
the optimization choices, and handle com­
plex data formats.
Advanced issues such as long-lasting ser­
vice compositions, reliability, and transac­
tion support must be provided to establish
service mashups in business contexts.

This article addresses the first two issues.
We’ve shown an intuitive visual modeling
paradigm that lets users declaratively compose
services in a drag-and-drop fashion and hides
low-level implementation details. Our frame­
work handles advanced issues, such as select­
ing an optimal invocation order of services
and composing results extracted from multiple
services. In the future, we expect to extend the
framework to offer suitable interfaces to its in­
ternals and to provide support for long-lasting,
reliable, and transactional services, thus cover­
ing the third and fourth issues.�

References
M. Altinel et al., “Damia: A Data Mashup Fabric for

Intranet Applications,” Proc. 33rd Int’l Conf. Very Large

Databases (VLDB), 2007, ACM Press, pp. 1370–1373.

E. Rahm and P.A. Bernstein, “A Survey of Approaches

to Automatic Schema Matching,” The Very Large Data-

bases J., vol. 10, no. 4, 2001, pp. 334–350.

•

•

•

•

1.

2.

E.M. Maximilien et al., “A Domain-Specific Language

for Web APIs and Services Mashups,” Proc. Int’l Conf.

Service Oriented Computing (ICSOC), Springer, 2007,

pp. 13–26.

D. Braga et al., “NGS: A Framework for Multi-Domain

Query Answering,” Proc. Workshop Information Inte-

gration Methods, Architectures, and Systems (IIMAS),

IEEE CS Press, 2008, pp. 254–261.

A. Calì and D. Martinenghi, “Querying Data under Ac­

cess Limitations,” Proc. Int’l Conf. Data Eng. (ICDE),

IEEE CS Press, 2008, pp. 50–59.

D. Braga et al., “Joining the Results of Heterogeneous

Search Engines,” to be published in Information Systems.

U. Srivastava et al., “Query Optimization over Web

Services,” Proc. 32nd Int’l Conf. Very Large Databases

(VLDB), 2006, ACM Press, pp. 355–366.

F. Daniel and B. Pernici, “Insights into Web Service

Orchestration and Choreography,” Int’l J. E-Business

Research, vol. 2, no. 1, 2006, pp. 58–77.

Daniele Braga is an assistant professor at the Dipartimento

di Elettronica e Informazione at the Politecnico di Mi­

lano. His research interests include XML data man­

agement to schema mapping, schema integration, and

Web service integration. Braga has a PhD in computer

science from the Politecnico di Milano. Contact him at

braga@elet.polimi.it.

Stefano Ceri is a professor of database systems at the Di­

partimento di Elettronica e Informazione at the Po­

litecnico di Milano. His research interests focus on

extending database technology to incorporate distri­

bution, rules, and XML, on design methods for data-

intensive Web sites, on integration of search services,

and on reasoning with data streams. Contact him at

ceri@elet.polimi.it.

Florian Daniel is a postdoctoral researcher at the Univer­

sity of Trento, Italy. His main research interests include

Web application and service mashups, adaptivity and

context-awareness in Web applications, quality, and

privacy in business intelligence applications. Daniel

has a PhD in information technology from Politecnico

di Milano. Contact him at daniel@disi.unitn.it.

Davide Martinenghi is a postdoctoral researcher at the Di­

partimento di Elettronica e Informazione at the Po­

litecnico di Milano. His research interests are in data

integrity maintenance, data integration, Web data ac­

cess, service mashups, and Web search. Martinenghi

has a PhD in design and management of information

technology from Roskilde University, Denmark. Con­

tact him at martinen@elet.polimi.it.

3.

4.

5.

6.

7.

8.

