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Abstract— If we consider a query involving multiple domains,
such as “find all database conferences held within six months in
locations whose seasonal average temperature is 28◦C and for
which a cheap travel solution exists”, we note that (i)general-
purposesearch engines fail to answer multi-domain queries and
(ii) specificsearch services may cover one of such domains, but
no general integration framework is readily available. Currently,
the only way to treat such cases is to separately query dedicated
services and feed the result of one search as input to another, or
to pairwise compare them by hand.

This paper presents NGS, a framework providing fully au-
tomated support for cross-domain queries. In particular, NGS
(a) integrates different kinds of services (search engines, web
services, and wrapped web pages) into a global ontology, i.e., a
unified view of the concepts supported by the available services,
(b) covers query formulation aspects over the global ontology,
and query rewriting in terms of the actual services, and (c) offers
several optimization opportunities leveraging the characteristics
of the different services at hand, based on several different cost
metrics.

I. I NTRODUCTION AND MOTIVATION

The current evolution of the Web is characterized by an
increasing number of search engines and query interfaces,
ranging from generic ones (Google) to domain-specific ones
(geo-localization services or on-line catalogs). Meanwhile,
wrapping technology is evolving so as to enable the devel-
opment of specialized services extracting content from data-
intensive Web sites (e.g., wrappers of sites delivering bond
quotes), and exposing them as Web Services.

While an increasing amount of search services on the
Web becomes available, they still work in isolation; their
intrinsic limit is the inability to support complex queries
ranging over multiple domains. Answering the query reported
in our abstract requires combining search engines specialized
over different domains, for instance: (i) finding interesting
conferences in the desired timeframe on online services made
available by the given scientific community; (ii) finding if
the conference location is served by low-cost flights; (iii)
finding if there are luxury and cheap hotels in proximity of
the conference location. This paper describes a framework for
the development of New Generation Search (NGS) supporting
queries over multiple, specialized search engines, developed
by three University groups in the context of a project fundedby

the Italian Government. Our framework makes use of service-
enabled and XML-related technologies, and of ontological
knowledge in the context of data mapping.

In NGS we distinguish between exact services and search
services.Exactservices have a “relational” behavior and return
either a single answer or a set of answers which are not
ranked.Searchservices return a list of answers in ranking
order, according to some measure of relevance; such measure
may be either visible in the result or opaque. Services returning
many answers have an associatedselectivity, expressing the
average size of the result. They can further be classified as
“chunked” or “bulk”; in the former case, they return resultsin
chunks of a fixed size, whereas in the latter case they return
their result set as a whole.

The main contributions of this paper are: (a) a multi-level
model for expressing queries over web services and search
engines – this model covers a conceptual level, where queries
are expressed as conjunctive expressions over arbitrary pred-
icates; a logical level, where queries are mapped to services;
and a physical level, where queries are expressed as execution
strategies over services, with given methods for service invo-
cation and for search engine integration; (b) several strategies
for performing the transformations required by these models,
and in particular for mapping a conceptual queries into several
logical queries (adapting well-known mapping techniques)and
for optimizing the logical queries, thus producing the best
execution strategy – optimization requires the definition of
several, alternative metrics; (c) the inclusion within this frame-
work of additional steps, such as query augmentation (how to
extend a query when it cannot immediately be mapped to a
service) and source wrapping (how to build wrappers over data
sources offering Web service interfaces); (d) an architecture for
implementing the framework, supporting service registration
and offering query interfaces for end-user interaction.

A. Running example

We consider as a running example the query reported in the
abstract: “find all database conferences held within six months
in locations whose seasonal average temperature is 28 degrees
and for which a cheap travel solution exists”.



travel(From, To, Start, End, StartTime, EndTime, Hotel, FPrice,
HPrice, Category)

climate(Location, Temperature, Date)
conference(Topic, Name, Start, End, Location)

Fig. 1. Schema of conceptual services derived from the globalontology

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) :-
travel($from, City, Start, End, StartTime, EndTime,

Hotel, FPrice, HPrice, $category),
climate(City, Temperature, Start),
conference(’DB’, Conf, Start, End, City),
Start ≥ $startDate, End ≤ $startDate + 180,
temperature ≥ 28, FPrice+HPrice < 2000.

Fig. 2. Query over the conceptual services

We assume that queries can be expressed over a conceptual
schema, represented in Figure 1, consisting of 3 relations:
travel, describing the details of flights and hotels being
selected;climate, describing weather conditions expected at
given dates in given locations; andconference, describing the
conference offerings in given subjects. Thus, the running query
is expressed as a Datalog expression in Figure 2, where the
terms preceded by a $ sign are user input parameters. Datalog
notation is chosen for its elegance and simplicity, but we
currently focus on conjunctive queries (i.e., select-project-
join queries) without recursion. Note that “cheap solution”
is translated as a predicate over the overall cost of the
solution; thus, the problem considered in this paper could be
further expanded into the use of domain knowledge for query
interpretation. Such expansion is indeed feasible becausewe
assume a complete knowledge of the semantic domains of Web
services, and is planned within our project.

We next move to Web service descriptions. The query can be
answered by six physical services which have been previously
registered, represented in Fig. 3. These are: two services for
conference offerings, two services for hotel offerings, and one
service for flight offerings and for weather conditions. The
presence of many physical services is due to the fact that
the same information may have some access limitations, i.e.,
be accessed according to different access patterns. For in-
stance, conferences may be queried by setting the conference’s
topic, or by setting the conference’s location; hotels may be
queried by setting a complete information (hotel and period
identification) or by giving no information at all (and then
searching particularly good special offers). Moreover, services
may themselves hide other services (e.g., a search engine
integrator for flights) or instead be offered by an individual
organization (e.g., Hyatt Regency’s hotel offerings). Thus,
services are denoted not only by the parameters that they
expose to queries, but also by the role of the parameters (input
vs output), and therefore the representation of a service isthat
of an adorned Datalog predicate, where places are either bound
or free; in Fig. 3, bound places are in boldface. We denote
services over the same data but with different adornments by
a different index.

A fundamental distinction in our model concerns the na-
ture of services. Search services return answers in relevance
order. Their management within a query requires special care,
because in general the answers to a search services are very

confSchedule(1)(Topic, Name, Start, End, City)
confSchedule(2)(Topic, Name, Start, End, City)
weather(City, Temperature, Date)
flightS(From, To, OutDate, RetDate, OutTime, RetTime, Price)
hotelS

(1)(Name, City, Category, CheckInDate, CheckOutDate, Price)

hotelS
(2)(Name, City, Category, CheckInDate, CheckOutDate, Price)

Fig. 3. Services at the physical level

numerous, but users are only concerned with the first answers.
Thus, expanding a query to incorporate all the results of a
search service would be wrong. On the other hand, the user
is the only one that can correctly evaluate the relevance of
answers produced by search engines; therefore, answers of
search engines should be composed in the query’s output and
presented to the user for a correct evaluation. Moreover, the
user expects results in ranking order; thus, by composing
answers from multiple services, we must produce a global
ranking that is a good composition of the various partial
rankings, and use the global ranking in producing the output;
then, the user will decide at each interaction how many results
should be considered (e.g., before halting the query and re-
issuing another query with different parameters). We denote
search services by giving them the “S” superscript.

For example,flight is a search service. It requires the origin
and destination locations as well as the departure and return
dates, and outputs a list of flight solutions, including their
times and prices, in increasing price order. Thehotel service
is also a search service, available in two versions: the firstone
requires a city, a category, a check-in date, and a check-out
date, and returns names and prices of hotel accommodations
matching the input parameters; we can think this to be offered
by a booking system acting as an integrator of other services.
The second version is invoked without any bound parameter;
we can think this to be offered by a chain of hotels, e.g. Hyatt
Regency, returning only the best offers in the world according
to an internal ranking order that corresponds to the “best” offer
from the chain’s perspective.

B. System architecture

Our envisioned framework is summarized by the architec-
tural view of Figure 4. The user poses a query over the global
ontology, which is equipped with a set of mappings with the
services’ schemata, and possibly some integrity constraints 1.
The query is rewritten according to the mappings and the
constraints as a query over the services. This is then trans-
formed into several possible executable query plans takinginto
account possible limitations in accessing the services. Among
data services we list content extracted via wrappers from data-
intensive Web sites.

More in detail, the framework consists of three layers:
Query formulation layer. First, this layer allows users to

specify their requests to the NGS system by using an interface
which refers to concepts of the global ontology. The query
language and the ontology hide the specificity of the services
as implemented and available online.

1The ontology is the result of a data integration process, outside of the
scope of this paper; we start from its relational formulation, given in Fig. 1.



The main role of this layer is to rewrite the user query into a
logical expression of Web Service calls. Queries are rewritten
through mappings, and the result of this rewriting is expressed
in terms of Datalog programs in the form of multi-domain
conjunctive queries over physical services data with access
limitations; when access limitations are too strict and prevent
from reaching any answer, query expansion mechanisms can
be also used. Note that, in general, the availability of different
access patterns for the same service may give rise to several
alternative rewritings of the query. The issues concerningthe
query formulation layer are described in Sections II and III.

Query execution layer. This layer receives the Datalog
programs generated by the previous level. The role of this
layer is to generate a query plan optimized taking into account
the parameters associated to the services and the cost model.
This optimization is done taking into account several aspects,
such as: (i) the types of operations involved in the query
plan; (ii) available profiling information on specific services;
(iii) ranking of the results. The issues concerning the query
execution layer are described in Section IV.

Data layer The data layer addresses the representation in
the framework of the physical services; they may be either
Web Services or wrapped, data-intensive Web sites. Services
are constantly profiled so as to feed the optimizer of the layer
above with estimates of the figures which are relevant to the
optimization problem (such as response time, average number
of returned results, statistical distribution of values into the
results, typical decrease trend in the function form of the
relevance, ... ). When information sources are wrapped, we
envision resorting to automatic wrapper generation techniques,
so as to easily and readily maintain the wrappers aligned with
the evolution of the Web Sites. The issues concerning the
wrapping of Web sources are described in Section V.

In the rest of the paper we describe each of the framework
layers; we conclude the paper with a description of the
forthcoming development of the project.

II. QUERY MAPPING

We now discuss the aspects related to the specification of the
mapping between the global ontology and the service schemas,
and the use of such a mapping in the query answering process.
Our considerations are drawn from work in data integration,
where two basic approaches have been proposed to specify
the mapping between a global ontology (or global schema, in
data integration terminology) and a set of services (or data
sources) [1], [2], [3].

A. Global-as-view approach

The first approach, calledglobal-as-view(or simply GAV),
requires that the global ontology is expressed in terms of the
services’ schemata. More precisely, to every element of the
global ontology, a view (i.e., a query) over the services is
associated, so that its meaning is specified in terms of the
data retrieved from the services.

An advantage of the GAV approach is that query processing
is generally easy, since we can take advantage of the fact that
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Fig. 4. Reference scenario

the mapping directly specifies, in terms of the views over the
services, which services contribute data to which element of
the global schema. Hence, in a (pure) GAV system, a simple
unfolding strategy is sufficient to take into the mapping during
query answering. On the other hand, a system based on GAV
is rather difficult to maintain, since adding a new service may
in principle affect the queries associated to all concepts in the
global ontology.

B. Local-as-view approach

The second approach, calledlocal-as-view(LAV), requires
the global ontology to be specified independently from the
services. In turn, the information content of each service is
defined as a view over the global ontology.

The advantage of the LAV approach is that it ensures
an easier extensibility of the system, and provides a more
appropriate setting for its maintenance. Indeed modifyinga
service or adding a new one to the system requires only to
modify or provide the definition of the added service, and does
in general not involve further changes in the global ontology.
On the other hand, processing queries in the LAV approach is
a difficult task [2], [4], [5], [3]. Indeed, the only knowledge
we have about the data in the global ontology is through
the views representing the services, and such views provide
only partial information about the data. Since the mapping
associates to each service a view over the global ontology,
it is not immediate to infer how to use the services in order
to answer queries expressed over the global ontology. Thus,
extracting information from the system is similar to query
answering in the presence of incomplete information, which
is a complex task [6], [7].



travel(From, To, Start, End, StartTime, EndTime, Hotel, FPrice,
HPrice, Category) :-

flight(From, To, Start, End, StartTime, EndTime, FPrice),
hotel(Hotel, To, Category, Start, End, HPrice).

Fig. 5. Example of GAV mapping for thetravel service

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) :-
flight($from, City, Start, End, StartTime, EndTime, FPrice),
hotel(Hotel, City, $category, Start, End, HPrice),
confSchedule(’DB’, Conf, Start, End, City),
weather(City, Temperature, Start),
Start ≥ $startDate, End ≤ $startDate + 180,
temperature ≥ 28, FPrice+HPrice < 2000.

Fig. 6. Logical query over the available services

C. Comparison between LAV and GAV and approach of NGS

A comparison of the LAV and the GAV approaches is
reported in [2], [8]. Intuitively, the GAV approach provides
a method for specifying the integration system with a more
procedural flavor with respect to the LAV approach. Indeed,
whereas in LAV the designer of the system may concentrate
on specifying the content of the services in terms of the global
ontology, in GAV the burden of specifying how to get the data
of the global ontology by queries over the services is entirely
on the designer.

The approach taken in NGS is one where new services
are registered in the system by mapping their information
content to the terms of the global ontology. To simplify
for the designer the task of specifying such mappings, we
envision to follow a LAV approach. However, to allow for
query processing by unfolding, as in GAV, we intend to adopt
the techniques proposed in [8] to convert a LAV system into
an equivalent GAV system by introducing suitable constraints
(essentially, inclusion dependencies) in the global ontology.
Such dependencies, together with those already present in
the ontology establishing the taxonomic relationship between
classes, need then to be taken into account during query
processing. As shown by recent work on query answering
under constraints [9], [10], [11], this can done by an initial
expansion step on the user query that precedes unfolding due
to the mappings. A crucial aspect is that these transformations
on the user query, which essentially compile into the resulting
query both the ontology constraints and the mappings, can be
carried out without the need to access the data provided by the
services [10]. This holds for a rather wide class of ontology
languages [12], comprising those that we envision to use in
NGS, and that essentially corresponds to a taxonomy of classes
and data types.

An example of a suitable GAV mapping fortravel is shown
in Figure 5. According to this and similar mappings for the
other entities and services, the query over the global ontology
can be rewritten, in general, as a union of conjunctive queries
over the available services. In our running example we obtain
the query shown in Figure 6.

III. A CCESS LIMITATIONS AND QUERY EXPANSION

In the context of query answering over Web Services,
queries can be conceived as in the traditional relational setting,
but with the extra requirement that certain fields be manda-
torily filled in by the user in order to obtain a result. As

mentioned, we assume that each service at the physical levelis
equipped with an adornment specifying its input parameters,
called access pattern, as shown in Figure 1, where input
fields are marked in boldface. Any query formulated over
such services needs to comply with the physically available
access patterns, as discussed in [13], [14]. For this reason, a
conjunctive query, such as the one of Figure 6, where the order
of the literals in the body is immaterial, needs to be further
instantiated into what we call alogical access plan. First of
all, for each service with more than one adornment, one of the
available access patterns has to be chosen. Besides, an order
of “execution” of the literals in the body of the query has to
be determined so that all the access patterns of all invoked
services are respected, i.e., for each input argument thereis
either a value provided directly by the user, or a binding is
available from an output field of a previously invoked service.
We still write a logical access plan as a conjunctive query,
and make it clear what access pattern is used for each service
by indicating in subscript the corresponding index. As is
customary, we will use the left-to-right order of appearance
of the literals in the query body to the indicate a class of
possible invocation orders, meaning that if a services1 occurs
left of services2 in the query, thens1 is not invoked afters2.

According to the available access patterns for the services,
some logical access plan complying with the access patterns
of all services used in the query may or may not exist. We
distinguish these two cases in the following.

A. Feasible queries

A query under access limitations is said to befeasible if
there exists an equivalent query that is executable as is from
left to right, while respecting the access limitations.

Whenever the query admits exactly one feasible rewriting,
there is exactly one possible logical access plan; this is then
directly passed onto the logical layer in NGS for further
choices on the execution at the physical level. Conversely,
if several logical access plans exist for the query, they are
all given to the logical layer, which will then select the most
promising ones according to some cost metric.

The problem of determining feasibility is analyzed, e.g.,
in [15], [16], where, in particular, it is studied whether there
is an ordering of subgoals that enables answering the query,
and, if multiple such orderings are possible, how to pick the
best ordering according to the principle that “bound is better”.
Typically, a service adornment with a superset of the input
fields of another adornment will be cheaper to use in terms
of execution time, since its result space is somehow more
restricted. However, we do not want to limit ourselves to this
cost metric, and, indeed, we consider a more general cost
model in the Section IV.

In our running example, the logical query of Figure 6 admits
several logical access plans, due to the fact that multiple access
patterns are available for several services. Two possible plans
for this query are shown in Figures 7 and 8. The plan of
Figure 7 first accessesconfSchedule(1) by using a topic, and
retrieves start and end dates, and city of a conference; with



q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) :-
confSchedule(1)(’DB’, Conf, Start, End, City),
Start≥$startDate,
End≤$startDate + 180,
weather(City, Temperature, Start),
Temperature≥28,
flight($from, City, Start, End, StartTime, EndTime, FPrice),
hotel(1)(Hotel, City, $category, Start, End, HPrice),
FPrice+HPrice<2000.

Fig. 7. Logical access plan for the query of Fig. 6 usingconfSchedule
first

q(Conf, City, HPrice, FPrice, Start, StartTime, End, EndTime, Hotel) :-
hotel(2)(Hotel, City, $category, Start, End, HPrice),
Start≥$startDate,
End≤$startDate + 180,
confSchedule(2)(’DB’, ConfName, Start, End, City),
weather(City, Temperature, Start),
Temperature≥28,
flight($from, City, Start, End, StartTime, EndTime, FPrice),
FPrice+HPrice<2000.

Fig. 8. Logical access plan for the query of Fig. 6 usinghotel first

these and the user input, all the other services can be accessed
and all the comparisons can be evaluated; in particular, the
remaining services may be invoked in any order, or even in
parallel. The plan of Figure 8 uses a different strategy: it first
invokes hotel(2) and uses its city, check-in date and check-
out date to call the other services, which may, again, take
place in any order or in parallel. Note that not all possible
combinations of access patterns are executable with respect
to the access patterns: for example, one cannot use together
(in whatever order) the versions ofconfSchedule(2) andhotel(1)

that haveCity andTo, resp., as input fields.

B. Unanswerable queries and query expansion

For some queries it may happen that no suitable combi-
nation of services’ adornments exist to obtain an executable
logical access plan. In this case, it is impossible to answerthe
original user query, because there is at least one service whose
input parameters are needed, but have not been provided by
the user and cannot be taken from the output of a previously
called service. Even in such a case, it may still be possible
to obtain a subset of the answers to the original user query
by invoking services that are not necessarily mentioned in the
query, but that are available in the schema. The maximum
set of answers obtainable in this way is called themaximally
contained answer. In particular, such “off-query” services may
be invoked so as to provide useful bindings for the input
fields of the services in the query. This possibly lengthier
process is based on information about the abstract domains
of the services’ attributes: an output attribute may provide a
binding for an input attribute sharing the same domain. In our
running example, a taxonomy of the domains in the global
ontology can be used to conclude, e.g., thatconfSchedule.City,
weather.City, flight.From, flight.To, and hotel.City are all
locations; if these were all input fields but there was another
service, say,oldTown(City) providing locations in output, this
could be use to find some of the answers to the query.

Techniques are available to determine whether the query
can be expanded with calls to off-query services to obtain a
logical access plan [13], [17], or if it is definitelyunanswerable
with respect to the access patterns. In the former case, a plan

retrieving the maximally contained answer may be used as a
reasonable approximation of the original query. In the latter
case, impossibility to answer the query is reported to the user.
We note that retrieving the maximally contained answer in
general requires the evaluation of a recursive query plan even
if the initial query was non-recursive, but extra assumptions on
the services can be made so as to always avoid recursion [18].

IV. QUERY OPTIMIZATION

A. Operation Model

Starting from the set of alternative logical access plans, the
query execution layer is in charge of (i) deriving one or more
executablephysical access plansfor each of the alternative
logical access plans and according to a given optimization
strategy and (ii) identifying thebest physical execution plan
according to a given cost metric. The set of alternative logical
access plans considered at this stage contains only plans
that areexecutableaccording to their access limitations; non-
executable plans have been discarded in the previous step.

The derivation of the possible physical access plans for a
given logical plan is driven by a number of choices suggested
by an optimization strategy, namely:

• Parallelism among services: Depending on the restric-
tions imposed on the logical access plan, it might still be
possible to decide whether two (or more) specific services
are to be invoked in series or in parallel.

• Chunking of service results: Web services (especially
search services) typically allow the chunking or paging
of their results in output. It might thus be necessary to
perform multiplefetchesof a chunked service, in order
to construct the complete result set.

• Join strategies: Different join strategies might be adopted
to merge service results. In [19] we introduce two fun-
damental techniques: Nested Loop (NL) and Merge-Scan
(MS) – see Figure 9. NL can be employed when there is
one service that “dominates” the invocation of the other
service; in this case, the exploration of the result space
takes place by executing a given number of fetches of
the dominated service for each output tuple coming from
the dominating service. MS, instead, can be employed
when there is no a priori distinction between the services
to be joined; in this case, given numbers of fetches
are executed in parallel for both services, and tuples in
output are produced by traversing their cartesian product
“diagonally”. If information on how relevance decreases
for the services’ results is available, this might be used to
determine the most convenient join strategy. For both NL
and MS, the tuples in output will be returned according to
a partial order combining the ranking of the two services.

Depending on these three aspects, there might be different
optimization strategies. For instance, we may have a strategy
that maximizes the parallelism among invoked services, or
we might have a strategy that minimizes the calls to search
services by choosing an appropriate join strategy.

As in [18], we callselectivitythe average number of tuples
a service produces in output in response to an input tuple.
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Fig. 9. The Nested Loop and Merge-Scan join strategies.
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Fig. 10. Modeling notation for the graphical representation of a physical
access plan.

Accordingly, a service isselectiveif its selectivity is at most
1, proliferative if greater than1. Figure 10 introduces the
graphical modeling notation that we use to represent a physical
access plan. Selective, exact services are represented as simple
boxes; proliferative, exact services are represented as boxes
labeled with a “*”; search services are represented as boxes
with a grey trapezium (sketchily representing the decreasein
ranking of the results). If a service supports the chunking of
its output into smaller fragments, we show that a particular
access plan makes use of the service’s chunking feature by
splitting the service’s box into three smaller boxes. Search
services are always invoked by chunking their result sets.
In the physical access plan, it is important to highlight for
each service whether it is invoked via chunking or not, in
order to be able to estimate the cost of the service in the
plan. We distinguish between two join patterns:parallel join
and pipe join. The parallel join is represented by means of
a dedicated join symbol with an associated label (“NL” or
“MS”) expressing the respective join strategy. The pipe join is
denoted by an arrow connecting two nodes, indicating that the
join is computed by feeding with the output of the origin the
input of the destination. Finally, an access plan has a unique
start node (the user query’s input) and a unique end node (the
query result).

B. Cost Model

Once all logical access plans have been expanded into their
candidate physical execution plans according to the given
optimization strategy, the identification of the best physical
execution plan is based on a suitablecost metric, which
allows us to associate a cost estimation to each physical
execution plan. One of the following cost metrics (or a linear
combination thereof) may be adopted:

• a monetarymetric, which is based on the money one
needs to spend to invoke a service;

q *
r

confSchedule(1)

weather

flight

hotel(1)

NL

MS

F2

F1

Fig. 11. Possible physical access plan for the logical access plan of Fig. 7.

• a bottleneckmetric, which is based on the slowest (in
terms of computation time) service in the query;

• a request-responsemetric, which is based on the number
of service invocations; and

• a time-to-marketmetric, which is based on the time
required to present the user with the first output tuple.

All cost metrics are based on the services’ selectivities. Typ-
ically, exact services have a limited selectivity, while for search
services it may be very large (think for instance of Google).
Note that selection predicates, including join predicates, also
have an intrinsic selectivity. For simplicity, we will assume
that the selectivity of selection predicates is already taken into
account as part of the selectivity of the node of the physical
access plan they refer to.

In a given physical access plan, the use of selectivities
allows us to compute for each individual service or join an
average number of tuples in input and in output. This finally
allows us to estimate the overall cost of the access plan in
order to obtainK tuples in output of the query. The problem
is typically known under the name “top-k queries” [20], [21],
and several strategies have been developed to minimize the
cost of query execution also in presence of ranked results [22],
[23], [24], [25]. In a similar vein, also “skyline queries” [26]
aim at query optimization over multiple dimensions; the most
notable algorithm in this context is the Nearest Neighbors [27].

Orthogonally to the optimization strategy used to construct
the physical access plan, we are developing suitable profiling
techniques to derive the bestchunk sizefor each of the
registered, physical services. As for instance discussed in
[18]2, web services typically behave differently in terms of
response time or throughput depending on the adopted chunk
size. Identifying the chunk size that allows the most efficient
use of a service may thus speed up the overall query execution
and, at the same time, also allows for thepipelining of the
query execution. Indeed, chunking prevents the query engine
from waiting for complete service responses and enables query
processing over partial response sets.

C. Query Optimization Examples

If we consider the logical access plans shown in Figures 7
and 8, we can for instance derive the physical access plans
of Figure 11 and 12, resp.3 The plans make use of the

2We however focus on the chunking of service outputs; in [18] the focus
is on chunked inputs.

3Note that in our graphical representation we abstract away projection and
selection operations, since they are not relevant for the specification of the
workflow logic underlying the physical access plan.
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selective, exact serviceweather, the proliferative, exact service
confSchedule, and the two search servicesflight and hotel.

If for instance we consider the request-response (RR) cost
metric to calculate the cost to obtainK answer tuples, we need
to determine the expected number of invocations or fetches
that need to be performed for each service. This requires know-
ing the selectivities of each version of exact services in the plan
(i.e., weather and both versions ofconfSchedule). We do not
consider the selectivities of search services, since, typically,
we will never wholly explore their result set; therefore, the
interesting parameter that characterizes such services isthe
number of fetchesF that are to be executed for each input
tuple at the service. Such number may be estimated at compile
time according to the selectivities of all the services involved
in the plan, their chunk sizes, andK.

Assume, for example, that for the plan of Figure 11
confSchedule(1), weather, flight, andhotel(1) require, resp.,3,
1, 3, and4 invocations; then, the total RR cost associated to
this plan isRRcost1 = 3 ∗ (1 + 3 + 4) = 24. If, instead,
for the plan of Figure 12, which uses services with different
adornments and in a different arrangement,confSchedule(2),
weather, flight, and hotel(2) require, resp.,1, 1, 4, and 2
invocations, then the total RR cost isRRcost2 = 2 ∗ (1 +
1 + 4) = 12. Therefore, the plan of Figure 12 (P2) better
optimizes the cost than that of Figure 11 (P1), according to
the chosen cost metric:

BestP lan = arg min
p∈{P1,P2}

RRcost(p) = P2

As can be seen in the above examples,parallel joins are
computed over two output attributes (cf. the output of the
serviceshotel(1) and flight in Fig. 11), whereaspipe joins
are computed over an output and an input attribute (cf. the
join between the serviceshotel(2) andflight in Fig. 12). More
precisely, the pipe join requires a sequential arrangementof
the two services, as the output attribute of the first service
provides values in input to the second service; this necessarily
implies a NL execution strategy. The parallel join, instead, can
be fully parallelized, as there are no invocation dependencies
among the two services to be joined.

V. SOURCE WRAPPING

One of the novelties of our approach is the involvement
of Web Services specialized in the extraction of contents from
data-intensive Web sites (e.g., wrappers of sites exposingbond
quotes or the personnel of a given research institute). In order
to develop a scalable system, it is recommended that the
generation of wrappers is performed as automatically as possi-

ble. Several approaches have been proposed for the automatic
generation of wrappers (see [28] for a recent survey).

The first studies led to develop semi-automated systems,
which required a training phase performed with user in-
tervention. Among such systems, Lixto [29] is particularly
relevant. To alleviate the need for human intervention, several
techniques for automatically inferring Web wrappers have
been developed [30], [31], based on the observation that pages
from data intensive Web sites can be grouped in classes sharing
a common structure.

Pages in data-intensive sites are usually automatically gen-
erated using scripts which extract the content of the database,
first executing some queries and then serializing the extracted
dataset into HTML code. A nice property of these sites is that
pages generated by the same script share a common structure.
We call aclassof pages in a site a collection of pages gen-
erated by the same script. We may re-formulate the problem
as follows: “given a set of sample HTML pages belonging
to the same class, find a hierarchical data structure (typically
encoded in XML) capable to carry the same information of
the original Web pages”.

Arasu and Garcia-Molina proposed EXALG [30], an algo-
rithm for extracting structured data from Web pages generated
by encoding data from a database into a common template.
To discover the template (i.e., characterizing the class of
pages), EXALG uses so called Large and Frequently occurring
EQuivalent classes (LFEQ), i.e. sets of words that have similar
occurrence pattern in the input pages. The basic idea of
EXALG is to deduce the unknown template by using the
concepts of equivalence classes and differentiating rolesof
tokens. It works in two stages; in the first stage it discovers
sets of tokens associated with the same type constructor in the
template used to create the input pages; in the second stage
it uses the token sets to deduce the template and extract the
values encoded in the pages. Roles of tokens are differentiated
using the context in which they occur in the page.

ROADRUNNER [31] abstracts a wrapper as a regular gram-
mar, whose productions are inferred and refined by iteratively
parsing the input pages. Roadrunner leverages page regularity
by exploiting similarities and differences among pages by
means ofMatch, an unsupervised algorithm that iteratively
refines a wrapper, by iteratively parsing pages of the sample
set and generalizing the wrapper whenever the parsing process
fails. The fact that regular expressions cannot be learned
from positive examples alone, and the high complexity of
the learning even in the presence of additional information,
limits the applicability of the traditional grammar inference
techniques to Web sites, and motivates resorting to a numberof
pragmatical approaches. Still, ROADRUNNER avoids relying
on user-specified examples, requires no interaction with the
user during the wrapper generation process, and requires noa
priori knowledge about the page contents, i.e., it doesn’t need
to know the schema according to which data are organized in
the HTML pages; such schema will be inferred along with the
wrapper

The two approaches described last have complementary



strengths and limitations. In NGS, we have developed a
combined technique that aims at conciliating them, thus
overcoming their limitations while leveraging their strengths.
Based on the formal background of ROADRUNNER, we have
introduced a preprocessing phase, which enriches the input
pages by means information derived from a statistical analysis
inspired by that proposed in EXALG. The goal of the trans-
formation is to remove ambiguities that sometimes keep the
ROADRUNNER algorithm from inferring the grammar. Also, a
post processing phase is run over the extracted data in orderto
detect disjunctive patterns. Whenever these are found for each
branch of the disjunction, a wrapper is recursively inferred.

VI. CONCLUSION

In this paper, we have proposed a framework for answering
multi-domain queries over Web-accessible data sources, in-
cluding wrapped Web sites and heterogeneous search services,
which return their results in ranked order. Users queries,
expressed over a conceptual abstract view, are rewritten into
query plans, i.e., sequences of service invocations, which
are optimized taking into account several characterizations of
the involved services. Among the distinctive aspects of our
approach, we mention query optimization based on several
possible cost metrics and the capability of joining ranked result
lists.

The end-user interface most suitable to this approach is
a simple form on the free arguments of the query. In our
future work, we envision offering to users a lower-level query
interface similar to Yahoo pipes, enabling the direct compo-
sition of services based upon their adornment. Experiments
will then indicate to us whether such a tool is sufficiently
user-friendly. We will also experiment the use of higher-level
interfaces, by using ontological knowledge for query formu-
lation. At the current stage of the project we have developed
several of the components of the NGS architecture, including
software components performing query mapping, expansion
and optimization, and a collection of wrapping generation
tools. In the next stages of the project we will integrate the
software components into a complete demonstrator of the NGS
approach.
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