
Data quality control in blockchain applications?

Cinzia Cappiello1, Marco Comuzzi2, Florian Daniel1, and Giovanni Meroni1

1 Politecnico di Milano, Milan, Italy
2 Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

{cinzia.cappiello,florian.daniel,giovanni.meroni}@polimi.it, mcomuzzi@unist.ac.kr

Abstract. This paper discusses the problem of data quality in blockchain
applications at three levels of abstraction, i.e., conceptual, logical and
physical. Conceptually, it makes explicit the need for information of typical
data quality metrics for their online assessment. Logically, it analyzes
how the adoption of blockchain technology affects the availability of
the data needed for quality assessment. Physically, it identifies a set of
implementation options that take into account the information needs of
metrics and the restrictions by the technology; special attention at this
level is paid to Ethereum and Solidity. Two case studies put the identified
patterns and abstractions into context and showcase their importance in
real-world distributed applications and processes.

Keywords: Blockchain, data quality, smart contracts, Ethereum, Solidity

1 Introduction

A blockchain is a distributed ledger, that is, a log of transactions that provides
for persistency and verifiability of transactions [12]. Transactions are crypto-
graphically signed instructions constructed by a user of the blockchain [15] and
directed toward other parties in the blockchain network, for example the transfer
of cryptocurrency from one account to another. A transaction typically contains
a pre-defined set of metadata and an optional payload. Transactions are grouped
into so-called blocks; blocks are concatenated chronologically. A new block is
added to the blockchain using a hash computed over the last block as connecting
link. A consensus protocol enables the nodes of the blockchain network to create
trust in the state of the log and makes blockchains inherently resistant to tam-
pering [10]. Smart contracts [13] extend a blockchain’s functionality from storing
transactions to performing also computations, for example to decide whether to
release a given amount of cryptocurrency upon the satisfaction of a condition
agreed on by two partners.
? This research was supported by the MSIT (Ministry of Science and ICT), Korea,
under the ITRC (Information Technology Research Center) support program(IITP-
2018-0-01441) supervised by the IITP (Institute for Information & communications
Technology Promotion) and by the DITAS project funded by the European Union’s
Horizon 2020 research and innovation programme under grant agreement RIA 731945.

2

After having emerged as the core technology for cryptocurrencies, blockchains
are increasingly adopted as building blocks for information system implementation.
In particular, in the context of inter-organisational business processes, they can
be used to create a trusted repository of transactions executed among a set of
parties that do not necessarily trust each other. When underpinning systems
supporting inter-organisational business processes, the quality of the data stored
in blockchains becomes particularly critical. While data quality is trivial to
enforce on transactions representing exchanges of cryptocurrency (e.g., the value
transferred cannot be missing from a transaction and it must not exceed the
amount of currency that the originator of a transaction owns), assessing data
quality may become elaborated when transactions represent business interactions
among parties collaborating in the context of a complex business process.

Given their nature, blockchains natively already provide for some quality
guarantees regarding the data stored on them: the use of hashes to link blocks
prevents tampering with data, while the use of cryptographic signatures provides
for provenance and non-repudiation. However, blockchains also come with severe
limitations that hamper assessing the quality of data stored on them, i.e., of the
payload of transactions. This, in fact, is not subject to analysis and approval by
standard consensus protocols and is treated by blockchains like a black box.

Analyzing these data requires either extending the internal logic of the
underlying consensus protocol, or implementing data quality assessment logic,
i.e., the data quality controls, in the form of suitable smart contracts to be
invoked when needed. The former approach makes the whole blockchain aware of
the content of payloads, but it also produces a blockchain infrastructure that is
tailored to and restricted by the specific quality controls implemented. That is, all
transactions would have to comply with the chosen payload formatting convention
or the consensus protocol would not be able to process them correctly. As a
consequence, this solution would suit only limited, private blockchain scenarios,
in which only selected (and informed) nodes can participate to the network. The
use of smart contracts, instead, enables the implementation of multiple data
quality controls on top of generic blockchain infrastructures and their flexible,
domain-specific use by applications. Yet, smart contracts, too, are subject to
strict limitations that distinguish them from generic software modules:

– Smart contracts implement passive application logic; that is, they must be
invoked by a client to be enacted and able to process data. This means that
smart contracts cannot be implemented as listeners that automatically react
to the presence of given data items inside the payload of generic transactions;

– Smart contracts cannot directly query the blockchain to retrieve data stored
in transactions recorded on it; they only have access to the payload of those
transactions explicitly directed to them as addressees, to data stored in their
own, local variables, or to data held by other smart contracts and made
available through suitable functions;

– Smart contracts cannot access data outside the blockchain. In order to guar-
antee the repeatability of the computations implemented by them, smart
contracts cannot query external databases or Web APIs, as these might

3

produce different results in different instants of time. In order to obtain data
from the outside world, so-called oracle smart contracts (short “oracles”) can
be used, which enable external data sources to push data into the blockchain,
e.g., upon explicit solicitation or periodically – however, using standard
transactions that are recorded on the blockchain;

– Executing smart contracts has a cost. Invoking a smart contract means
generating a transaction directed to the smart contract and sending possible
input data in its payload. This transaction is distributed over all nodes of the
blockchain network and is subject to consensus, which consumes computing
resources that need to be payed for. Also saving data on the blockchain
consumes storage space that has a cost. Storing large amounts of data on
the blockchain is thus not advisable, if not prohibitively costly.
In this paper, we aim to assist developers in the design and implementation

of blockchain applications that come with their own data quality control require-
ments. Each application may have its own, domain-specific rules and conventions
that need to be supported. The extension of existing applications with data
quality controls is out of the scope of this paper, as extending existing applica-
tions is generally not possible: once data or code are written on the blockchain,
they cannot be modified any longer. Hence, there is little space for improvement,
and it is generally easier to just deploy a new application or a new version of
it to guarantee specific data quality levels. This paper thus makes the following
contributions:
– It identifies four combinable conceptual patterns representing the information

needs of typical data quality controls for standard data quality metrics and
proposes a set of policies for handling situations where these controls detect
critically low data quality;

– It studies the four patterns in the context of blockchain technology and
provides a set of logical and physical implementation alternatives;

– It shows the applicability of the identified solutions in the context of two
application case studies with original data quality control requirements.
The remainder of the paper is organised as follows. Section 2 introduces the

problem of data quality assessment in software applications. Section 3 discusses
the proposed patterns and contextualizes them to blockchain systems. Section 4
shows the applicability of the proposed options in two application scenarios, while
conclusions are drawn in Section 6 after discussing related work.

2 Data Quality Control Requirements
This section provides a conceptual discussion of information needs for the as-
sessment of typical data quality dimensions and possible reaction in response to
quality issues. Note that, in this paper, we focus on on-line data quality controls,
that is, assessing the quality of data as they are submitted to an information
system by a client application. We do not consider the case of off-line quality
control, such as checking the quality of data stored in a system periodically or
upon request.

4

2.1 Information needs for data quality assessment

Data quality is often defined as data fitness for use [11] and, as such, it is captured
by a large number of data quality dimensions, the relevance of which depends
on the application context. In order to provide a focused discussion, this paper
considers a limited number of data quality dimensions, i.e., accuracy, completeness,
consistency and precision. The former three dimensions are considered relevant
in the context of traditional information systems development. The latter is
particularly relevant in Internet of Things (IoT) scenarios, in which data may be
provided continuously to a system by sensors.

Accuracy is defined as a measure of the proximity of a data value v to some
other value v′ that is considered correct [11]. Operationally, there are different
ways of defining the accuracy of a value v depending on the nature of the domain
of v. In data streams, accuracy is often analyzed with precision, that is, the
degree to which consecutive measurements or calculations show the same or
similar results. Precision is often defined in terms of the standard deviation of the
measured values. The smaller the standard deviation, the higher the precision.
Completeness is defined as the degree with which a given data collection includes
the data describing the corresponding set of real-world objects [4]. Consistency
refers to the satisfaction of semantic rules defined over a set of data items [4].

Each data quality dimension may have one or more metrics that specify how
it can be calculated. The definition of the data quality assessment algorithms
depends on the type of sources and on the type of data and may require additional
metadata or rules, such as consistency rules, or expected values v′ when assessing
accuracy. Focusing on information needs, i.e., additional data required to assess
the quality of a variable value, Fig. 1 depicts four situations that may occur.

Figure 1(a) refers to the situation in which the evaluation of the quality
does not require additional information and therefore it can be conducted by
considering only the analyzed value. For example, the accuracy of a value can
be assessed by considering a specified business rule, using constants, such as “a
temperature value is accurate if it is between 18 and 22 Celsius degree.” Moreover,
completeness is usually assessed by considering only the analysed value, i.e.,
checking whether the value is present or missing.

Figure 1(b) refers to the situation in which the evaluation of the quality
of a value relies on the availability of one or more values of the same variable
registered in the past. For example, a temperature value registered by a sensor
may be considered accurate only if it does not exceed the average of values
registered in the past 3 hours by more than 25%. Moreover, in an IoT scenario,
assessing the precision of a sensed value needs always to consider the results of
the previous measurements.

Figure 1(c) refers to the situation in which the evaluation of the quality of
a value relies on single values of a number of other variables. For example, the
accuracy of a patient name may be checked against the values of names and social
security numbers provided by a public government registry, or the consistency of
a temperature value registered by a sensor may be assessed against values of other
variables registered by other sensors, such as pressure and relative humidity.

5

Assessment depends onData item to be assessedData items

(a) Single variable,
single value

(b) Single variable,
multiple values

(c) Multiple variables,
single values

(d) Multiple variables,
multiple values

Dependencies among variables and values when assessing data quality: single variable, single value vs. multiple
variables and time series of values

Fig. 1. Dependencies among variables and values when assessing data quality: single
variable, single value vs. multiple variables and multiple values (history).

Finally, Figure 1(d) refers to the general case in which the evaluation of a
value relies on multiple values of any number of other variables, possibly including
the values of the variable which is being assessed. For example, a temperature
value may be checked for consistency against historical values of temperature
and pressure.

The next sections will show the way in which these different information
needs may affect the implementation of data quality control in blockchains.

2.2 Quality control policies

Computing data quality measures on the fly allows an application to verify quality
requirements at runtime, e.g., violations of consistency rules. This enables the
implementation of data quality controls, if suitable reactions able to deal with
identified issues are implemented. There may be different types of reactions in
response to identified issues; deciding how to react is again an application-specific
decision. In general, we distinguish five policies that may be adopted:

Accept value: Sometimes, even though there is a clear violation of some data
quality requirements, it may just be easiest to accept a value and just do
nothing else. For instance, during the configuration of a sensor sending data to
an information system, we may already know that the values communicated
by the sensor during the configuration are not relevant to the system and
hence, since they are not reliable, quality alerts can be ignored.
Do not accept value: A possible decision may be to reject a low quality value
and not write it into the system. For instance, in the case of sensor readings,
this policy may apply when accuracy of data is important, that is, it may be
preferable to have only highly accurate sensor readings instead of a complete
series of readings of possibly low quality.
Log violation: In some cases, it may be necessary to accept a value while,
at the same time, flagging it of low quality. The flag may be considered by
other applications in future computations. For example, if a social security

6

number provided by a patient does not match any record in a citizen registry,
the system may be configured to accept it anyway, but with a flag to signal
that a default quality control against a citizen registry has failed.
Raise event: When a low quality value represents a critical situation that
requires immediate reaction by an application or human actor, it may be
necessary for a system to raise an event to notify someone or some other
system. For example, low quality sensor readings may signal potentially
critical issues when they concern an airtight container of dangerous goods
being transported on public grounds.
Defer decision: Finally, sometimes one single violation may not be enough
to take a definite decision on how to intervene. In these cases, it may be an
option to simply defer the decision for later re-evaluation.

Which of these policies are best depends on the application’s data quality
requirements, data retention obligations, expected reaction times, and similar.
Each variable equipped with a data quality control may ask for a different
policy. Policies may change during runtime, e.g., to react to different modes of
execution, such as configuration vs. production. Ideally, the quality controls allow
the application to dynamically switch or reconfigure policies as needed.

3 Data Quality Control on the Blockchain
Based on the analysis of information needs for data quality assessment provided
in the previous section, we now discuss how data quality controls and reaction
policies can be logically implemented in blockchains. Our assumptions underlying
the rest of this paper are:
– Data quality controls are implemented using smart contracts, which provide

the necessary flexibility to accommodate different quality control. We consider
the extension of the consensus protocol, although feasible, not suitable to
support application-specific quality controls.

– We focus on on-line data quality controls, i.e., on assessing the quality of
data as they are added to the blockchain by a client via a suitable transaction
and are to be stored by a smart contract.

– Client transactions always address a smart contract containing application
logic of the distributed application that we want to equip with data quality
controls. Transactions between parties without the involvement of a smart
contract cannot be monitored from the inside of the blockchain, e.g., to
prevent low quality data to be written.

– We require developers to identify which of their data need quality control and,
for those that do, to delegate quality control to external, quality-aware smart
contracts with suitable setters, getters and quality control logic. Developers
thus must cede control of some of their variables, however in exchange for
readily available and reusable quality control logics.

Before discussing implementation options, we discuss in the next section
blockchain-specific patterns to capture the information needs for data quality
assessment introduced in the previous section.

7

Transaction Off chain Web API

Tk Ti

Tj
Tk

i < j < k

Ti

Tj
Tk

i, j, k unordered

Tk

(a) Single transaction (b) Ordered transactions (c) Interleaved transactions (d) Off-chain/Web data

Fig. 2. Availability and correlation of data for quality assessment: transactions, transac-
tion order, and on-chain/off-chain data. The figure uses the multiple variables / single
values configuration for presentation purpose; other configurations are similar.

3.1 Data access for quality assessment in blockchains

Figure 1 introduced the four core types of data needs that may arise when
assessing any of the discussed data quality metrics. The highlighted dependencies
are conceptual and, especially in the context of blockchain applications, require a
proper technological grounding for a developer to understand how to implement
concrete quality metrics. The fundamental question that must be answered is
when and where each of the necessary data items is available for processing.

Figure 2 summarizes the situations that we may encounter in a blockchain
application, proposing four patterns that may be combined in function of the
application’s requirements. Data items (values of variables) required to assess
the quality of a specific variable value may be available for processing via:

– A single transaction carrying all necessary values in its payload. This rep-
resents the easiest situation in which all necessary values are grouped and
synchronized. A quality metric for the value of interest involving the other
values, e.g., satisfaction of consistency rules, can be computed instantly as
soon as the smart contract receives the payload.

– Multiple ordered transactions each carrying a piece of the information needed
to compute a quality metric, with the value we want to compute the metric
for always being the last to arrive. This requires collecting data from multiple
transactions, but as soon as the value of interest arrives, the metric can
be computed. An example could be checking the completeness of prior
activities when reaching special milestone activities in a business process.
Note that, owing to the distributed nature of blockchains, we cannot assume
that transactions are received by all nodes in a network in the same order.
However, this assumption may hold true in many practical cases if these
transactions are sufficiently spaced in time.

– Multiple interleaved transactions where each transaction carries a piece of
the information needed or the value of interest, but no specific order is
guaranteed. Correctly computing a metric, in this case, requires correlating

8

transactions and waiting till all correlated values have successfully been
recorded by a smart contract. For example, it may be necessary to wait for
multiple recommendation letters before assessing a job application.

– External data sources, such as off-chain data stored by one of the nodes of
the blockchain network or web-accessible data. As explained earlier, data
outside the blockchain require help from so-called oracles in order to push
data from the outside into the blockchain. This of course complicates the
computation of metrics, requiring the involvement of external actors, and
increases cost. An example for this pattern is the evaluation of the precision
of a given value as a function of its historical values stored off-chain.

Like for the patterns of the conceptual dependencies among data items in
Figure 1, also the above configurations may be arbitrarily combined in the context
of specific applications to be developed. For instance, there may be a metric that
requires both on-chain and off-chain data, or one that requires values that are
distributed over multiple ordered transactions like a time series of values, e.g.,
temperature readings. Each of these combinations may thus require purposefully
designed implementations of the respective quality metrics. Once implemented,
their online application enables computing quality measures on the fly, discarding
transactions, adding flags or raising events if needed, as specified by the relative
quality control policies. Low quality flags or events raised, in turn, may trigger
reactions according to application-specific policies.

3.2 Quality-aware smart contracts: implementation options

The previous discussion provided a condensed view of logical considerations that
must be made so as to correctly implement data quality controls in the blockchain
using smart contracts. We have seen that some of the characteristics that make
blockchain technology and smart contracts powerful in the first place, however,
pose severe restrictions on how quality controls can be implemented – a task that
typically does not provide major issues off-chain.

Based on the data access patterns introduced in Figure 2 and our analy-
sis of smart contract reuse options [7], we identify four core smart contract
implementation patterns for quality controls:

(a) Stateless smart contract: if all data items that are needed to assess a given
value are present in the payload of the same transaction, a simple, stateless
smart contract with one function accepting the data as input is enough to
implement the necessary control logic. Two sub-options are available:
– Ad-hoc contract: we can implement a contract that accepts as input the

values to be checked, implements the quality control logic, and responds
with a respective assessment. In Solidity, this type of contract would be
invoked by an application’s smart contract using a standard message call.

– Reusable library: we can also opt for the implementation of a so-called
library, such as SafeMath (https://bit.ly/2MRElXl), that does not
require the explicit invocation of an external contract. The application

https://bit.ly/2MRElXl

9

1 contract HistoryDQContract {
2 uint16 [10] vars; // array holding values subject to quality control
3 uint8 index ; // index of most recent value stored
4
5 function set(uint16 _var) public returns (int8){
6 if(index == vars.size) index = 0; // update index
7 else index ++;
8 vars[index] = _var; // store value , possibly overwriting oldest one
9 return check ();

10 }
11
12 function get () public return (uint16) { // fetch latest value
13 return vars[index];
14 }
15
16 function getHistory () public return (uint16 []) { // fetch full history
17 uint16 [10] result ; // to hold chronologically ordered values
18 for (int8 i= index ; i >=0; i--)
19 result [index - i] = vars[i];
20 for (int8 i=vars.size -1; i> index ; i--)
21 result [index + vars.size - i] = vars[i];
22 return result ;
23 }
24
25 function check () returns (int8){
26 ... // TODO: implementation of quality control logic over full array
27 }
28 }

Fig. 3. Solidity code fragment for single variable / multiple values quality controls
based on a history of 10 values with no event raised upon detection of quality problems.

smart contract could attach the library to the data types to be controlled
using the Solidity command using library_name for data_type. This
could for instance guarantee that no unwanted values are ever written
into a variable of those types. Doing so means transparently invoking
quality controls using delegate calls.

(b) Stateful smart contract: if the quality control to be implemented instead asks
for values stemming from different, ordered transactions, we need a stateful
smart contract with one or more functions able to provide for the persistent
storage of values across different invocations. As storage on the blockchain
typically incurs a high cost, the objective should be to keep the data stored
on-chain as small as possible. Again, there are two sub-options approaches:
– Multi-variable contract: in this case, only single values of different variables

need to be stored persistently, and we know that as soon as the value to
be assessed arrives, all other values are up to date. Ideally each variable is
equipped with suitable setters and getters to be used by the application’s
smart contract, while the setter of the variable whose quality is to be
controlled also implements the respective quality control logic to be
evaluated at each invocation.

– History contract: in this case, also a history of values, e.g., using a simple
array, by one or more of the variables stored in the quality control smart

10

1 contract FlaggingDQContract {
2 uint16 varA; // monitored variable
3 bool isUpdatedA ; // update flag
4 uint32 varB; // variable the control depends on
5 bool isUpdatedB ; // update flag
6
7 function check () returns (int){
8 if (isUpdatedA && isUpdatedB) { // if both variables are up to date
9 isUpdatedA = isUpdatedB = false ; // reset flags

10 ... // TODO: apply quality control logic and return result
11 } else return -1; // return if check not applicable yet
12 }
13
14 function setA(uint _varA) public returns (int){
15 varA = _varA ;
16 isUpdatedA = true ;
17 return check (); // control quality if applicable
18 }
19
20 function setB(uint32 _varB) public returns (int){
21 varB = _varB ;
22 isUpdatedB = true ;
23 return check (); // control quality if applicable
24 }
25 ... // TODO: implementation of getters
26 }

Fig. 4. Solidity code fragment for multiple variables / single value quality controls
correlating two variables using simple Boolean flags.

contract must be maintained. In order to keep the cost of storage low, it is
of utmost importance that the smart contract is properly configured so as
to keep the history as short as possible without however compromising the
evaluation of the quality metrics. Figure 3 illustrates a possible template
for a history contract monitoring one variable.

(c) Stateful smart contract + correlation: here we do not have any guarantee that
by the arrival of the value to be assessed all other values necessary for the
assessment are up to date, as there may be interleaved transactions setting
these values. This type of configuration thus asks for the correlation of values
to decide when the quality assessment can be performed. We distinguish two
distinct ways of correlating data depending on the correlation needs:
– Flagging contract: if the problem is correlating independent transactions

where each time we only need the latest value of all variables involved, it
may be enough to have flags that track which values have been updated
since the last assessment. At each setting of a new value by the application,
a function of the contract can be called implementing the actual quality
control; if all values are flagged, the control is executed and the flags are
reset, otherwise the control is deferred. The code fragment in Figure 4
provides an example of a flagging-based control.

– Correlation contract: if the contract is required to control multiple values
of a given variable in function of respective sets of other values produced

11

1 contract OracleDQContract {
2 OracleInterface oracle ; // declaration of oracle contract
3 uint var; // variable to be monitored
4
5 event DQAssessmentDone (int result); // event for assessment notification
6
7 function set(uint _var) public {
8 var = _var;
9 bytes4 sig = bytes4 (keccak256 (" callback (uint)")); // set callback

10 oracle . retrieveExtData (sig , this); // fetch external value
11 }
12
13 function callback (uint _extVar) public {
14 emit DQAssessmentDone (check (_extVar)); // assess and notify result
15 }
16
17 function check (uint _extVar) returns (int){
18 ... // TODO: implementation of quality control logic
19 }
20 ... // TODO: implementation of getter
21 }

Fig. 5. Solidity code fragment invoking oracle to fetch data for quality assessment. The
contract emits an event DQAssessmentDone upon completed assessment. The assessment
is executed asynchronously when the oracle invokes the callback function.

in independent but conceptually connected transactions (e.g., different
business processes executed in parallel), it is necessary that the application
itself provides additional metadata in the form of correlation identifiers for
each new value that is set. This allows the quality control smart contract
to properly correlate values as they arrive and to update independent
counters for each value to be assessed. As soon as a counter reaches its
target value, the respective value of interest can be assessed for quality
and the counter reset again.

(d) Smart contract + oracle: in all those cases where there is a need for data from
the outside of the blockchain, a simple smart contract is no longer enough.
The help from a so-called oracle is needed, enabling the quality control smart
contract to fetch data from the outside. In line with most of the literature,
we distinguish two different types of data access requirements:
– Off-chain data: these are data that are stored on one of the nodes of the

blockchain network, e.g., in a database hosted by the node. Presumably,
this node is thus aware of the application and is configured to push
off-chain data into the blockchain (using transactions directed toward
a smart contract of the application) either periodically or upon request
(e.g., in response to an event risen by the application smart contract).

– Web-accessible data: on the other hand, there may be the need for data
that are not hosted by any of the nodes of the blockchain network and
that are instead accessible via http calls over the Internet. In this case,
the quality control smart contract may make use of an oracle smart
contract to ask for external data, provide the oracle contract with a

12

callback function for the notification of the result, and wait for the oracle
to raise an event to external observers able to provide the requested piece
of information. This is the typical use of Provable (formerly Oraclize,
https://provable.xyz/), the use of which is exemplified in Figure 5.

For those quality controls that raise an event that is meant to be intercepted
by external actors for off-chain reactions, e.g., the re-calibration of a sensor, it
may further be important to understand if the event was generated from the
longest branch of the blockchain (the one that will survive) or from a fork. If
the event is launched from a block included in a fork that eventually will be
dismissed, that event may however already have been observed and processed by
the external actor. Depending on the specific application’s requirements, this may
pose issues. To be on the safe side, it would be advisable to wait for the specific
blockchain’s minimum number of block confirmations to know if the event stems
from the longest branch or not before taking action.

4 Application scenarios

4.1 Hazardous goods transportation
Accuracy

Precision

Temperature

Accuracy

Precision

Pressure

GPS coordinates
(longitude and
latitude)

Fig. 6. Information needs,
transactions and policies for
hazardous goods monitoring.

Let us consider the transportation of hazardous
goods, such as liquids with a flash point of
23◦C carried in special temperature- and pressure-
controlled, watertight tanks. For safety reasons,
it is typically further necessary to track live also
the position of the tanks throughout the whole
movement – the tanks are typically equipped with
a suitable GPS transponder – to be able to trig-
ger fast interventions by police or fire brigades in
case of emergency. In order to prevent the parties
involved in the transportation (there may be multi-
ple carries) to alter or delete monitored data, e.g.,
to hide liability in case of an accident, we assume
a blockchain is adopted to store monitored data
and to record the movement.

The use of blockchain technology alone does not however prevent incorrect data
to be stored in the first place. It may occur that one of the temperature sensors
of the tank becomes defective, which could cause the reporting of inconsistent or
inaccurate data. This in turn could lead to false alarms or, instead, to accidents
that remain undetected. In the former case, the shipment might be stopped and
emergency agencies deployed unnecessarily. In the latter case, emergency agencies
might not be called in time. Either case would result in financial loss or damage.

To avoid these issues, mechanisms to evaluate the quality of sensor data before
storing them permanently are required: the readings of both temperature and
pressure can be checked for accuracy and precision before raising alerts. Accuracy
can be checked against an interval of allowed values, e.g., temperature T ∈ [0, 20],

https://provable.xyz/

13

and precision against a maximum standard deviation computed over a range
of historical values, e.g., stdev(T) < ∆Tmax over 5 readings; same for pressure.
Let us assume, in this scenario, that violations of accuracy requirements are
considered as more severe than excessive variations of precision. GPS coordinates
are stored merely for documentation purpose and do not require any specific
quality control.

In terms of the patterns identified in this paper, the described scenario involves
four variables as summarized in Figure 6: temperature, pressure, longitude and
latitude. Only the former two need to be stored on-chain and checked for quality;
GPS coordinates can be kept off-chain. Accuracy is checked as soon as a value is
available (synchronously, as proposed by the single transaction pattern in Figure
2(a) for single variable / single value dependencies); precision is computed based
on a history of 5 values (pattern 2(b)). In terms of implementation, all checks
can be implemented using a single smart contract of type history with support
for multiple variables / multiple values for both temperature and pressure that
raises alerts for accuracy violations and logs excessive deviations in precision (in
line with the defined quality requirements).

4.2 Drug prescriptions

Prescription B
Drug
compatibilities

Patient’s PHRPrescr. A

Accuracy, consistency

Accuracy, consistency

Fig. 7. Information needs, trans-
actions and policies for drug pre-
scription monitoring.

Each doctor (from general to specialized practi-
tioners) prescribes, daily, dozens of medications
to dozens of patients, each with different ongoing
prescriptions and treatments. A typical error is
the prescription of a drug that is incompatible
with one already in use by a patient. This issue
is particularly relevant for elderly people, who
are more likely to need different medications to
treat several chronic conditions. In order to pre-
vent doctors from repudiating prescriptions, from
tampering with their prescription record (e.g., to
hide negligence) but also from false accusations
by patients about treatments received or medi-
cations prescribed, a blockchain can be used to record prescriptions. To partly
alleviate doctors from their burden we may want to implement a quality control
that checks (i) if a prescription is correctly associated with a patient registered
in a healthcare software system running off-chain and (ii) if the prescription is
compatible with ongoing treatments by the patient (by consulting a suitable Web
API provided by the Food and Drug Administration). This gives doctors a sense
of responsibility but also helps them prevent errors.

The described quality checks refer to a functional requirement of the applica-
tion that can be seen as a data quality control and supported by the approach
described in this paper. Given the use of both off-chain data (patient’s personal
health record) and web-accessible data (drug compatibility), the implementation
of the quality control requires a smart contract that makes use of an oracle to
fetch data from the outside for the evaluation of the consistency of a prescription,

14

which corresponds to pattern (c) in Figure 1 (multiple variables / single values).
The quality check verifies the presence of the patient’s social security number
(SSN) in the off-chain system (accuracy) and the absence of incompatibilities
among the drugs currently prescribed to the patient on-chain (consistency). Next
to a function to store prescriptions for patients (each prescription consists of
one SSN and one drug), the smart contract must further implement a function
that allows the application to delete prescriptions at their natural termination or
upon request to keep only ongoing prescriptions on-chain and save storage. The
configuration of the resulting quality control contract is summarized in Figure 7,
which can be easily implemented by extending the template in Figure 5.

5 Related Work

The introduction of second generation blockchains, i.e., with smart contract
capability, has triggered researchers to analyze smart contracts, providing best
practices for their software quality. For example, Atzei et al. [1] survey smart con-
tracts deployed in the Ethereum blockchain, classifying their code vulnerabilities.
Wohrer and Zdun [14] outline security patterns for smart contracts. Bartoletti
and Pompianu [3] identify common programming patterns in Ethereum smart
contracts and classify them based on the type of application. Zhang et al. [16]
propose software patterns to ensure interoperability of smart contracts in the
healthcare domain.

Concerning data quality, it is worth to notice that some contributions (e.g.,
[6]) claim that, since theoretically the information stored in the blockchain should
be the exact representation of the events occurred in the real world, the data
integrity and quality increases with the adoption of blockchain technology. In fact,
the adoption of blockchain offers an automated means for creating, processing,
storing and sharing information, therefore reducing human errors and improving
the accuracy, completeness and accessibility of data supporting operational and
decisional processes [8] [9]. For example, in [2], authors propose a medical record
management system using blockchain technology. The authors claim that a benefit
of the proposed system is the improved data quality and quantity for medical
research. The availability of a greater data volume can be also a mean to compare
data and correct errors, as described in [5]. This paper proposes, for the IoT
scenario, a blockchain-based platform to assess and improve data quality of sensor
data. However, none of the existing contributions provides a systematic approach
to address data quality issues in blockchain.

6 Conclusions

This paper analyzes the issue of data quality in blockchain applications. Starting
from a conceptual standpoint, in which we identify the information needs of
data quality metrics, we propose a set of implementation options, focused on the
Ethereum technology, to assist developers in crafting appropriate data quality
controls in blockchain applications. Two case studies show the applicability of

15

the proposed approach. The approach does not yet consider in depth the relation
between data quality controls and smart contract validation lifecycles. Given the
probabilistic nature of proof-of-work consensus, values required for controlling
data quality may be submitted in transactions ending up in dead end forks of the
blockchain; this could create data completeness issues. Reactions to events raised
by quality controls may be problematic if not properly analyzed before acting.

Since usage of the Ethereum network must be paid using gas, future work
will analyse the computational and, therefore, economical, overhead introduced
by data quality controls and how it can be minimised in the context of different
implementation options. We will also consider the applicability of the proposed
implementation options in other blockchain technologies besides Ethereum, such
as Hyperledger Fabric and Sawtooth.

References

1. N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum smart
contracts (sok). In POST 2017, pages 164–186. Springer, 2017.

2. A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: Using blockchain for
medical data access and permission management. In OBD 2016, pages 25–30, 2016.

3. M. Bartoletti and L. Pompianu. An empirical analysis of smart contracts: Platforms,
applications, and design patterns. In FC 2017, pages 494–509, 2017.

4. C. Batini and M. Scannapieco. Data and Information Quality - Dimensions,
Principles and Techniques. Data-Centric Systems and Applications. Springer, 2016.

5. R. Casado-Vara, F. de la Prieta, J. Prieto, and J. M. Corchado. Blockchain
framework for iot data quality via edge computing. In BlockSys@SenSys 2018,
pages 19–24. ACM, 2018.

6. S. Chen, R. Shi, Z. Ren, J. Yan, Y. Shi, and J. Zhang. A blockchain-based supply
chain quality management framework. In ICEBE 2017, pages 172–176, 2017.

7. F. Daniel and L. Guida. A service-oriented perspective on blockchain smart
contracts. IEEE Internet Computing, 23(1):46–53, 2019.

8. C. Esposito, A. De Santis, G. Tortora, H. Chang, and K. R. Choo. Blockchain:
A panacea for healthcare cloud-based data security and privacy? IEEE Cloud
Computing, 5(1):31–37, Jan 2018.

9. S. Kar, V. Kasimsetty, S. Barlow, and S. Rao. Risk analysis of blockchain application
for aerospace records management. In AeroTech Americas. SAE International, 2019.

10. D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun. A review on
consensus algorithm of blockchain. In SMC 2017, pages 2567–2572. IEEE, 2017.

11. T. C. Redman. Data quality for the information age. Artech House, 1996.
12. N. Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
13. N. Szabo. Smart contracts: building blocks for digital markets. EXTROPY: The

Journal of Transhumanist Thought,(16), 1996.
14. M. Wohrer and U. Zdun. Smart contracts: security patterns in the ethereum

ecosystem and solidity. In IWBOSE@SANER 2018, pages 2–8. IEEE, 2018.
15. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper, 151:1–32, 2014.
16. P. Zhang, J. White, D. C. Schmidt, and G. Lenz. Applying software patterns to

address interoperability in blockchain-based healthcare apps. CoRR, abs/1706.03700,
2017.

	Data quality control in blockchain applications

