
In
fo

rm
at

io
n

Q
ua

lit
y

30 Published by the IEEE Computer Society 1089-7801/10/$26.00 © 2010 IEEE IEEE INTERNET COMPUTING

M ashups are applications devel-
oped by integrating content and
functionality sourced from the

Web. Although in most cases, enthusi-
astic programmers hand write them, the
recent emergence of so-called mashup
tools or mashup platforms, such as
Yahoo Pipes (http://pipes.yahoo.com),
Dapper (www.dapper.net/open/), or
Intel Mash Maker (http://mashmaker.
intel.com), has significantly lowered
the barriers to mashup development,
letting unskilled Web users easily
assemble their own applications.

Mashups typically integrate hetero-
geneous elements available on the Web,
such as RSS/Atom feeds, Web services,
content scraped from third-party web-
sites, or widgets (such as Google Maps).

Different kinds of mashups reuse user
interface (UI) components to build the
composite application’s UI, leverage
and require external computational
services, or simply integrate multiple
plain data sources. Emerging technolo-
gies such as Web services, UI widget
libraries, and tool-specific mashup
(meta) models have significantly sim-
plified access to and reuse of such
building blocks, leading to a compo-
nent-oriented paradigm that many cur-
rent mashup platforms share.

This paradigm especially facilitates
the development of so-called situa-
tional applications1 — that is, applica-
tions where the developer is also the
final user and that serve a highly
focused purpose (for example, let you

Modern Web 2.0 applications are characterized by high user involvement:

users receive support for creating content and annotations as well as

“composing” applications using content and functions from third parties. This

last phenomenon is known as Web mashups and is gaining popularity even with

users who have few programming skills, raising a set of peculiar information

quality issues. Assessing a mashup’s quality, especially the information it

provides, requires understanding how the mashup has been developed, how its

components look alike, and how quality propagates from basic components to

the final mashup application.

Cinzia Cappiello
Politecnico di Milano, Italy

Florian Daniel
University of Trento, Italy

Maristella Matera
Politecnico di Milano, Italy

Cesare Pautasso
University of Lugano, Switzerland

Information Quality
in Mashups

JULY/AUGUST 2010 31

Information Quality in Mashups

visualize apartment offers on a map) and are
intended for use within a limited time hori-
zon (until you find a suitable apartment). Situ-
ational applications typically aim to answer a
precise query over a limited but heterogeneous
data space. Their quality, therefore, depends
strongly on the information that different inte-
grated components can provide. Quality aspects
such as maintainability, reliability, or scalabil-
ity play a minor role because the final mashup is
needed only for a short time. Information qual-
ity, however, is crucial for both components and
composition. Assessing a mashup’s quality thus
requires understanding both component quality
and the effect that the composition has on the
final mashup’s overall quality.

In this article, we introduce a quality model
for mashup components and then analyze how
typical composition operations affect quality
(with special attention to the mashup compos-
ers’ perspective). We also define a quality model
for mashups (as seen from the user’s perspec-
tive), with a special eye on information quality.

Quality and Mashup Development
Integrating components into a mashup typi-
cally results in a Web application. Several
works have proposed quality models for Web
applications,2,3 but few proposals are specific to
modern Web 2.0 applications.4 Content quality
— that is, information quality — is commonly
recognized as a major factor. However, specific
studies on mashup quality and on information
quality’s role in mashups don’t yet exist.

We identify three stages in the mashup pro-
cess in which information quality comes into
play. Each stage has its own actor.

The component developer creates compo-
nents for mashups. We assume that developers
correctly implement the component function-
ality, taking into account well-known prin-
ciples, best practices, and methodologies for
guaranteeing the code’s internal quality. From
an external perspective, building a component
implies making decisions about, for exam-
ple, the architectural style (SOAP vs. RESTful
services vs. widget APIs), the programming
language (client-side such as JavaScript vs.
server-side such as Ruby), the data represen-
tation (XML vs. JavaScript Object Notation),
and component operability and interoperabil-
ity (such as the multiplicity of APIs targeting
different technologies). Such external aspects

affect a component’s appeal from the mashup
composer’s perspective.

The mashup composer integrates compo-
nents to create a new mashup. He or she dis-
covers components directly from the Web or
from component repositories accessed from the
mashup tool. Component selection takes into
account each component’s fitness for its pur-
pose within the mashup and the complexity
of its technological properties (for example, a
simple programming API, languages, and data
formats that enhance operability and interoper-
ability), as well as the provided data’s richness
and completeness. The mashup composer then
implements the integration logic necessary for
orchestrating the components. This requires a
good understanding of the components to make
the most of their value and implement a high-
quality mashup.

Finally, the mashup user isn’t interested
in how the mashup was built. He or she sim-
ply wants the mashup application to perform as
expected, without missing data, badly aligned
data, or similar information quality problems.
In other words, the user is interested in the per-
ceived external quality.

Component Quality
Publishing mashup components through APIs
or services hides their internal details and gives
more importance to their external properties.
In line with this black-box view, in prior work,5
we proposed a quality model for mashup com-
ponents that privileges properties of the compo-
nent APIs; this is indeed the perspective that’s
most relevant to the mashup composer or user.
The model is based on both our own experience
with developing components and mashups and
experimental evidence gathered by analyzing
data from programmableweb.com.5,6 We orga-
nize the model along three main dimensions
recalling the traditional organization of Web
applications into data, application logic, and
presentation layers:

• Data quality focuses on the suitability of the
data the component has provided in terms
of accuracy, completeness, timeliness, and
availability.

• API quality refers to software characteristics
that we can evaluate directly on the compo-
nent API. We split API quality into function-
ality, reliability, and API usability.

Information Quality

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

• Presentation quality addresses the user
experience, with attributes such as presen-
tation usability, accessibility, and reputation.

Table 1 summarizes each quality attribute,
also highlighting the finer-grained characteris-
tics that refine the attribute definition.

Composition Quality
Assessing each mashup component’s quality
isn’t enough: the final mashup application’s
quality also depends on how these components
are interconnected. For service-based appli-

cations, the literature already provides some
approaches in which quality is the main driver
for service selection and composition.7,8 Michael
C. Jaeger and his colleagues assess the final
applications’ overall quality by aggregating the
composing services’ quality.7 However, none of
these approaches focuses on information qual-
ity and mashups. Mashup quality isn’t simply
an aggregation of individual component qual-
ity. Instead, it depends on how particular com-
ponents combine into a composite logic, layout,
and hence user experience.

Mashup components can be UI widgets, data

Table 1. Dimensions, attributes, and subcharacteristics in the mashup component quality model.5

Quality dimensions Quality attributes Subcharacteristics

Data quality Accuracy Refers to data correctness and to the consistency between the data a component
provides and the real-world context those data represent. Measured as the
proximity of component data to correct data.

Completeness A component’s ability to produce all expected data values. Assessed by estimating
the ratio between the amount of data a component produces and the expected
amount.

Timeliness The component output’s “freshness”: how up-to-date the produced data is for
users. Assessed via validity, expressed as the ratio between currency (the data’s
“age” from the time of component creation or last update) and volatility (the
average period of data validity in a specific context).

Availability Refers to possible access limitations, such as those component licenses define.
Depending on the usage context, we can consider such limitations as restrictions
decreasing component quality or as necessary actions to prevent abuses that can
decrease component availability.

API quality Functionality Aggregation of API interoperability (the set of covered protocols, languages, and
data formats), compliance (with respect to standard formats and technologies), and
security (the provision of authentication mechanisms).

Reliability Corresponds to component maturity (in the API black-box approach). Assessed in
terms of a component’s frequency of usage and updates.

API usability The component API’s ease of use. Measured in terms of learnability and
understandability (for example, the availability of documentation, examples, blogs,
or forums) and operability (the complexity of protocols, languages, data formats,
and security mechanisms).

Presentation quality Presentation
usability

The usability of the presentation mechanisms adopted for interacting with UI
components. Given mashups’ situational nature, learnability, understandability of
presentation, and compliance with presentation standards should be maximized to
improve efficiency.

Accessibility The component presentation’s ability to be “read” by any class of users and Web
clients. Increases if a component offers a multiplicity of APIs supporting different
presentation modalities for different devices, and also through textual annotations
of multimedia content enabling alternative browsing technologies (such as screen
readers assisting impaired users).

Reputation The component’s perceived trustworthiness. Particularly affected by the
component provider brand, the availability of documentation (especially if available
in different formats and through different channels), and the component UI’s
compliance with common presentation standards.

JULY/AUGUST 2010 33

Information Quality in Mashups

sources, and computational services. Some are
visible in the mashup, whereas others are hid-
den. Hidden components (data sources such as
RSS feeds) require another component to ren-
der the data. For example, we can use an RSS
reader to display the RSS feed items so that the
user can inspect them and navigate through
them. Visible components might play differ-
ent roles that affect the user’s perception of the
final integration’s quality and which we must
therefore carefully take into account. By ana-
lyzing the most popular mashups published on
programmableweb.com, we’ve identified the
following typical roles:

• Master. Even if a mashup integrates mul-
tiple components in a single page, in most
cases, one component is more important
than the others. This master component is
the one users interact with most. It’s usually
the starting point for user interaction that
causes the other components to react and
synchronize accordingly.

• Slave. A slave component’s behavior
depends on another component: its state is
mainly modified by events originating in
another (master) component. Many mash-
ups also let users interact with slave com-
ponents. However, the content items that the
slave components display are selected via
the user’s interaction with the master com-

ponent and by automatically propagating
synchronization information from the mas-
ter to the slaves.

• Filter. Filter components let users specify
conditions over the content the other com-
ponents show. They provide (possibly hier-
archical) access mechanisms that let users
incrementally select which content they
want to see. Filters also reduce the size
of the data sets other components show,
improving the mashup’s understandability
and ease of use. In most cases, users specify
filter conditions over the master compo-
nents’ data set while synchronizing slaves,
so the integration logic automatically filters
the slaves’ content.

In short, a filter lets users select groups or
sets of data items while the master component
lets users select individual items that slaves
will complement with additional data. Although
master and slave components are usually
sourced from the Web, the mashup composer
develops the filter components.

Based on these three roles, our analysis of
programmableweb.com mashups further lets us
identify three basic patterns that characterize
most mashup applications (see Figure 1) and
highlights some mutual dependencies among
the identified roles that impact mashup quality.
(The figure shows the minimum set of compo-

Master Master

(a) (b) (c)

http://dailymashup.com/ http://www.housingmaps.com/ http://immo.search.ch/

Slave Slave Slave

Filter Filter

Master

Filter Filter

Figure 1. Basic mashup development patterns. We can see (a) the slave-slave pattern, (b) the master-slave pattern,
and (c) the master-master pattern. Solid lines represent components; dashed lines represent the application
integration logic.

Information Quality

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

nents necessary for illustrating the patterns; a
concrete mashup could include multiple compo-
nents for the same role.).

Figure 1a shows the slave-slave pattern, in
which the mashup integrates several slave com-
ponents the user can interact with in an iso-
lated fashion, without any propagation of data
or events from one component to another. At
startup or during runtime, users define filter
conditions that steer all the slave components.
The effect is that of a rather static application
with very simple interaction facilities that lets
users “query” the slave components’ data set. An
example is dailymashup.com, which integrates
data from Flickr, Del.icio.us, furl, and Yahoo
News. Regarding the resulting mashup’s infor-
mation quality, we assume that the filter doesn’t
degrade the components’ perceived quality —
for example, by issuing queries that theslave
components can’t satisfy and that would reveal
data incompleteness problems. This assumption
is reasonable because the mashup developer
specifies the filter conditions and is aware of
the selected components’ coverage.

Figure 1b illustrates the master-slave
approach, the most widely used pattern among
today’s mashup applications. It features all
three component roles. A filter component lets
users restrict the data all the other components
simultaneously show. Users employ the master
component to perform the main interactions
with the application, such as selecting interest-
ing data items. The slave component is automat-
ically synchronized according to the selections
performed on the master component, thereby
visualizing the selected elements’ details. The
housingmaps.com application is a good exam-
ple of a master-slave mashup: a header bar acts
as the filter, letting users specify some condi-
tions for an apartment search (such as city and
price); the Craigslist table acts as master, show-
ing the list of retrieved apartments with a link
to a page with major details; and the Google
map acts as the slave, showing selected apart-
ments’ locations. With the master-slave pat-
tern, the final application’s information quality
could depend on the application’s composition
logic. Provided that master and slave are com-
patible in terms of data to be visualized, their
integration might degrade the slave’s quality. If
the master provides access only to a subset of
the slave data, it might prevent the user from
accessing the full data the slave provides. If,

instead, the master contains a superset of the
slave data, it lets users ask for data items that
the slave can’t provide, thus revealing the
slave’s incompleteness.

Figure 1c shows the master-master pattern.
This is the most complete pattern, in which —
in addition to suitable filter components — all
integrated components are masters. All com-
ponents provide interaction facilities that let
users perform selections or that provide inputs
that propagate to all the other components that
synchronize accordingly. The master compo-
nents therefore also act as slaves. An example
is the immo.search.ch application, in which —
in addition to locating a housing offer on a map
— moving the map lets users filter the hous-
ing offers. From an information quality per-
spective, the master-master pattern is similar
to the master-slave pattern. If the components
have different underlying data sets, situations
could occur in which one component satis-
fies the user request, while another component
can’t, lowering the mashup’s overall perceived
quality. The master-master pattern is, however,
more problematic than the master-slave pat-
tern because it supports all directions of com-
munication and thus increases the likelihood
of revealing incompleteness problems in any of
the components.

The three mashup patterns raise integration
issues at the data, process, and presentation lev-
els.9 Integration at the process level requires
setting up the necessary synchronization/
orchestration logic among components using
the operations and events they expose. Integra-
tion at the presentation level requires designing
a composite layout, in which components are
visually effective and the different presentation
styles are aligned. In this article, we assume
that the mashup composition performs integra-
tion at the process and presentation levels cor-
rectly. To characterize information quality in
the context of mashups, we instead focus our
attention on the data level.

Mashup Information Quality
Integration at the data level concerns data
mediation10 and integration.9 The main chal-
lenge is integrating data extracted from
heterogeneous sources whose exact character-
istics aren’t known a priori. Data integration
in mashups corresponds to a global-as-view
(GAV) problem,11 in which the global schema

JULY/AUGUST 2010 35

Information Quality in Mashups

is expressed in terms of views over the inte-
grated data sources. During mashup develop-
ment, the designer can inspect the attributes
the components expose (the local schemas), as
specified in the component APIs, and infer join
attributes on which to base data integration.
The underlying data instances’ unpredict-
ability, however, raises new issues, which the
mashup designer can’t exhaustively manage
via traditional rules for integrating structured
and unstructured data.12,13

We can characterize data integration for
mashups as follows:

• Mashup applications are developed to let
users retrieve and access a set of data that
we call the ideal data set (IDS).

• Each component k has its own data set DSk.
To fulfill the mashup requirements, a smaller
portion SDSk ⊆ DSk could be sufficient. SDSk
is the corresponding components’ situational
data set.

• The integration of all situational data sets
SDSk gives the real data set RDS ⊆ IDS that
the mashup provides. RDS’s information
quality thus depends on the quality of the
data individual components provide.

• We can determine the mashup’s information
quality by comparing its RDS with the cor-
responding IDS.

Evaluating information quality in mash-
ups requires looking at both components and
composition patterns. Analogously to the data
quality attributes we already defined for com-
ponents, we characterize mashups’ information
quality by means of accuracy, completeness,
timeliness, and availability. Additionally, given
that integrating different data sets might lead
to inconsistencies, we propose consistency as a
new quality attribute.

We next examine each of these dimensions
for the master-slave and master-master pat-
terns; we omit the slave-slave pattern because
its simple integration logic lets us express
mashup quality only as an aggregation (mini-
mum, average, maximum, or similar) of its
component qualities. We further omit the filter
component because we can consider the filter
an auxiliary element in the composition logic
whose content stems from the master compo-
nent it filters. Taking into account all master
components thus includes the respective filter

components in the quality assessment. Finally,
because we assume components are sourced
from the Web, we also assume they’re indepen-
dent of each other. Figure 2 illustrates the situa-
tion for the master-slave pattern.

Accuracy
We can express a component’s accuracy as the
probability that its data are correct:

p(corrk) = 1 – p(ek),

where p(ek) is the probability that an error
occurs. Data incorrectness arises each time a
data value the component has produced is dif-
ferent from its real-world counterpart. This can
happen for different reasons, such as typos,
wrong representation, or missing updates.
p(ek) considers all types of errors and can, for
instance, be defined on the basis of a compo-
nent’s usage history.

In the master-slave pattern, an error might
occur in both the master and slave component.
Given the dependency between the master and
slave, the probability of error in the slave is
conditioned by the selection performed in the
master. So,

Accms = 1 – (p(em) + p(es | corrm)).

We can consider master-master compositions
to be the combination of two master-slave pat-
terns: a selection in one master causes the other
master to act as a slave and vice versa. So,

Accmm = 1 – [a(p(em1) + p(em2| corrm1)) + (1 – a)
(p(em2) + p(em1 | corrm2))],

Ideal data set (IDS)

Slave data
set (DSs)

Master data set
(DSm)

Missing data

Unnecessary data

Situational master
data set (SDSm)Situational slave

data set (SDSs)

?

Join among data sets

Real data set
(RDS)

Figure 2. Data sets involved in master‐slave patterns. Slave‐slave
patterns don’t involve real data integration, whereas the master-
master pattern can be seen as the composition of two independent
master‐slave patterns.

Information Quality

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

where a is the probability for one of the two
master, m1, to act as master in the user selection.

Completeness
Situational completeness SC evaluates how well
components’ data sets are able to provide the
desired information. We can define SC as the
degree with which the RDS covers the IDS:

SC
RDS
IDS

= .

In the master-slave pattern, RDS cardinality
is the sum of the cardinalities of the situational
master data set and the joined situational mas-
ter and slave data sets. Therefore,

SC
SDS SDS semijoinSDS

IDSms
m s m=

+
.

Because we can model the master-master
pattern as the combination of two master-slave
patterns, RDS cardinality results from the sum
of the cardinalities of the two situational mas-
ter data sets (we assume that the master data
sets don’t overlap, which is reasonable in that
two components typically serve two different
needs). Therefore,

SC
SDS SDS

IDSmm
m m

=
+

1 2 .

Situational completeness doesn’t cover a case
in which both the master-slave and master-mas-
ter patterns have data in the slave component
that aren’t accessible due to missing linkages to
some master data items. Consequently, we define
compositional completeness CC as the degree
with which the mashup integration effectively
covers the situational data sets.

In the master-slave pattern, compositional
completeness is the ratio of the cardinality of
the join among the situational data sets of mas-
ter and slave to the cardinality of the master’s
situational data set:

CC
SDS joinSDS

SDSms
m s

m
= .

In the master-master pattern, we again use
a linear combination of the two corresponding
master-slave patterns, with a being the prob-
ability that the first component acts as master:

CC
SDS joinSDS

SDS

SDS join

mm
m m

m

m

=

+ −()

a

a

1 2

1

21
SSDS

SDS

m

m

1

2

.

Accuracy and completeness are the quality
dimensions that depend more on the choice of
mashup pattern. As we will show in the next
sections, the measures defined for the other
dimensions are barely influenced by the type
of composition.

Timeliness
Timeliness provides information about the avail-
able data sets’ freshness. We can compute a
mashup’s timeliness as an aggregation of the
individual situational data sets’ timeliness values:

Time = fagg (time1, … timek), where fagg can be
minimum, average, or maximum.

The timeliness evaluation is independent
of the mashup patterns; the chosen aggrega-
tion function might depend on the role time
plays in the application domain. For instance,
considering a mashup that shows news from
different newspapers, the maximum might
be appropriate because it reflects the latest
update. For a mashup that provides stock val-
ues for online trading, the minimum might
be suitable to describe the freshness of the
overall data published. If time isn’t a major
concern — for instance, if the mashup shows
pictures on a map — the average could be a
good choice.

Availability
Availability is the likelihood that the mashup
can provide any data — that is, for a mashup to
be available, it suffices that one of its compo-
nents is available. So, we can express a mash-
up’s availability as Avail = 1 – Πk (1 – Availk),
where Availk is the availability of the compo-
nent k’s situational data set.

Also, availability is independent of mashup
patterns. However, especially in the master-
slave pattern, the master’s unavailability might
affect the mashup’s overall functionality (for
instance, the user might not be able to access
data in the slave), whereas the other two pat-
terns don’t present this dependency.

JULY/AUGUST 2010 37

Information Quality in Mashups

Consistency
Our component model assumes that each com-
ponent provides consistent data — that is, com-
ponents aren’t contradicting themselves. If
mashed up, however, situational data sets might
conflict with each other, leading to inconsis-
tency in the data shown in the mashup. For
instance, when plotting university locations
on a map, the map component might not be
able to parse a university’s address correctly
and might place it on the map incorrectly (for
instance, MIT might be mapped to Cambridge
in the UK). Traditionally, mashup composers
assess and enforce consistency through busi-
ness rules expressing domain knowledge. In
mashups, the composer doesn’t have sufficient
knowledge about the data the components pro-
vide and is, therefore, unable to write such rules
in advance; thus inconsistencies only emerge
during mashup execution.

When composers develop mashups as a com-
parison tool of multiple data sources from dif-
ferent providers (for instance, news feeds, as
in slashdigg.com or doggdot.us), inconsistency
might not be problematic because it’s up to
users to compare via the mashup the results of
querying different data sources and infer which
one they should trust as the one providing the
most correct and timely data.

I nformation quality is highly relevant in
mashup development: a mashup’s quality is

sensitive to both its components’ quality and the
way components are integrated. Whereas com-
ponents with low information quality can’t lead
to a high-quality mashup, the composition logic
could introduce additional quality issues (such
as inconsistencies). Developing high-quality
mashups turns out to be nontrivial, and mashup
composers should be assisted in their task.

In the future, we plan to look into collab-
orative (wiki-style) mashups and user-driven
inconsistency resolution techniques, where
users might be able to influence the quality of
the information the mashup presents by pro-
viding feedback (ranking, weighing, or cor-
recting information items, for example). This
will require extending mashup architectures to
store and manage user feedback — a significant
departure from mainstream mashup architec-
tures, which has interesting and unexplored
implications on mashup quality.

References
1. A. Jhingran, “Enterprise Information Mashups: Inte-

grating Information, Simply,” Proc. Very Large Data-

bases Conf. (VLDB 06), ACM Press, 2006, pp. 3–4.

2. C. Calero, J. Ruiz, and M. Piattini, “A Web Metrics Sur-

vey Using WQM,” Proc. Int’l Conf. Web Eng. (ICWE 04),

Springer, 2004, pp. 147–160.

3. L. Olsina, G. Covella, and G. Rossi, “Web Quality,” Web

Engineering: Theory and Practice of Metrics and Mea-

surement for Web Development, E. Mendes and N. Mos-

ley, eds., Spinger-Verlag, 2005, pp. 109–142.

4. L. Olsina, R. Sassano, and L. Mich, “Specifying Quality

Requirements for the Web 2.0 Applications,” Proc. 7th

Int’l Workshop on Web-Oriented Software Technologies,

(IWWOST 08), Vydavatestvo STU, 2008, pp. 56–62.

5. C. Cappiello, F. Daniel, and M. Matera, “A Quality

Model for Mashup Components,” Proc. Int’l Conf. Web

Eng. (ICWE 09), Springer, 2009, pp. 236–250.

6. S. Yu and C.J. Woodard, “Innovation in the Program-

mable Web: Characterizing the Mashup Ecosystem,”

Proc. Int’l Conf. Service Oriented Computing (ICSOC

08), Springer, 2008, pp. 136–147.

7. M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl, “QoS

Aggregation in Web Service Compositions,” Proc. IEEE

Int’l Conf. e-Technology, e-Commerce, and e-Service

(EEE 05), IEEE CS Press, 2005, pp. 181–185.

8. Q. Liang, X. Wu, and H.C. Lau, “Optimizing Service

Systems Based on Application-Level QoS,” IEEE Trans.

Services Computing, vol. 2, no. 2, 2009, pp. 108–121.

9. G. Di Lorenzo et al., “Data Integration in Mashups,”

SIGMOD Record, vol. 38, no. 1, 2009, pp. 59–66.

10. G. Wiederhold, “Mediators in the Architecture of Future

Information Systems,” Computer, Mar. 1992, pp. 38–49.

11. M. Lenzerini, “Data Integration: A Theoretical Per-

spective,” Proc. ACM SIGMOD-SIGACT-SIGART Symp.

Principles of Database Systems (PODS 02), ACM Press,

2002, pp. 233–246.

12. A. Motro and P. Anokhin, “Fusionplex: Resolution of

Data Inconsistencies in the Data Integration of Het-

erogeneous Information Sources,” Information Fusion,

vol. 7, no. 2, 2006, pp. 176–196.

13. F. Naumann, J. Christoph Freytag, and U. Leser, “Com-

pleteness of Integrated Information Sources,” Informa-

tion Systems, vol. 29, no. 7, 2004, pp. 583–615.

Cinzia Cappiello is an assistant professor at the Politec-

nico di Milano. Her research interests regard data and

information quality aspects in service-based and Web

applications, Web services, and sensor data manage-

ment. Cappiello has a PhD in information technol-

ogy from Politecnico di Milano. She cochairs several

workshops and regularly serves as reviewer for inter-

national conferences and journals in the data and

Information Quality

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

information quality area. Contact her at cappiell@elet.

polimi.it; http://ho me.dei.polimi.it/cappiell.

Florian Daniel is a postdoctoral researcher at the Univer-

sity of Trento, Italy. His main research interests are

mashups and user interface composition approaches

for the Web, Web engineering, quality, and privacy in

business intelligence applications. Daniel has a PhD in

information technology from Politecnico di Milano,

Italy. He’s coauthor of the book Engineering Web Appli-

cations (Springer, 2009) and co-organizer of the Inter-

national Workshop on Lightweight Integration on the

Web (ComposableWeb). Contact him at daniel@disi.

unitn.it; www.floriandaniel.it.

Maristella Matera is assistant professor at Politecnico

di Milano. Her current research interests span Web

mashups, Web engineering models and design meth-

ods, quality in Web engineering, Web adaptivity, and

context-awareness. Matera has a PhD in information

technology from Politecnico di Milano. She’s author

of roughly 100 papers and is coauthor of the books

Designing Data-Intensive Web Applications (Morgan

Kaufmann, 2002) and Engineering Web Applications

(Springer, 2009). Contact her at matera@elet.polimi.it;

http://home.dei.polimi.it/matera/.

Cesare Pautasso is an assistant professor in the Faculty of

Informatics at the University of Lugano, Switzerland.

His research in the area of software architecture cur-

rently focuses on building experimental systems for

Web 2.0 mashups and RESTful service composition by

means of business process modeling languages. Pau-

tasso has a PhD in computer science from ETH Zurich.

He’s the lead architect of JOpera, a powerful rapid ser-

vice composition tool for Eclipse. He’s a member of the

IEEE Computer Society, the ACM, and the Swiss Asso-

ciation for Research in Information Technology. Con-

tact him at c.pautasso@ieee.org; www.pautasso.info

and follow him on twitter.com/pautasso.

