
A Quality Model for Mashup Components

Cinzia Cappiello1, Florian Daniel2, and Maristella Matera1

1 DEI - Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy
[cappiell, matera]@elet.polimi.it

2 University of Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it

Abstract. Through web mashups, web designers with even little pro-
gramming skills have the opportunity to develop advanced applications
by leveraging components accessible over the Web and offered by a multi-
tude of service providers. So far, however, component selection has been
merely based on functional requirements only, without considering the
quality of the components and that of the final mashup. The quality in
this context results from different factors, such as the software API, the
contents, and the user interface.
In the literature, quality criteria for the different aspects have been pro-
posed and analyzed, but the adaptability and dynamicity that charac-
terize the mashup ecosystem require a separate and focused analysis.
In this paper, we analyze the quality properties of mashup components
(APIs), the building blocks of any mashup application, and define a qual-
ity model, which we claim represents a valuable instrument in the hands
of both component developers and mashup composers.

1 Introduction

Modern Web 2.0 applications are characterized by a high user involvement: users
are supported in the creation of contents and annotations, but also in the “com-
position” of applications starting from contents and functions that are provided
by third parties. This last phenomenon is known as Web mashups, and is gaining
popularity even under users with only little programming skills.

Mashups integrate heterogeneous components available on the Web, such as
RSS/Atom feeds, Web services, content wrapped from third party web sites, or
programmable APIs (e.g., Google Maps). Components may have a proper user
interface that can be reused to build the interface of the composite application,
they may provide computing support, or they may just act as plain data sources.
Several mashup tools currently support the easy mashup of components, by of-
fering visual environments where users can select pre-defined components and
combine them by specifying models that abstract from technology and imple-
mentation details.

The success of a mashup is certainly influenced by the added value that the
final combination of components is able to provide. However, it is self-evident

that the quality of the final combination is strongly influenced by the quality of
each single component, especially if we consider the current nature of mashups:
single pages where, apart from the choreography logics, the overall functionality
and application behavior directly derive from the single components.

If we look at components as standalone modules, then we can say that their
quality is determined by the attributes that traditionally characterize software
quality. A selection and/or specialization of such attributes is however needed to
capture the peculiarities deriving from the components’ intended use, i.e., their
combination within mashups. This factor leads us to consider components as
black boxes exposing their programmatic interfaces (APIs) to the audience of
mashup developers.

We strongly believe that, as for any other software product, the component-
internal quality is a relevant issue, and as such it must be taken into account
during component development. Nevertheless, we argue that, as also confirmed
by an experimental analysis conducted on the huge set of APIs published in
the programmableweb.com repository (http://www.programmableweb.com), for
the purpose of mashup composition some external features strongly affect the
component success and diffusion.

In the light of the previous observations, in this paper we discuss the quality
of mashups based on a component-driven approach. We recognize the validity of
consolidated models and metrics for the component-internal quality. Our novel
contribution is a further quality perspective, which is especially oriented toward
the production of successful components. More specifically, we look at mashup
components and their APIs in an isolated fashion and identify those individual
features (e.g., the documentation, the ease of use of the API, the content provided
through the API, and so on) that are likely to contribute to the success of
a component. The challenge lies in the identification of those dimensions that
really affect the adoption of an API.

The paper is organized as follows. In the next section, we provide the nec-
essary context of the paper, i.e., we describe the typical mashup scenario. In
Section 3 we introduce the ISO standard for software quality, one of the starting
points of our work, and we also discuss some related works. In Section 4 we look
at the mashup scenario from a quality perspective and provide our own quality
model for mashup components. In Section 5 we report on our first experiments,
and in Section 5 we conclude the paper with a final discussion and an outlook
over our future work.

2 The mashup development scenario

In order to clarify the roles and artifacts we will be referring to in this paper, in
Figure 1 we illustrate the typical mashup scenario that spans from the produc-
tion of single mashup components to the integration of components into a final
mashup application. We explicitly highlight the involved actors and some of the
development challenges.

develops

Mashup
component

Mashup tool or
manual compositionThe Web

Mashup
application

Component developer Mashup composer

publishes discovers
and selects

mashes up uses

Mashup user

Description

Data sources

Technologies ...
Layouts

Styles

Architectures

Protocols
Languages

Formats

chooses writes

Fig. 1. The scenario for mashup API development

The Component Developer who wants to create a new component has to cope
with two complementary concerns, i.e., functional and non functional require-
ments. In this paper we concentrate on the non functional aspects and trust that
the developer correctly implements all necessary functionalities.

¿From a non functional perspective, building a component implies taking de-
cisions regarding the architectural style (e.g., SOAP service vs. RESTful service
vs. UI component), the programming language (e.g., client side vs. server side
technologies), the data formatting logic (e.g., XML vs. JSON), and so on. In ad-
dition to the functional features, all these aspects affect the “appeal” of the com-
ponent from the point of view of the mashup composer that wants to include the
component into a mashup application. The component developer should there-
fore aim at maximizing, among others, the components’s interoperability, ease
of use, attractiveness, and so on. Hence, based on the above considerations, the
developer builds the component, provides a description or a documentation for
its use (at least, ideally), and then publishes the components and its description
on the Web (if any).

The mashup composer integrates the component into a mashup application.
He typically browses the Web in search for components that suit his mashup
idea, both in terms of functionality and quality provided. That is, the composer
discovers components and selects the “good” ones. In doing this, he may take
into account not only his own needs (e.g., a simple programming API and simple
data formats for easy integration), but typically he also tries to guess the needs
and the expectation of the final mashup user. Of course, a composer only selects
components that will also be appealing to the users of the final mashup.

Developing good mashup components is therefore a challenging task, that
requires the component developer to take into account the expectations of both
the potential mashup composers and the potential mashup users. We say “po-
tential”, as it is typically not easy to fully predict who the real consumers of a
component will be, once it is published on the Web. The challenge we focus on
in this paper is therefore to understand how to assess the quality of a mashup
component and, therefore, how to develop high-quality components.

In the rest of the paper, we assume that a mashup component is the logical
entity that a component developer provides to the mashup composer. Physi-
cally, the component is accessed via proper APIs, i.e., programming interfaces
that are characterized for instance by a programming language, a data format,
and a communication protocol. A single component might come with multiple
APIs. For instance, a component might be used via both a RESTful API or a
SOAP/WSDL API.

3 Rationale and background

A quality model consists of a selection of quality characteristics that are relevant
for a given class of software applications and/or for a given assessment process.
Quality models are drivers of quality assessment: assessment methods relying on
well-defined quality models have the merit of establishing systematic frameworks
in which the different quality dimensions are identified, precisely decomposed
into quantifiable attributes, and then properly measured [1].

A relevant contribution to the definition of quality models comes from a fam-
ily of ISO/IEC standards that focus on the quality of software systems and on
its assessment. The standard ISO 8402-86 [2] defines quality as the “totality of
features and characteristics of a software product that relate to its ability to
satisfy stated or implied needs”. As reported in Table 1, more concretely the
standard ISO/IEC 9126-1 [3] defines quality as the combination of six charac-
teristics that represent the attributes of a software product by which its quality
can be described and evaluated. For each characteristic, the standard also speci-
fies a set of finer-grained sub-characteristics with a granularity that fits well the
principal need underlying the standard definition, i.e., quantifying the quality of
software by means of metrics.

The standard ISO/IEC 9126-1 also distinguishes among different perspec-
tives:

– Internal Quality is based on a white box model that considers the intrinsic
properties of the software functionality, independently of the usage environ-
ment and the user interaction, and is measured directly on the source code
and its control flow.

– External Quality is based on a black box model and is related to the behavior
of the software product in a given running environment.

– Quality in use refers to the capability of a system to enable specified users
to achieve specified goals with effectiveness, productivity, safety, and satis-
faction in specified contexts of use.

Based on the above framework, several works have proposed quality models
for traditional Web applications (see for example [4–6]). Few proposals also con-
centrate on modern Web 2.0 applications. For example, in [7], the authors extend
the ISO 9126-1 standard, and discuss the internal quality, external quality, and
quality in use of Web 2.0 applications. The authors also recognize the existence
of some additional factors related to the quality of contents. This dimension

is indeed central in Web 2.0, due to the increasing amount of user-authored
information.

There is a lack of proposals for the quality of mashups. In a sense, this is
because the quality of mashups can be mainly characterized by the external
quality-in-use perspective, which is exhaustively covered by the huge research
on Web application usability. We however believe that beyond quality in use,
other issues that are strictly related to the quality of the individual components
must be considered.

Similarly to the other works described above, our model is derived from the
quality attributes defined by the ISO standard. We however add a specific per-
spective, which allows us to concentrate on the external quality of components,
i.e., on the set of properties that affect the component’s quality as perceived by
the mashup composer (not necessarily the final mashup user). It is worth noting
that other works focused on API quality in the more general SOA (Service-
Oriented Architecture) domain, by specifically addressing the set of external
factors that increase the ease of use of an API (the so-called API usability) [8–
10], such as the quality of API documentation [10]. Our approach capitalizes on
these contributions but tries to go beyond, since it considers a broader set of
external quality factors – not only usability –, all having impact on the success
of mashup components.

Table 1. Definition of quality characteristics in the ISO/IEC 9126 standard [3]

Characteristics Definition Sub-characteristics

Functionality A set of attributes that bear on the exis-
tence of a set of functions and their spec-
ified properties. The functions are those
that satisfy stated or implied needs.

Suitability, Accu-
racy, Interoperability,
Compliance, Security.

Reliability A set of attributes that bear on the capa-
bility of software to maintain its level of
performance under stated conditions for
a stated period of time.

Maturity, Fault Toler-
ance, Recoverability.

Usability A set of attributes that bear on the ef-
fort needed for use, and on the individual
assessment of such use, by a stated or im-
plied set of users.

Understandability,
Learnability, Oper-
ability.

Efficiency A set of attributes that bear on the rela-
tionship between the level of performance
of the software and the amount of re-
sources used, under stated conditions.

Time Behaviour, Re-
source Behaviour.

Maintainability A set of attributes that bear on the effort
needed to make specified modifications.

Analysability,
Changeability, Stabil-
ity, Testability.

Portability A set of attributes that bear on the abil-
ity of software to be transferred from one
environment to another.

Adaptability, Instal-
labilty, Conformance,
Replaceability.

Interaction
overhead

DiffusionAPI operability
3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability
3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

API quality Data quality Presentation
quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability API Usability Presentation
Usability

Accessibility
Maturity Learnability

Operability

Availability

Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1
Security requirement = Dev key over SSL

API
operability

Security requirement = No auth no SSL

44321

11111

Data
operability

Security
operability

Fig. 2. The quality model for mashup components

4 A reference quality model

By definition, the publication of mashup components through APIs hides their
internal complexity and, therefore, also their internal details. After a component
has been deployed, external quality factors are the ones that drive the evaluation
of the component’s suitability for integration into a mashup application. This is
also confirmed by a preliminary analysis that we have performed on the huge set
of data available on programmableweb.com, a Web site that publishes data about
APIs (e.g., links to the URLs for API download, descriptions, comments, user
ratings, how-tos, etc.) and their use within mashups. We wrapped the data avail-
able on the site,3 and analyzed them to identify possible correlations between
observable API properties (e.g., the programming language, the number of sup-
ported protocols, the availability of documentation, etc.) and the component’s
usage in mashups. We discovered that the availability of how-to items (links to
Web pages supplying information on how to install and use the component) has
the strongest correlation with the diffusion of the component. This result, which
is not surprising if we consider that Web 2.0 mashup composers typically prefer
easy-to-combine components over complex components, led us to concentrate
more specifically on the component-external quality.

3 For more details on the wrapper and the analysis of the downloaded data the reader
is referred to [11].

Provided that the component-internal quality must be taken into account
and must be assessed in accordance with the principles and methods tradition-
ally adopted for software quality, in the rest of this section we concentrate on
the external quality of components and illustrate our reference quality model.
Figure 2 gives an overview of the addressed quality attributes, which we organize
along three main dimensions, namely API quality, Data quality and Presenta-
tion quality, which recall the traditional “presentation-logic-data” organization
of Web products. In the rest o this section we will discuss them, by highlighting
the features that characterize the quality of mashup components and introducing
fine-grained attributes and, where possible, assessment metrics.

4.1 API quality

An important ingredient of the external quality of a mashup component is the
set of software characteristics that can be evaluated directly on the component
API. In this section, we consider three attributes that traditionally characterize
the quality of software, functionality, reliability, and usability, revisited for the
analysis of component APIs.

Functionality Functionality can be refined by considering the interoperability,
the compliance, and the security level of a component.

Interoperability is one of the most important attributes that affect the qual-
ity of a mashup component. In fact, the diffusion of a component depends on
its capability to be used in different and heterogeneous environments. The in-
teroperability of a component can be assessed by inspecting its API, since it
particularly depends on the technologies used at the application and data lay-
ers. At the application layer, a mashup component can be provided through
several APIs developed by using different technologies, such as different proto-
cols or languages. The higher the number of the offered APIs for a given mashup
component, the higher its interoperability. At the data layer, interoperability
is affected by the number of data formats accepted for information exchange.
Thus, the interoperability of a mashup component can be defined as:

Interoperabilitycomp = |Pcomp|+ |Lcomp|+ |DFcomp|

where Pcomp ⊂ P, Lcomp ⊂ L, and DFcomp ⊂ DF are the subsets of pro-
tocols, languages, and data formats used by the specific component. P, L, and
DF are the sets of possible protocols, languages, and data formats that can
be used for the development of mashup components. The analysis of the in-
formation contained in programmableweb.com allowed us to identify these sets.
Table 2, for instance, summarizes the most prominent technologies found on
programmableweb.com; the data are based on the descriptions provided by the
component developers.

Some data formats are also standard (e.g., Atom, RSS, GData) and this
increases the interoperability level and gives also the possibility to assess the
compliance dimension as follows:

Table 2. Most used technologies in mashup component development

Protocols REST, SOAP

Languages Javascript, PHP

Data Formats Atom, RSS, Gdata, JSON, XML,
Parameter-Value

Compliancecomp = std(DFcomp) : DFcomp → [0; 1]

where std(DFcomp) produces 1 when at least one of the data formats sup-
ported by the component is a standard data format, and 0 if none of the sup-
ported data formats is standard.

The security of a component is related to the protection mechanism that is
used to rule the access to the offered functionalities. We distinguish between two
aspects: SSL support and authentication mechanisms. A component might pro-
vide access to its features with or without SSL support. That is, the component
might allow for encrypted communications, which improves security, or not. As
for the authentication mechanism, we distinguish between no authentication,
API key, developer key, and user account. If the component requires mashup
composers to use an API key, this means that the composer typically needs to
use an access key that is specific to the mashup application the component will
be running in. The key can usually be generated on the component provider’s
web site (for instance, Google Maps adopts this technique). A developer key, in-
stead, requires the mashup composer to be registered personally as developer on
the web site of the component provider (eBay for instance uses this techniques),
while a user account requires the mashup composer to also be a registered user
of the component provider (e.g., this is necessary to integrate PayPal features
into mashups). In Figure 3 we show a graphical representation of the security
metric, along with two examples.

Formally, it is possible to define the security metric as

SECcomp = SSLcomp + AUTcomp

where SSLcomp is a boolean value that indicates the use of SSL inside the
component, while AUTcomp is a number between 1 and 4 that indicates the type
of authentication method according to some complexity values, as defined in
Figure 3. The score of the security metric is calculated on the basis of the actual
requirements the mashup composer poses to the component. For instance, if a
composer at most wants to use a developer key with SSL support, a compo-
nent that imposes the use of a user account does not add any value. Instead,
a component that only provides an API key or no SSL support does not meet
the requirements. According to this, we assign the value that corresponds to the
composer’s expectation if the component meets or exceeds the expectation, and
lower values to components that do not meet the expectations (see highlighted
values in Figure 3).

Interaction
overhead

DiffusionAPI operability
3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability
3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

0..1

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1
Security requirement = Developer key over SSL

API

Security requirement = No auth no SSL

44321

11111

Fig. 3. Security mechanisms adopted by mashup components

Reliability The black-box approach does not allow one to evaluate the level of
performance of a component under stated conditions for a stated period of time.
Reliability can be evaluated in terms of maturity, by considering the available
statistics of usage of the component together with the frequency of its changes
and updates:

Maturitycomp = max(1− CurrentDatecomp − LastUseDatecomp

CurrentDatecomp−CreationDatecomp

|Vcomp|

; 0)

where Vcomp is the set of versions available for a specific mashup component.

API Usability Within the API quality dimensions, usability refers to the ease
of use of the API.4 API usability can be measured in terms of: understandability,
learnability, and operability. Given our black box approach, learnability and un-
derstandability can be evaluated by considering the component documentation.
Particularly relevant in the mashup scenario is the support offered to mashup
composers by means of examples, API groups, blogs, or forums, and any other
kind of documentation. The availability of each type of support contributes to
increase these quality attributes.

Operability also affects the ease of use of a component. It depends on the
complexity of the technologies used at the application and data layers, and of the
adopted security mechanisms. The operability of technologies at the application
level can be evaluated by considering the diffusion and the interaction overhead of
both protocols and languages used in the API development. In fact, the diffusion
of a protocol or a language enables the diffusion of a common knowledge that
supports its use. In the same way, the operability of a component is higher when
the interaction with the available API is easier. For example, the adoption of a
protocol is more complex than the direct invocation of an object method, since
dedicated standards and protocols might have to be used for the data exchange.
In Figure 4(a) we show a method to estimate the operability of the most common
technologies generally adopted at the application level.
4 We will discuss presentation usability later in this section.

Interaction
overhead

DiffusionAPI operability
3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability
3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Fig. 4. Operability of the technologies used at the application and data level

Similarly, operability at the data layer can be evaluated by analyzing the
data formats offered by the component along two aspects: the need for a parsing,
meaning that further transformations are needed before the component can be
integrated in the final mashup, and the use of a standard format. Figure 4(b)
describes a method to assess the operability of the most common data formats.

The security operability and the actual level of security are instead inversely
proportional. The higher the level of security, the lower the security operability.
This is due to the consideration that operating a restrictive security solution is
more demanding than less restrictive security solutions. Figure 5 represents the
different degrees of security operability that can be identified by considering the
security mechanisms typically adoptable in a mashup component.

In general, once the above technologies have been classified using the de-
scribed criteria, it is possible to define clusters and characterize them with an
operability level. As shown in Figure 4, technologies in the same cluster are as-
sociated with the same operability value. For example, in our analysis described
in Figure 4, we use the following function family: OP (Tcomp) : Tcomp → OPV,
where Tcomp = {Pcomp, Lcomp, DFcomp, SECcomp} includes the technologies used
by a mashup component at the application and data layers and the adopted se-
curity mechanisms, and OPV ⊂ N is the set of operability values defined for
each technology. Since a component can be offered by using different APIs and
thus more application and data technologies have to be evaluated, the overall
operability measure can be defined as:

OPcomp = max(OP (Pcomp∪Lcomp))+max(OP (DFcomp))+max(OP (SECcomp))

The first term considers the technologies characterizing the application layer
of the component; the second refers to the data layer; and the last term refers
to the security mechanism implemented by the component. For each addend,
we only consider the maximum operability value, as we think this characterizes
best the overall operability of the component.

Interaction
overhead

DiffusionAPI operability
3 2

1

RESTful
service

SOAP/WSDL
service

JavaScript
componentlow

high

wide narrow

Standard
structure

ParsingData operability
3 2

1

JSON XML

Parameter-
value pairs

ATOM, RSS,
GDatayes

no

no yes

Authentication model

Security operability

No
authentication API key Developer key User account

1234

With SSL support

No SSL support

No
authentication API key Developer key User account

PHP/Perl/ASP/
JSP

component

5

(a) A metric to measure operability of
API types

(b) A metric to measure the operability
of data formats

Component
quality

Software
quality Data quality Perceived

quality

Functionality

Interoperability

Compliance

Security

Accuracy

Timeliness

Completeness

Reliability Usability Usability

Accessibility

Appeal

Maturity Learnability

Operability

Availability Reputation

Authentication model

Security

No
authentication API key Developer key User account

5432

With SSL support

No SSL support

No
authentication API key Developer key User account

1
Security requirement = Dev key over SSL

API op.

Security requirement = No auth no SSL

44321

11111

Data op.

Security op.

Fig. 5. Operability of the security mechanisms

4.2 Data quality

Data quality refers to the suitability of the data provided by the components
through their APIs (both the information supplied to the final mashup users and
the data exchanged between APIs for their choreography within the mashups).
It mainly refers to data accuracy, completeness, and timeliness. Accuracy and
completeness assess data along their correctness and numerical extension [12][13],
while timeliness evaluates the validity of data along time [14]. In this context, it
is also important to consider data availability because of data usage restrictions
often applied by mashup component developers (e.g., some components limit the
number of allowed requests per day).

Accuracy It is defined as the degree with which data are consistent with the
part of the real world that they have to represent. More formally, accuracy is
defined as a correctness measure typically expressed in terms of proximity of
a value v returned by the mashup component to a value v’ considered as cor-
rect [12]. The evaluation of the accuracy dimension can be difficult if reference
values are not available. In this case, digital sources can be compared, and accu-
racy problems are often revealed by inconsistencies among values stored in the
different sources.

Completeness It is defined as the degree with which a given data collection
produced by the component includes all the expected data values. The assess-
ment of the completeness can be performed by considering the ratio between the
amount of data received and the amount of data expected:

Completeness = 1−
(

Number of Missing values

Total number of values

)

Timeliness represents the degree with which data are updated. It expresses
how current (up-to-date) exchanged data are for the users that use them. Data
can be indeed useless because they are late for a specific task. A measure of
timeliness is defined in [14] as:

Timeliness = max
(

0, 1− currency

volatility

)s

where the exponent s controls the sensitivity of timeliness to the currency-
volatility ratio. The value of the exponent is, indeed, related to the context
(task-dependent), and it absorbs the subjectivity introduced with the judgment
of who analyzes data.

With this definition, the value of timeliness ranges between 0 and 1, and
expresses the temporal validity of data that users access. The validity is calcu-
lated by using the ratio between currency and volatility. Currency provides the
“age” of data considering the creation time or the last update, while volatility
is a static dimension that expresses the average period of validity of data in a
specific context [14]. Temporal valid data are those data that are not “expired”
when users read them.

Availability In the SOA domain, a general assumption is to increase as much
as possible the level of availability. A common practice in the definition of usage
licenses for mashup components is to introduce some form of limitations. For
example Google maps allows each IP up to 50,000 geocode requests per day.
If, from the user perspective, this can be considered a restriction, it can be a
necessary action to prevent service abuses leading to service availability pitfalls.
A trade off solution must be carefully designed, so as to maximize possible quality
advantages, without reducing the component’s attractiveness.

4.3 Presentation quality

Presentation quality refers to all those attributes that characterize the user ex-
perience and therefore relate to the user interface aspects that the mashup users
go through when they access and use the final mashup application. It especially
applies to UI components, i.e., those components that, differently form pure web
services, are also provided with a presentation layer.

For this dimension, we focus on three quality attributes, i.e., usability, acces-
sibility, and reputation.

Presentation usability In some cases, mashup components are provided with
a presentation layer, i.e., a user interface (UI) where some widgets provide a visu-
alization for the component produced data and also allow some form of interac-
tion. Despite the simplicity of such UIs, usability of the presentation mechanisms
must be taken into account. All the usability attributes and metrics already de-
fined for Web UIs can be taken into account [15, 4, 16]. Particular emphasis must
be devoted to factors such as the understandability and learnabilty, i.e., the pro-
vision of easy-to-understand presentations for data and easy-to-learn interaction
mechanisms, and the compliance with standard interaction mechanisms. The at-
tractiveness of presentations also needs to be addressed. With this respect, RIA
interfaces can provide suitable solutions.

Accessibility All the features supporting the access by any class of users and
technology must be addressed. The component UI should be therefore designed
by taking into account well-know accessibility criteria, such as those defined by
the W3C Web Accessibility Initiative (WAI) [17]. Just to mention few, different
APIs enabling different presentation modalities should be provided for the same
components, so that its contents and functions can be rendered on devices with
different capabilities. Multimedia contents should be augmented with textual
descriptions, so that they can be presented even through alternative browsing
technologies, such as screen readers assisting impaired users. Finally, compo-
nents and the resulting mashups should be accessible through different types
of hardware devices, from voice-based devices to small-size or black and white
screens.

Reputation Reputation is the degree with which a component is perceived as
reliable. In the Web, most of the user actions are driven by reputation: users
simply access and trust the information provided by reliable institutions and/or
authors. In the mashup scenario, this trend is observable as well. Our analysis of
the programmableweb.com data revealed that the most diffused components are
those distributed by well-known, and therefore credible, providers (e.g., Google).
Therefore, in the quality evaluation of a mashup component the credibility of
the organization/person that publishes and advertises it cannot be neglected.

Form the component developer perspective, it is also important to achieve a
reasonable level of reputation. Certainly, reputation is positively affected by the
component documentation, especially if it is available in different formats and
distributed through different channels (including blogs, forums, wikies, etc.), by
the compliance of presentation mechanisms with the most diffused standards,
and in general by the attitude to maximize all the quality attributes previously
discussed, to meet the user (both mashup composer and mashup user) expecta-
tions.

5 Discussion

The current mashup ecosystem is characterized by a strong growth, by a strong
focus on technologies, by few really value-adding mashups, and by a generally low
quality of both components and mashups. The ecosystem is still in its infancy,
yet the trend toward so-called “enterprise mashups” (as, for example, those
supported by companies like IBM or JackBe), which go beyond 1-page Web user
mashups, is real. Understanding which factors determine or influence the quality
of mashups and – of particular interest to this paper – of mashup components
represents a first step toward valuable mashups.

As illustrated in the scenario at the beginning of this paper, developing good,
i.e., high-quality, mashup components is not a trivial task. Besides the pure func-
tional features of a component, there are many design decisions (e.g., regarding
programming languages, communication protocols, data formats, and the like)

that need to be taken and that influence the quality and the success of a com-
ponent. Developing a mashup component requires the component developer to
take into account at least two different stakeholders, i.e., the mashup composer,
who might want to include the component into his mashup, and the mashup
user, who will use the component in the mashup. This is peculiar, and differenti-
ates mashup component development from traditional development: developers
of conventional APIs (e.g., Web services or object libraries) typically only need
to take into account the need of developers who will use their API, as the APIs
do not expose an interface that is directly operated by users; developers of Web
applications, instead, rather need to take into account the users of their appli-
cation, as a Web application is typically not accessed also via an API. Mashup
component development, instead, must take into account the expectations of
both and, hence, design decisions are harder.

In this paper, we looked at component development from an external per-
spective, that is, from the perspective of the mashup composer or the mashup
user, and we characterized the observable properties of components in terms of
a component-specific quality model. The model is based on both our own ex-
perience with the development of components and mashups, and experimental
evidence gathered by analyzing data from programmableweb.com. For the actual
assessment of the quality properties, we provided – where possible – metrics.

We claim that the defined model and metrics contain valuable knowledge
that (i) creates an awareness of the problem of today’s general low-quality in
mashups and mashup components, (ii) assists the mashup composer in selecting
components that effectively suit his mashup needs (focusing not only on hard
functional requirements), and (iii) provides the component developer with guide-
lines about how to take into account the needs of both the mashup composer
and the mashup user. The described model can indeed be used by the com-
ponent developer as a methodology for the selection of appropriate languages,
protocols, data formats, etc., compatibly with the functional requirements of the
component and updated (if necessary) according to the pace of the Web 2.0.

As a next step, the model will be validated by applying it to a significant
number of mashup components. We would like to “rank” mashup components
(e.g., by looking at the mashups and components in programmableweb.com), in
order to assess correlations among their quality properties, possibly also tak-
ing into account their use within mashups. We are also planning some formal
experiments to validate our metrics against inspection-based evaluations by a
pool of expert developers. We will also extend the model to cover the quality of
mashups, which we believe is tightly related with the quality of the components
they integrate.

References

1. Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach.
PWS Publishing, Boston, MA, USA (1997)

2. ISO: ISO 8402:1994. Quality Management and Quality Assurance - Vocabulary.
(1986)

3. ISO/IEC: ISO/IEC 9126-1 Software Engineering. Product Quality - Part 1: Quality
model. (2001)

4. Calero, C., Ruiz, J., Piattini, M.: A Web Metrics Survey Using WQM. In Koch,
N., Fraternali, P., Wirsing, M., eds.: ICWE. Volume 3140 of Lecture Notes in
Computer Science., Springer (2004) 147–160

5. Malak, G., Badri, L., Badri, M., Sahraoui, H.A.: Towards a Multidimensional
Model for Web-Based Applications Quality Assessment. In Bauknecht, K., Bichler,
M., Pröll, B., eds.: EC-Web. Volume 3182 of Lecture Notes in Computer Science.,
Springer (2004) 316–327

6. Olsina, L., Covella, G., Rossi, G.: Web Quality. In: Web Engineering, Springer
(2005) 109–142

7. Olsina, L., Sassano, R., Mich, L.: Specifying Quality Requirements for the Web
2.0 Applications. (In: Proc. of IWWOST’08) 56–62

8. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: VL/HCC, IEEE Computer Society (2004) 199–206

9. Ellis, B., Stylos, J., Myers, B.A.: The Factory Pattern in API Design: A Usability
Evaluation. In: ICSE, IEEE Computer Society (2007) 302–312

10. Jeong, S.Y., Xie, Y., Beaton, J., Myers, B., Stylos, J., Ehret, R., Karstens, J.,
Efeoglu, A., Busse, D.K.: Improving Documentation for eSOA APIs through User
Studies. (In: Proc. of the Second International Symposium on End User Develop-
ment (IS-EUD09), March 2–4 2009, Siegen, Germany)

11. Cappiello, C.: Analyzing the Success of Mashup Components. Technical report,
Politecnico di Milano (2009)

12. Redman, T.: Data Quality for the Information Age. Artech House (1996)
13. Wang, R., Strong, D.: Beyond Accuracy: What Data Quality Means to Data

Consumers. Journal of Management Information Systems 12 (1996)
14. Ballou, D., Wang, R., Pazer, H., Tayi, G.: Modeling Information Manufactur-

ing Systems to Determine Information Product Quality. Management Science 44
(1998)

15. Nielsen, J.: Web Usability. New Riders (2000)
16. Matera, M., Rizzo, F., Carughi, G.T.: Web Usabiity: Principles and Evaluation

Methods. In: Web Engineering, Springer (2005) 109–142
17. Consortium, W.: Wai guidelines and techniques. Technical report, http://www.

w3.org/WAI/guid-tech.html (2007)

