
Invited Poster:
makeSense: Easy Programming of

Integrated Wireless Sensor Networks
Fabio Casati?, Florian Daniel?, Adam Dunkels†, Stamatis Karnouskos+, Patricio Moreno Montero∗,

Luca Mottola†, Felix Jonathan Oppermann‡, Gian Pietro Picco?, Kay Römer‡, Patrik Spieß+,
Stefano Tranquillini?, Paolo Valleri?, Thiemo Voigt†

†Swedish Insitute of Computer Science, ‡University of Lübeck (Germany),
∗ACCIONA Infraestructuras (Spain), +SAP Research (Germany), ?University of Trento (Italy)

Contact e-mail: thiemo@sics.se

Abstract— WSNs are expected to play a critical role in the next
computing revolution, as depicted in the visions of Cooperating
Objects and the Internet of Things. However, designing and
developing WSN software is currently very difficult. This may
prevent WSNs from reaching large-scale adoption, especially in
industry. The makeSense project aims at enabling an easier
integration of WSNs in business processes, by allowing business
process experts and WSN developers to express the high-level
functionality required, while leaving low-level details to the com-
piler and run-time system. We envision the results of makeSense
to be not only a landmark for WSN software development, but
also a new way to look at WSN programming that increases
productivity and business value, enabling a far-reaching adoption
in key industrial domains.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are a key component
towards the integration of the physical and virtual worlds, as
depicted in the visions of Cooperating Objects and Internet
of Things. However, their widespread adoption in industry is
still limited. Factors that hinder a more widespread adoption
are the difficulty of WSN programming, as acknowledged in
the CONET research roadmap [2], and the limited support
for integration with existing IT infrastructures. In particular,
although several programming abstractions are available in
the literature [3], almost none of them explicitly supports the
integration of WSNs with business processes.

The EU-funded makeSense project enables such integra-
tion by devising programming abstractions to express the
high-level WSN functionality within existing business process
modeling concepts. This allows for seamless specification of
the behavior of the WSN and the surrounding business process.
Low-level details are then left to a dedicated compiler and run-
time system. The name, makeSense, reflects both purpose and
ambitions of the project. The first part of the name, make,
refers to the make tool, the software development utility that
relieves developers of software development details.

Section II of this paper illustrates the makeSense approach
and the overall architecture. Section III elaborates on the
expected results of the project and concludes.

Application Model

Macroprogramming
Abstractions

Run-time Support Sensor Node

WSN

Business
Process

Fig. 1: makeSense architecture.

II. APPROACH

Consider an automatic building ventilation system that in-
tegrates with an on-line meeting room reservation application.
The current approach is to manually ventilate the room either
at fixed intervals irrespective of any meetings, or to trigger the
ventilation manually, e.g., by the meeting participants. Smart
control strategies for ventilation systems may allow to adjust
the ventilation levels to the actual demand, based on a room’s
scheduled and monitored occupancy, while assuring adequate
environmental quality. This can save up to 30% of the energy
used for air conditioning in a building. The latter account for
more than 40% of the energy consumption in Europe.

The smart control system uses WSNs to check the presence
of people and the CO2 levels in rooms. The CO2 monitoring
starts 15 minutes prior to a meeting. If CO2 is above a specific
threshold, the system automatically triggers the ventilation.
This check continues periodically. Additionally, 15 minutes
after the scheduled start of the meeting, the system starts
monitoring the presence of persons. If presence is detected,
the system updates the status of the room in the reservation
application to “occupied”; otherwise, the room status is set to
“available” and the periodic monitoring of CO2 stops.

To ease the design and implementation of applications such
as the one described above, makeSense follows an approach
consisting of three layers, as depicted in Figure 1:

• The application model layer integrates sensor networks
with business application systems by allowing WSN
behavior to be expressed within a business process model.

• The macro-programming layer provides a network-centric



Fig. 2: Meeting room ventilation system: overall business process.

programming abstraction that relieves programmers from
the low-level details, also allowing existing and future
abstractions to blend smoothly.

• The self-optimizing run-time system layer adapts to the
specific conditions in the deployed sensor network by op-
timizing communication and resource consumption based
on inputs from the higher layers.

In makeSense, we use BPMN (Business Process Modelling
Notation) at the application model layer, as this is the de-facto
way in industry for specifying business processes. Moreover,
BPMN is today integrated in the majority of tools used by
business process developers, and compliance with such tools
may foster a quicker adoption of makeSense.

Figure 2 depicts the BPMN specification of the meeting
room ventilation system. Through a refinement step, devel-
opers specify the WSN processing to carry out the activity
“Detect presence” and “Check CO2 Level”. These WSN-
specific functionality are expressed using custom BPMN con-
structs that may include constraints on sensed data, e.g., the
conditions to detect the presence of persons.

The BPMN specification is used as input by the makeSense
model compiler, along with the network model and high-level
performance objectives. The former includes information on
the application-level characteristics of the deployed nodes,
e.g., their capabilities and logical location (e.g., “room ABC”).
The latter express preferences on possibly conflicting perfor-
mance goals; for example, to optimize energy consumption at
the cost of increased latency.

Based on this information, the compiler outputs a macro-
program that describes the WSN processing using high-
level, network-wide programming constructs. For instance, the
macro-code required for CO2 monitoring looks like:

co2sensors ::= Type = ‘‘sensor’’ AND Function = ‘‘CO2’’
controller ::= {count (room) { role == controller } == 0}

when [co2sensors] report [suddenIncrease]
tell [controller] to [increaseVentilation]

The fragment of code above determines a subset of nodes re-
sponsible for sensing the CO2 levels, and elects one controller
per room in charge of triggering the actuation when necessary.
The language leverages existing WSN abstractions, Logical

Neighborhoods [3] and Generic Role Assignment [3] in this
case, by integrating them seamlessly in the same programming
framework. The macro-program is then input to a macro-
compiler, along with the network model. The macro-compiler
translates the network-wide program in executable node-level
code, depending on the nodes capabilities and role.

The executable code runs atop a dedicated run-time layer,
based on the Contiki [1] operating system. In addition to en-
abling dynamic reconfiguration of the deployed functionality,
the run-time layer continuously runs a monitoring and self-
optimization process. This provides feedback to the application
model layer on the current system performance, and adapts
the system operation based on the user-defined performance
objectives and the current network conditions.

III. EXPECTED RESULTS AND CONCLUSION

The core contribution of makeSense is a comprehensive
programming system that enables the integration of WSNs and
business processes. The programming platform is supported by
a complete tool-chain starting from business processes down
to the code running on the individual nodes, including tools
to assist the developer in the programming activity and the
compiler technology required to bridge the gap between the
(business) application level and the WSN hardware.

We plan to evaluate the results in a real-world scenario.
One possibility is precisely to deploy a prototype system
developed with makeSense in the context of a building
ventilation system. To this end, we will introduce wireless
sensors performing real-time metering of relevant environ-
mental parameters and the current energy consumption of the
building. We will then qualitatively and quantitatively assess
the developers’ productivity as well as individual component
and overall system performance.

REFERENCES

[1] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In Proc. of the Workshop
on Embedded Networked Sensor Systems (Emnets), 2004.

[2] P. J. Marrón, S. Karnouskos, D. Minder, and A. Ollero, editors. The
emerging domain of Cooperating Objects. Springer, 2011.

[3] L. Mottola and G. Picco. Programming wireless sensor networks:
Fundamental concepts and state of the art. ACM Computing Surveys,
2011. To appear. Available at: www.sics.se/˜luca/papers/
mottola10programming.pdf.


