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Abstract

Many current research efforts address the problem of personalizing the Web expe-
rience for each user with respect to user’s identity and/or context. In this paper we
propose a new high-level model for the specification of Web applications that takes
into account the manner in which users interact with the application for supplying
appropriate contents or gathering profile data. We therefore consider entire behav-

iors (rather than single properties) as the smallest information units, allowing for
automatic restructuring of application components. For this purpose, a high-level
Event-Condition-Action (ECA) paradigm is proposed, which enables capturing ar-
bitrary (and timed) clicking behaviors. Also, the architecture and components of a
first prototype implementation are discussed.
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1 Introduction

Today’s Internet users are more and more faced with complex Web appli-
cations, dynamically generated contents and highly variable site structures.
They are continuously confronted with huge amounts of (sometimes irrele-
vant) contents and changed interaction paths. As a consequence, users may
feel uncomfortable when navigating the Web.
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Several techniques aim at augmenting the efficiency of navigation and content
delivery. Content personalization, for example, allows for more efficiently tai-
loring of contents to their recipients by taking into account predefined roles
or proper user profiles. Context-aware or adaptive Web applications [1,2] aim
at personalizing delivered contents or layout and presentation properties not
only with respect to the identity of users, but also by taking into account the
context of the interaction involving users and applications. Along a somewhat
orthogonal dimension, workflow-driven Web applications [3] address the prob-
lem of showing the right information at the right time by explicitly modeling
the hidden (business) process structure underlying determined usage scenar-
ios, especially within business-oriented domains. Eventually, usability studies
and Web log analyses [4] investigate the usability and thus ergonomics prob-
lem by means of an ex-post approach with the purpose of deriving structural
weaknesses, checking assumptions made about expected user navigations and
mine unforeseen navigation behaviors for already deployed Web applications.

In this paper, we sum up and further extend our previous research on adaptive
Web applications [1,5,6] and propose a new approach to (coarse-grained) ap-
plication adaptation. More precisely, we combine adaptive and process-centric
perspectives to design behavior-aware Web applications, which allow perform-
ing actions in response to the user’s fulfillment of predefined navigation pat-
terns. These are described by means of WBM (Web Behavior Model), a sim-
ple and intuitive model for specifying navigation goals, and allow creating
high-level Event-Condition-Action rules for expressing novel adaptation re-
quirements. Our proposal adopts WebML for hypertext [7] and adaptation
[1] design, but the proposed approach is of general validity and can thus be
applied to arbitrary Web applications.

This paper is organized as follows: Section 2 summarizes WebML and its
adaptation primitives and describes a small e-learning application used as an
example scenario throughout this paper. In Section 3 we introduce WBM,
and in Section 4 we combine WebML and WBM for defining proper ECA
rules. Section 5 illustrates an applicative example, and Section 6 describes a
prototype architecture and discusses experiences gained so far. In Section 7
we provide an overview on related research work and, finally, in Section 8 we
address future research efforts and draw some conclusions.

2 WebML and Adaptation

WebML (Web Modeling Language) is a conceptual model for the design of Web
applications [7], supported by a proper CASE tool [8]. The WebML method
fosters a strong separation of concerns and allows separating the information
content from its composition into pages, navigation, and presentation, which
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Fig. 1. Example WebML hypertext schema containing a conventional, non-adaptive
page and a context-aware one with associated adaptivity operations.

can be defined and evolved independently. Also, primitives for specifying data
manipulation operations for updating the site content or interacting with ar-
bitrary external services are provided.

The modeling language offers a set of visual primitives for defining structural
schemas that represent the organization and navigation of hypertext interfaces
on top of the application data, while for specifying the organization of data
the well known Entity-Relationship model is adopted. All visual primitives are
accompanied by an XML-based, textual representation, which allows specify-
ing additional detailed properties, not conveniently expressible in the visual
notation, and provides the starting point for the automatic generation of the
application code.

Recently, WebML has been extended to support the design of context-aware
or adaptive Web applications [1]. Adaptivity is associated only to some pages
of the application and occurs by refreshing those pages either periodically or
when demanded by context conditions. Context data is maintained in a so-
called context model within the application’s data source. Adaptivity itself
may mainly involve (i) contents published by specific pages, (ii) automatic
navigation actions toward other pages of the hypertext, or (iii) adaptation of
the overall hypertext structure (i.e., in a multi-channel environment).

In order to achieve these effects, chains of operations are associated to adaptive
pages and express the actual actions to be carried out upon context-triggered
page refreshes. Figure 1 graphically summarizes the described scenario: there
is one site view containing one conventional page and one context-aware page
(labeled with a C) together with its associated set of adaptivity operations.
The directed arcs (links) serve a twofold purpose in this particular configu-
ration: on the one hand they allow associating adaptivity operations to their
pages, while on the other hand they provide a mechanism for passing param-
eters among the two computationally independent fragments of hypertext.
Adaptivity operations are evaluated only for C-labeled pages and only after
their automatic refresh, leading to the above mentioned adaptivity effects.
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Fig. 2. An example of Entity-Relationship schema for an e-learning application.

In this paper we will not adopt any context model within the application’s
data source for managing adaptivity as proposed in [1]. Instead, we will trigger
adaptivity according to user behaviors and, thus, by monitoring the execution
of WBM specifications (see Section 3). For further details on WebML and its
adaptivity extension, the reader is referred to [7] and [1].

2.1 Example Scenario

Throughout this paper we will make use of design examples to explain the
novel concepts to be introduced. This section provides the adopted e-learning
reference scenario by means of a WebML modeling example.

The non-adaptive application allows users to browse courses of his/her per-
sonal expertise level and to test the acquired knowledge by answering related
questions, thus possibly enhancing the associated expertise level. Figure 2 de-
picts the E/R schema underlying the e-learning application: each user has a
set of favorite courses and an associated level of expertise. Each course is re-
lated to one or more levels of expertise. For each level of expertise there is a
set of questions; each question is associated to a set of possible answers and
to one correct answer. To simplify the scenario, test questions are related only
to a specific expertise level and do not depend on courses.

The WebML hypertext model of the e-learning application is depicted in Fig-
ure 3. The Home page contains User Data and a list of Suggested Courses. The
Get Unit allows accessing the user’s identifier, while the selector conditions
below the units allow binding a unit to a data entity and personalizing the
displayed items by applying filter conditions. From the Home page the user
can ask for the Courses page. When requesting that page, the user’s possible
level of expertise is forwarded to an If operation unit, which checks whether
there already exists an expertise level or not. If the user already has an asso-
ciated level of expertise, he/she is forwarded to the Courses page (KO link);
otherwise, the user is provided with the Test page (OK link). In this case, a mul-
tiple choice test for the lowest level of knowledge is proposed to the user. The
Questions multidata unit presents a selection of questions according to the
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Fig. 3. The WebML model of the proposed educational Web site.

ExpertiseLevel parameter passed by the incoming OK link. According to the
selected question a corresponding Answer multichoice index unit is proposed
to the user. When submitting the filled test, an ExpertiseLevel is computed
and associated to the user by the Connect operation unit. Finally, the user is
redirected to the Courses page, where suitable concepts are presented. From
here, the user can browse new contents (Course page) or navigate to the Test
page and perform a new test to verify if his level is increased after having
studied new contents.

3 The Web Behavior Model

The Web Behavior Model (WBM) is a timed state-transition automaton for
representing classes of user behaviors on the Web. WBM does not serve for
deriving runtime navigation behaviors, but instead allows describing naviga-
tion patterns (at design time) without requiring a profound knowledge of the
actual application structure.

Graphically, WBM models are expressed as labeled graphs, allowing for an
easily comprehensible syntax (cf. Figure 4). A state represents the user’s in-
spection of a specific portion of hypertext (i.e., a page or a collection of pages).
State labels are mandatory and correspond to names of pages or page collec-
tions. A transition represents a navigation from one such portion to another
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Fig. 4. Example of WBM script with state, link, time constraints and multiple
exiting transitions from one state.

and, thus, the evolving from one state to another. Each WBM specification,
called script, has at least an initial state, indicated by an incoming unlabeled
arc, and at least one accepting state, highlighted by double border lines. Ini-
tial states cannot also be accepting states. Each transition from a source to a
target state may be labeled with a pair [tmin, tmax] expressing a time interval
within which the transition can occur. Either tmin or tmax may be missing,
indicating open interval boundaries. If a transition does not fire within tmax

time units, it can no longer occur; on the other hand, navigation actions that
occur before tmin are lost.

One important aspect of WBM models is that not all navigation alternatives
must be covered. As the aim of WBM is to capture a concise set of user in-
teractions, describing particular navigation goals and respective “milestones”,
only a subset of all possible navigation alternatives is relevant. E-commerce
Web sites, for example, make heavy use of so-called access-pages that only
serve the purpose of providing users with browsable categories for retrieving
the actual products offered. Furthermore, Web sites usually provide several
different access paths toward their core contents. Therefore, by concentrating
only on those interactions that really express navigation goals, WBM allows
both abstracting from unnecessary details and defining small and easily com-
prehensible specifications. Only performing specified target interactions – in
the modeled order – may thus cause WBM transitions.

Figure 4 shows an example WBM script. The initial state corresponds to
Page1. The transition from the first state to the second state occurs only if
the user requests Page2 within tmin and tmax time units from the moment
the script has been initiated, otherwise the script ignores the navigation and
remains in its current state. The script in Figure 4 also shows two transitions
exiting from state Page2. The states labeled Page4 and Page3 are “compet-
ing”, as a browsing activity in Page2 may lead to either Page4 or Page3.

In WBM it is possible, and sometimes convenient, to use overlapping states,
i.e., states corresponding to overlapping portions of hypertext. If two compet-
ing states are overlapping, two transitions may trigger simultaneously.
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3.1 WBM Formal model

WBM belongs to the class of timed finite state automata. Starting from this
class of automata, as discussed in [9,10], and from the concepts previously
introduced, we now give a formal and concise definition of WBM as timed
finite state automaton. Step by step we will enrich the formal definition of
finite state automata with novel concepts to fully reflect the semantics of
WBM.

Definition 1 (Finite State Automaton) A finite state automaton is a tu-
ple F = (Σ, S, S0, SF , E), where: Σ is a finite set of input symbols; S is a finite,
nonempty set of states; S0 ⊆ S is a nonempty set of starting states; SF ⊆ S

is a nonempty set of final states, such that S0 ∩ SF = ∅; E ⊆ S × S × Σ is a
set of transitions or edges.

A timed finite state automaton can be defined as a finite state automaton
with transitions constrained in time. Thus, Definition 1 needs to be extended
with a clock and the relative definition of time constraints. In this paper we
use a discrete-time model, hence the set of nonnegative integer numbers, N,
is chosen as the time domain.

Definition 2 (Time Sequence) A time sequence τ = τ1τ2 . . . is an infinite
sequence of time values τi ∈ N with i ≥ 1, satisfying the following constraints:

(1) Monotonicity: τi < τi+1 for all i ≥ 1.
(2) Progress: For every t ∈ N there is some i ≥ 1 such that τi > t.

A timed word Σt over an input set of symbols Σ is a pair Σt=(σ, τ) where
σ = σ1σ2 . . . is an infinite word over Σ and τ is a time sequence.

If a timed word Σt=(σ, τ) is used as input to an automaton, then the time τi

represents the time of the occurrence of the symbol σi.

Now, according to [9], we extend the finite state automaton to interpret timed
words and associate a clock to the automaton. A clock is a variable with
values in N. Given that all time values are relative to state transitions, for
simplicity in our automaton the clock is reset to zero at each state-transition.
The absolute values of time events can be computed by summing the absolute
time of the last state transition to the relative time of the given event. Before
finally defining the automaton we also need to formalize time constraints over
transitions:

Definition 3 (Time Constraint) Given a clock x, a time constraint δ is
defined inductively by δ := x ≥ c||x ≤ c||c1 ≤ x ≤ c2, where c, c1, c2 ∈ Q+ and
c1 < c2.
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According to the previous definitions, timed finite state automata can thus be
defined as follows:

Definition 4 (Timed Finite State Automaton) A timed finite state au-
tomaton is a tuple F = (Σt, S, S0, SF , E, x), where: Σt is a timed word of
input symbols; S,S0,SF are defined in Definition 1; x is the automaton clock;
E ⊆ S × S × Σt × Φ is the set of transitions, with Φ being a set of time
constraints δ over the clock x. An edge (s, s′, σ, δ) represents a transition from
state s to state s′ on input σ ∈ Σ and subject to the clock constraint δ over x.

In order to describe user behaviors within a Web application by means of a
timed finite state automaton, we now introduce a minimal and generic defini-
tion of hypertext.

Definition 5 (Hypertext) A hypertext is a couple H = (P,L) where P is
a set of pages and L ⊆ P × P is a set of links, such that every link in L

connects two and only two pages in P .

Given the definitions above, we can now define the Web Behavior Model
(WBM).

Definition 6 (Web Behavior Model) Given a hypertext H = (P,L) and
an timed finite state automaton F = (Σt, S, S0, SF , E, x), a Web Behavior
Model is a couple WBM(H,F ) = (Pl, Ll) where:

- Pl : S → P∪Pc∪{∗}∪WBMi(H,Fi) is a function that maps any state s ∈ S

to a page p ∈ P of the hypertext H, or to a collection of pages Pc ⊆ P(P ),
or to the special symbol ∗ denoting any page of the hypertext H, or to any
other Web Behavior Model WBMi(H,Fi) defined over the hypertext H.

- Ll : T → L ∪ {∗} is a function that maps any transaction e ∈ E to a link
of the hypertext H, or to the special symbol ∗ denoting an unconstrained
navigation between the pages corresponding to the two states connected by
the transition e.

This formal definition of WBM is based on the assumption that the automaton
does not terminate after receiving unexpected input symbols, and instead
keeps its current state, while waiting for a valid input symbol without resetting
its clock. Also, as the attentive reader may have noticed, WBM models can
be described recursively, which allows complex behaviors to be represented by
means of sub-models.
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3.2 WBM and WebML

In this paper, we combine WBM and WebML for modeling Web applications.
Exploiting some structural peculiarities of WebML-based applications allows
us to further refine WBM transition constraints as introduced in the previous
section. In addition to time constraints, in this section we further define so-
called state and link constraints for augmenting the expressive power of WBM
models.

WebML hypertext schemas are based on three core elements: areas, pages and
units. As shown in Figure 5, taking them into account by means of new WBM
state symbols allows for easier and more expressive model definitions. Further-
more, contents are published by so-called content units bound to data entities,
which can be “queried” to retrieve details about the navigated contents. For
this purpose, we now introduce WBM variables, assignments and predicates.

Variables are untyped and named by alphanumerical character sequences,
beginning with a character. Assignments are formulas <variable name> :=

<term>, where a <term> is an arithmetic expression using either constant
values, functions, or variables. Predicates are arbitrary Boolean expressions
<term> <comp> <term>, where a <term> is an arithmetic expression using ei-
ther constant values, functions, or variables; <comp> is one of the comparators
=,≤,≥,6=,< and >. Predicates can be compounded to form complex expres-
sions: <pred> <logicomp> <pred>, where a <logicomp> is one of the two
logic operators ∧ (AND), ∨ (OR).

To specify state constraints over contents and store variable values, four basic
functions can be used within predicates and assignments:

Display(<Data unit name>, <Attribute name>)

Selected(<Data unit name>, <Attribute name>)

Entry(<Entry unit name>, <Form element>)

Parameter(<Operation unit name>, <Attribute name>)

The Display function applies either to data units, returning the value of an
attribute of the displayed entity, or to multi data and index units, returning the
set of values of an attribute of the displayed entities. Aggregation functions
(such as SUM, MIN, MAX, AVG, COUNT) can be applied to sets of values in
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Fig. 6. A WBM script with operation, link constraint and predicates.

order to compute scalar values. The Selected function applies to index units
only, returning the attribute value of the entity that has been selected by the
user. The Entry function applies to entry units and returns the value of one
form field entered by the user. The Parameter function applies to operation
units, returning the value of one of the parameters assigned in the operation
call.

Referring to the Course page of the Web application introduced in Section
2.1, the example assignment

x := Display(Course, OID)

assigns the OID attribute of the item being displayed by the Course data unit
to the variable x. Likewise, the predicate

Display(Course, Category) = "Web"

verifies whether the Category attribute of the item being displayed by the
Course data unit equals the string “Web” or not. A predicate is satisfied
whenever the expressed condition evaluates to true.

Link constraints are based on WebML link identifiers and allow restricting
WBM transitions to explicitly specified links. Link constraints are expressed by
labeling transitions with link identifiers. For distinguishing between entering
and exiting links, the following policy is adopted: a ‘∗’ near the begin of a
transition arc constrains the link to be an outgoing link; a ‘∗’ near the end of
a transition arc constrains the link to be an incoming link; if a ‘∗’ is specified
on both sides of an arc, the relative link must connect directly the two pages or
operations; when the ‘∗’ is omitted, the transition refers to any path containing
the specified link.

The WBM script in Figure 6, based on our reference scenario, illustrates the
novel concepts. The depicted script aims at identifying newly registered users
that are younger than 20 years and take less than 180 seconds to answer the
proposed questions. The script starts when entering the Home page, displaying
a User Data unit with Age attribute less than 20. The transition to the second
state is enabled only if the user reaches the page Test by an incoming OK link,
we suppose denoted by the WebML identifier oln1. Finally, the accepting state
is reached when the user requests the Compute ExpertiseLevel operation unit
within 180 seconds from the activation of the previous state.
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Despite the use of WebML for specifying hypertexts in this paper, WBM
without its WebML-specific extensions is designed to describe navigation be-
haviors on top of arbitrary hypertexts. Nevertheless, the use of state and
link constraints requires a binding to other models providing Web application
structure and contents.

4 Reacting to User Behaviors

In order to be able to react to observed behaviors and to adapt the running
application to novel requirements, we now combine WebML and WBM. For
this purpose, we transform the context-triggered adaptivity mechanism pro-
vided by WebML into a WBM-triggered mechanism. Consequently, adaptivity
occurs in reaction to the fulfillment of entire WBM scripts, which can be de-
rived from the user’s navigation behavior as outlined in the previous section.
According to [1], possible reactions comprise:

• Adaptivity of contents published by specific pages;
• Automatic execution of navigation actions toward other pages;
• Automatic execution of operations of services;
• Adaptivity of the overall hypertext structure.

Although independent from one another, expressing adaptation as a combina-
tion of WBM scripts and WebML adaptivity primitives intrinsically leads to
a high-level ECA paradigm for specifying adaptivity. Commonly, ECA rules
respect the general syntax

on event if condition do action

where the event part specifies when the rule should be triggered, the condi-
tion part assesses whether given constraints are satisfied, and the action part
states the actions to be automatically performed if the condition holds. When
specifying behavior-aware Web applications, the event consists of a page or
operation request, the condition requires the fulfillment of a predefined navi-
gation pattern (expressed as WBM script), and the action part specifies some
adaptivity actions to be forced on the Web application and expressed as a
WebML operation chain.

While the progression of activated WBM scripts takes into account all navi-
gations performed by a user, the evaluation of entire rules is restricted to a
subset of the application’s pages. This subset determines the so-called scope
of the rule and is specified by labeling adaptive pages with an A-label in the
WebML hypertext model and explicitly associating those pages to the rule’s
WBM script. Accordingly, events for one specific rule are generated only when
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Fig. 7. High-level ECA rule components.

requesting pages within the scope of that rule. As a consequence, also the
condition within the rule (WBM script termination) is evaluated only after
proper events of the respective rule, and – in case of script termination – the
operations indicated by the link exiting the page’s A-label are executed.

Figure 7 graphically summarizes the outlined rule construct: The rule reacts
to a user’s visit to Page1 followed by a visit to Page2 at some stage after
his/her visit to Page1. The expressed rule condition thus only holds when the
script gets to the accepting state Page2. Once the accepting state is reached
and the user navigates one of the pages within the rule’s scope, the operations
associated to that page (abstracted as the cloud in Figure 7) are executed and
possible adaptations may be performed.

Pages may have several competing rules associated with them and may thus
be part of the scopes of different rules. For resolving possible conflicts among
concurrently activated rules (each rule may have different associated action
parts), proper rule priorities allow selecting the rule with highest priority. Due
to the fact that executing the actions of one rule may alter the overall hyper-
text structure and thus invalidate the semantics of the other simultaneously
activated rules, their actions are discarded. Rules are in total priority order,
based on explicit numbering or implicit rule creation time.

When considering priorities as properties of rules, rules can be described by
the following 4-tuple:

〈Navigation(Scope), [WBM Script, ]WebML Operations[, Priority]〉

where the Scope represents the extent (pages, areas or site views) within which
the rule reacts to navigation events. The WBM Script describes the condition
part of the rule, and the WebML Operations specify the action part. When
the optional WBM Script component is omitted, the condition part of the rule
always evaluates to true and possible adaptation operations are executed
at page access. Finally, Priority is an optional integer expressing the rule’s
priority with respect to others.

12



��������� ������
��� ¡¢£¤¥ �¦§�¨©ª¤¦¢¥¦«¥ ¬®¦¯°±²³́ µ¶·̧ ¹º»¼½¾¿ÀÁÂÃÄ»ÅÆÇÈ¹É °±²³́ µ¿·̧ ¹º»¼½¾¿ÀÁÂÃÄ»ÅÆÇÈ¹É¶Ȩ̂ ¿ °±²³́ µË·̧ ¹º»¼½¾¿ÀÁÂÃÄ»ÅÆÇÈ¹ÉËȨ̂ ¶ ÌÌËȨ̂ ¿ÍÎÏÐÆÑÒÍÎÏÐÆÑÒ *ÍÎÏÐÆÑÒ ÓÔÕÖ×Ø ÙÚØÛ ÜÝÞÛÓÕÖÖØÝÛÜ×ØÖ

ßØ×Û àÕØ×ÛÞÔÝ×àÕØ×ÛÞÔÝ×áâãäåØæØçèéèàÕØ×ÛÞÔÝêÚØÛ ëìÛìâãäØÖÛÞ×ØåØæØçáÜ×ØÖèéèâãäåØæØçê
Fig. 8. An ECA rule to trigger the evaluation of a student’s knowledge level. The
event part (user click) is omitted for simplicity.
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Fig. 9. An ECA rule to profile user preferences.

5 An E-learning Case Study

In the following we describe two examples that add a proper adaptation layer
to the Web application presented in Section 2.1.

Example 1. Evolving the Level of User Expertise. Figure 8 models
an ECA rule to redirect the user to the Test page for the next experience
level after having visited 3 courses (i.e., 3 different instances of Course pages),
spending at least 3 minutes over each page. The ∗ in the final state of the WBM
script specifies the acceptance of any arbitrary page. The WebML operation
chain for adaptation is actually performed when the user asks again for a
Course page. When the chain is activated, the expertise level of the current
user is retrieved by the Get Data unit and used to provide the user with a
suitable set of questions for his/her expertise level.

Example 2. User Profiling. Suppose we want to personalize the application
according to the user’s preferences traceable from his/her navigational choices
(cf. Figure 9). The script detects that a user is interested in a certain category
of courses, whenever he/she navigates at least three different Course pages
presenting three courses belonging to the same category. The identified cate-
gory is stored within the variable x. In response to this behavior, the WebML
operation chain stores the derived preference: the value of the variable x is
retrieved by the Get WBM Variable unit and the identified category is asso-
ciated to the current user. Now, when the user enters the Home page, courses
belonging to the same category are automatically presented by means of the
Suggested Courses unit (cf. Figure 3).
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6 System Architecture

Executing behavior-aware Web applications – in addition to the standard
WebML runtime environment – requires proper runtime support for WBM
scripts. As illustrated by Figure 10, this task is addressed by a suitable WBM
Engine, which manages WBM scripts based on tracked HTTP requests. More
precisely, HTTP requests are automatically forwarded to the WBM engine by
the WebML runtime environment, which hosts the actual application. Users
interact only with the Web application itself and are not aware of the WBM
engine behind it.

The WBM engine collects and evaluates tracked, user-generated HTTP re-
quests for (i) instantiating new scripts at runtime, and (ii) enhancing the
states of possible running WBM scripts, as well as (iii) communicating possible
script terminations. Script instantiation is managed by a proper Script loader
module based on tracked page requests and the scripts’ starting pages (those
indicated by their initial states). The set of scripts that can be instantiated
for a particular application is retrieved from a Script Repository. A dedicated
WBM Execution Environment, on the other hand, is in charge of progress-
ing instantiated, running scripts. Each user has his/her own set of scripts,
which are executed in a completely independent way. Once a script reaches its
accepting state, the execution environment communicates the successful ter-
mination to the Web application by modifying suitable data structures within
the shared database. Those data structures also hold the values of possible
WBM variables used during script execution.

After successful termination of a WBM script, the Web application possesses
all the necessary data for executing the possibly associated adaptation actions.
As soon as a user requests one of the pages within the scope of the high-level
rule whose condition is satisfied by the terminated WBM script, the Web ap-
plication executes the the adaptation operations associated to the requested
page. For this purpose, page computation starts by checking whether scripts
connected to the page have terminated or not, before proceeding with the
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actual rendering of the page. If there are terminated scripts for that page,
one or more rules could be executed. In case of multiple candidate rules, rule
priorities help determining the rule with highest priority. Thus, computation
proceeds with the determined adaptation operations, producing effects as de-
scribed in Section 4. Only afterward and in case of no automatic navigation
actions, computation continues with the actual page and a suitable HTTP
response is produced.

Synchronous as well as asynchronous rule execution models can be imple-
mented. In the synchronous case, when requesting a page within the scope of
a rule, the page request is immediately forwarded to the WBM engine and
page computation proceeds only after receiving a respective status notifica-
tion from the WBM engine. In this way, possible WBM scripts are updated
before page computation, and possible script terminations can cause an imme-
diate performing of the respective rule’s actions. This implies that the speed
of page computations depends on the performance of the WBM engine. Al-
though some applications could demand for synchronous configurations, we
concentrated on a deferred, asynchronous configuration.

When adopting an asynchronous configuration, page requests are satisfied
immediately and forwarded only after page computation. Possible adaptations
are performed after a predefined time interval by automatically refreshing the
page or at the next page request (if generated before expiration of the refresh
interval). This allows for better parallelization of the Web application and the
WBM engine, as well as short response times.

6.1 WBM Engine Implementation

The implementation of rule engines for active databases is a well known and
studied topic in the literature on database systems. Our problem of handling
user sessions and WBM scripts resembles to the problem of handling trans-
actions and rules in active databases. Accordingly, the implementation of the
WBM Engine has been inspired by the Starbust Active Database [11].

More precisely, the implementation maintains a catalog of WBM scripts, where
each script has associated with it the collection of user sessions that activated
it. As the number of instances of user sessions in a heavily used Web appli-
cation is much greater than the number of defined WBM scripts, it is more
efficient to associate user sessions to scripts than running scripts for each single
user session. This reduces the effort needed to maintain the data structures in
memory and improves the overall system performance. The WBM engine thus
inserts tokens, representing single user sessions, into the scripts’ runtime data
structures. Tokens advance according to script state changes and are removed
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when entering an accepting state. Removing a token implies communicating
the successful termination of the respective script to the database.

However, user sessions are not permanent objects. Due to the HTTP proto-
col, it is not possible to establish when a user session terminates. This may
cause a high number of running WBM scripts never to reach an accepting
state. To solve this problem and to handle WBM time constraints, the WBM
Engine makes use of a garbage collector, which performs cyclic checks and
clean-ups of activated scripts with inactive sessions, where inactivity implies
no user navigations for a predefined interval of time. In order to guarantee the
consistency of user click streams, tracked page requests are stored in a chrono-
logically ordered queue. The described tracking process thus requires as input
the complete URL navigated by the user, the timestamp of the request, an
identifier of the user (e.g. the session identifier), as well as the identifier of the
Web application itself 1 .

6.2 Prototype Experiments

A first prototype of the presented WBM engine has been developed and tested
by implementing the behavior-aware Web application outlined in this paper
(see Section 2.1). We have fully implemented link and time constraints as
well as most of the mechanisms required by WBM state constraints. Results
from experiments are quite positive: experiments proved the viability of the
approach, and the use of the asynchronous execution model effectively avoids
WBM engine response times impacting on user navigation.

Experiments also revealed a performance problem: we observed an excessive
lag between the start of a notification of a page request and the final compu-
tation of the new state by the WBM engine (around 2.5 seconds to manage
100 user requests). Further studies proved that the bottleneck of the system
was not the WBM engine (a stand-alone version of the engine can process
the same 100 requests in less than 60 milliseconds, and can efficiently support
WBM scripts of greater complexity than the ones described in this paper).
Rather, the bottleneck was detected in the generation of SOAP messages by
the Web application, as we use Web services for the communication between
the Web application and the WBM engine. This performance problem will
therefore be fixed in the upcoming prototype, which also will allow testing the
impact of complex state constraints 2 .

1 This information could be reconstructed as well from the requested URL.
2 Experiments were realized using an AMD AthlonXP 1800+, 512MB of RAM and
with Tomcat as Web server.
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7 Related Work

The ECA rule paradigm was first implemented in active database systems
in the early nineties [11,12] to improve the robustness and maintainability
of database applications. Recently, they have also been exploited in other
contexts such as XML [13], to incorporate reactive functionality in XML doc-
uments, and the Semantic Web [14], to allow reactive behavior in ontology
evolutions. Our research explicitly adds ECA-rules to Web applications to
allow adaptation based on user behaviors.

A number of paradigms able to model a user’s interaction with the Web have
been proposed [15,16]. Most of these models have been designed more to de-
scribe the navigation model of Web applications and less the user interacting
with applications. Nevertheless, their semantics can be extended to model user
behaviors disregarding the navigation design of the Web application. These
models have a strong formal definition, since they are based on well known
and established formal models like Petri Nets [15] or UML StateCharts [16].

In the early age of hypertext applications, Stotts et al. [15] introduced Trellis,
a model based on Petri Nets, to describe hypertext semantics. This research is
derived from efforts in the software engineering area to model user interactions
[17] and interfaces [18]. Trellis, hence, was not intended to model the semantics
of user navigations. Possible user navigation paths caused by interactions with
the browser – like the use of the back button or the history mechanism – are
not contemplated by the model. Furthermore, the Petri Nets used by Trellis
are not timed. Therefore, time, one of the most relevant features to model user
browsing semantics, cannot be captured by this model.

HMBS (Hypertext Model Based on Statecharts) [16] is a navigation-oriented
model for hypertext based on UML Statecharts. Like Trellis, HMBS is not
intended to describe the browsing semantics from the user’s point of view; e.g.
transactions are always mapped to existing links of the modelled hypertext.
An interesting feature of HMBS is the use of hierarchies, that allow using
an HMBS model as a refinement of a state of an HMBS model. Like Trellis,
HMBS would need to be extended with a timed semantics to properly capture
relevant user navigation behaviors.

WBM, on the other hand, is a general purpose model to describe user interac-
tions at a high level of abstraction, focusing only on navigational alternatives
relevant to the user and leaving out irrelevant in-between steps. It includes a
timed semantics that permits fully capturing user interactions with the appli-
cation and makes use of hierarchies that allow describing complex behavioral
models by nested simpler models. Moreover, WBM includes predicates, that
allow specifying queries over displayed contents in dynamic Web pages, and as-

17



signments that permit maintaining displayed contents as state variables and
to use them within predicates. Finally, WBM has an visual paradigm that
allows designers to easily specify arbitrary user behaviors.

A variety of design models have been proposed for Adaptive Hypermedia sys-
tems [19–21]. While most of these methods differ in approach, all methods
aim to provide mechanisms for describing Adaptive Hypermedia (see [22,23]
for a survey). Most of them do not use a full ECA paradigm and rather deal
with a CA paradigm [21]. Others [19] do not use an ECA paradigm and hence
do not refer directly to it or do not propose a formal model. Some of them
focus only on the adaptation, disregarding an effective description of the user’s
behavior that should trigger the adaptation [24]. A comprehensive overview
of commercially available solutions is presented in [25]. The author points out
that commercial user modeling solutions are very behavior-oriented: observed
user actions or action patterns often lead directly to adaptations without an
explicit representation of the user characteristics.

In the literature, AHAM [19] is often referred to as the reference model for
Adaptive Hypertext. It is based on Dexter [26], an early model for hyper-
text, and uses maps of concepts. AHAM presents many valid ideas (e.g. the
3-layer model capturing all the adaptive semantics) but is more suited to the
e-learning domain. Recently AHAM evolved into the AHA! project [27], orig-
inating a powerful tool to develop and maintain adaptive Web applications.
AHA! makes use of advanced CA rules, based on user preferences and already
visited links. The AHA! toolset is mainly based on textual editing for cre-
ating rules. Lately the project focused its interest on rule termination and
confluence, with the aim of detecting possible loops already at design time.

The model introduced in [24] extends WSDM [28], a Web design method,
with an Adaptation Specification Language that allows specifying adaptive
behaviors. In particular, the extension allows specifying deep adaptation in
the Web application model, but lacks expressive power as regards the specifi-
cation of the user’s behavior that triggers the adaptation. No discussion of an
implementation of the proposed design method is provided.

In [21] the authors propose a Software Engineering oriented model based on
UML and OCL to describe in a visual and formal way adaptive hypertext
applications. The adaptation model is based on a Condition-Action paradigm
that allows expressing conditions on the user’s behavior. The proposed visual
notation perhaps lacks immediacy due to the use of a visual paradigm born
outside the Web area.
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8 Conclusion and Future Work

In this paper we have proposed a general purpose approach for building
behavior-aware Web applications. Our proposal combines WebML and WBM
into a visual ECA paradigm that opens the road to the implementation of
high-level CASE tools for designing advanced Web sites.

When combined, WebML and WBM yield a very powerful model, with ad-
equate expressive power for capturing highly sophisticated Web dynamics.
WBM enables monitoring of behaviors ranging from rather coarse to very de-
tailed event sequences; the binding of WBM predicates to WebML enables the
specification of each event in terms of hypertext elements (pages and links)
and of the application content. While the combined expressive power is quite
strong, we also believe that the two models should be kept distinct, so as
to enable the specification of WebML applications (totally independent from
WBM) and of WBM scripts (that can be progressively refined and finally
bound to WebML concepts).

In our future work, we plan to extend our initial prototype of a reactive Web
system to support classical ECA features, including more sophisticated policies
for dealing with priorities and conflicts. Currently, we adopt the simple policy
of always choosing the rule of highest priority for execution. Furthermore,
we did not consider the problems of rule termination yet, which might arise
when rules trigger each other. Thanks to the strict relation between WBM and
WebML we believe that some termination problem can be detected at design
time; but it is neither possible nor useful to constrain rule sets at design time
so as to avoid any cyclic behavior, and therefore we will need to support
monitoring of nonterminating behaviors at runtime. Dynamic activation and
deactivation of rules and of rule groups is already under consideration and
the current prototype includes a preliminary version of such features. We are
also investigating the use of modeling primitives similar to UML statecharts
for expressing WBM; this would allow us to adapt existing case tools for the
specification of WBM scripts.

Our first prototype demonstrates the applicability of our approach, as it sup-
ports complex rules and therefore can build complex reactive applications. The
implementation of a second generation prototype is well under way, offering
optimized rule management and full graphic user interfaces to designers.
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