
Providing Flexible Process Support to
Project-Centered Learning

Stefano Ceri, Florian Daniel, Maristella Matera, and Alessandro Raffio

Abstract—While business process definition is becoming more and more popular as an instrument for describing human activities,

there is a growing need for software tools supporting business process abstractions to help users organize and monitor their desktop

work. Tools are most effective when they embed some knowledge about the process, e.g., in terms of the typical activities required by

the process, so that users can execute the activities without having to define them. Tools must be lightweight and flexible,

so as to enable users to create or change the process as soon as there is a new need. In this article, we first describe an

application-independent approach to flexible process support by discussing the abstractions required for modeling, creating, enacting,

and modifying flexible processes. Then, we show our approach at work in the context of project-centered learning. In this application,

learners are challenged to perform concrete tasks in order to master specific subjects; in doing so, they have to conduct significant

projects and cope with realistic (or even real-life) working conditions and scenarios. Often, students are geographically dispersed or

under severe timing constraints, because these activities intertwine with their normal university activity. As a result, they need

communication technology in order to interact and workflow technology in order to organize their work. The developed platform

provides a comprehensible, e-learning-specific set of activities and process templates, which can be combined through a simple Web

interface into project-centered collaboration processes. We discuss how the general paradigm of flexible processes was adapted to the

learning concept, implemented, and experienced by students.

Index Terms—Web-based teamwork processes, process design, flexible processes, e-learning, Web application design.

Ç

1 INTRODUCTION

WORKFLOW Management Systems (WfMSs) support the
definition and the execution of business processes.

They are based on process models that, at design time,
capture constraints on the execution of tasks as well as their
assignment to users and their mapping to resources. Then,
WfMSs manage task enactment at runtime according to the
model. Workflow applications are typically well defined
and highly repetitive in nature, so that the process
definition is a specialized task by itself, performed by a
process modeling expert by using a sophisticated tool
environment; once the process is defined, the system
normally supports several concurrent process instantiations
(or cases), each one characterized by its own set of input
parameters, users, and resources.

While the explicit definition of business processes is
becoming more and more popular in the early phases of
software engineering, WfMSs cannot claim a comparable
success and popularity: many applications, which do rely
on well-defined process models, are however still imple-
mented by means of conventional software. This lack of
success, on the one hand, is motivated by the complexity of
the WfMSs themselves and by the spread of the market of

workflow management products, which is characterized by
a large number of different products without a clear market
leader [32]; on the other hand, the excess of rigidity of
workflow enactment leaves no freedom to users. There is
however a growing need for more flexible tools, capable of
giving design control to users who are interested in
modifying, adapting, and extending existing process defini-
tions autonomously. In line with these considerations, this
paper is focused on flexible process management support, i.e.,
the specification and execution of processes in contexts
where the full process specification is determined by the
actual actors of the process when they approach process
execution or even while the process is already executing.

We have been motivated to design and deploy a new
paradigm for flexible processes by an earlier experience in
supporting project-centered learning through conventional
processes. More precisely, our research has aimed at
assisting teams of master students who are challenged to
perform concrete learning tasks about given subjects in a
structured and collaborative fashion. In such collaborative
environments, coordination processes are typically the result
of consensus decisions obtained after discussions among the
team members. Processes that are performed by different
teams may therefore be different. Even if processes are based
on a common core (or template), they usually need to be
adapted to the specific team’s collaboration style. For
instance, different teams may require processes that differ
in their timings and deadlines, or they may need to add
activities or verification cycles to the original template,
depending on the skills and maturity of the team compo-
nents and of the team as a whole.

Initially, we expected that teams would have made use
of “static” processes in form of Web applications [7], but we

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009 1

. S. Ceri, M. Matera, and A. Raffio are with the Dipartimento di Elettronica
e Informazione, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano,
Italy. E-mail: {ceri, matera, raffio}@elet.polimi.it.

. F. Daniel is with the Dipartimento di Ingegneria e Scienza dell’Informa-
zione, University of Trento, Via Sommarive 14, 38100 Povo (TN), Italy.
E-mail: daniel@disi.unitn.it.

Manuscript received 1 July 2007; revised 9 Jan. 2008; accepted 16 June 2008;
published online 25 June 2008.
Recommended for acceptance by Q. Li, D. McLeod, R. Lau, and J. Liu.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-07-0313.
Digital Object Identifier no. 10.1109/TKDE.2008.134.

1041-4347/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

soon realized that such approach had not enough flexibility.
Static processes partially help in the early or final phases of
the work (e.g., team formation, delivery of the team’s final
report for review), but even in these cases team-specific
changes would be needed. We also understood that
graduate students coworking in projects could not act as
designers of their static processes, regardless of any
technological support that we could design for them.
Students have a limited IT background and a very limited
availability in experiencing new technologies, as they are
anyway involved in a very heavy workload for completing
their masters.

After realizing that our approach could not be used as
is, we stepped back and tried to understand from scratch
the requirements for a new and effective concept of
flexible project. This work has finally led to the develop-
ment of a collaborative, open environment for project-
centered learning—the COOPER platform—which heavily
leverages on the idea of flexible, user-centric process
support. The approach, described in this paper, is
characterized by the following main contributions:

. We propose an intuitive process definition logic that
relies on a predefined set of customizable activities; in
cooperation with pedagogical experts, we have been
able to identify about 40 different activity types (see
Section 3.2), covering the specific needs of the
cooperative teamwork context. Activities are de-
scribed by means of parameters (e.g., the max
number of students allowed to take place in a
synchronous videoconference), with powerful de-
faults so as to keep at a minimum the parameters
that need to be specified by users. Activities have a
predefined implementation that includes their Web
interfaces and supports the recording of the activi-
ty’s state and of possible side effects (e.g., an activity
is completed, a document is downloaded).

. We provide an easy-to-use user interface enabling
even inexperienced users to specify workflows in a
controlled fashion by means of a form-based composi-
tion mechanism oriented toward users. In order to
keep the process definition simple, we have sacri-
ficed some expressive power.

. We allow the user to explicitly control the progression
of a workflow by means of control points that are
represented by decision activities to be performed by
the user. The interaction paradigm thus always
presents users with all possible legal activities that
can be performed after the completion of a given
activity and, based on the user’s choice, the work-
flow progresses accordingly. The motivation of this
design principle is to put the user in charge of
driving the workflow at all stages, leaving no hidden
semantics. In practice, this principle allows us to
limit the complexity of conditions: the proposed
dynamic processes have indeed only very few
decision variables, typically required to control
activity enactment in presence of conjunction, dis-
junction, and loops, whose value is sufficient for
taking simple decisions about the next activities to
be proposed to users.

. We enable the independent evolution and modification
of process definitions, even during process execu-
tion. Processes may derive from an initial template,
but teams are enabled to change them regardless of
other process instances descending from the same
template. By resorting to a terminology that came
into use with OEM [25] and become then popular
with XML, we say that our processes are self-
describing, meaning that they carry with them not
only their state representation but also their schema
description. The evolution of self-describing pro-
cesses is much simpler than that of template-
depending processes (see, for instance, [11]).

. We enable accountability, i.e., the full a-posteriori
tracing of process execution, in terms of a state
describing the performed activities, with indications
about timings, users, resources being used, and their
associated state.

In summary, we believe that flexible processes can be
enabled through customized activities, a careful use of
form-based design, and explicit workflow control; this, as
we will formally discuss in this paper, partially reduces the
class of processes that can be generated. However, port-
ability and accountability are guaranteed much in the same
way as with static processes, and independence is added as
a feature that greatly simplifies process evolution. In the
next section, we discuss how the above design principles
were transformed into modeling concepts and system
specifications, which are independent of the specific
customization domain. We will then describe the applica-
tion of the resulting framework to the domain of collabora-
tive e-learning.

2 A MODEL FOR FLEXIBLE PROCESSES

The concept of flexible processes addressed in this
research leverages on two main ideas: the need to provide
process designers with a strong guarantee of the semanti-
cally correct execution and termination of process instances,
and the possibility to easily (flexibly) modify processes
even during runtime. Providing guarantees on the process
semantics aims at assisting the continuous redefinition or
evolution of running processes by users that in most cases
are inexperienced.

2.1 Process Model

As opposed to traditional workflow products, our
approach provides domain-specific support for the orga-
nization of work into process structures. We therefore start
with defining the concept of activity type, which is one of
the cornerstones of the proposed approach to flexible
processes.1

Definition 1 (Activity type). An activity type is defined as a
tuple T ¼ hName;HT; P i, where

. Name is the name of the domain-specific activity type.

. HT is the activity type’s hypertext front end, which is
used as user interface for the execution of the activity

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

1. In general, the term activity denotes a concept of the workflow model,
while the term task denotes the execution of a portion of work by the user.

(each time an instance of a particular activity type is
executed, the user is provided with the predefined
hypertext portion).

. P ¼ fpig is a set of activity-specific properties, such
as description, deadline, etc., to be configured during
the process definition when the activity type is
instantiated.2

With the help of typed activities, modeling even complex
working scenarios is highly facilitated, provided that each
task that can be performed has already been defined
through a proper activity type. A process designer, hence,
needs to have access to a library of activity types, which can
be domain- or application-specific. The library needs to be
as complete as possible in its particular domain, i.e., all
possible activities that may be required during process
execution need to be recognized, in order for the library to
represent a valuable instrument in the hands of the process
designer. Given that the library of available activity types
depends on the domain, it is not possible to predefine an
exhaustive set of universal activity types in advance; as a
matter of fact, activity types are known at system config-
uration time and depend on the interaction between the IT
expert who is configuring the system and the domain expert
who is aware of the users’ needs in terms of the activity
library.

The definition of a process requires thus the instantiation
of a set of activities. We distinguish between two kinds of
activities: user activities and system activities. The former are
instantiations of activity types as defined above, the latter
represent routing activities, which can be used to specify
the structure of the process, rather than the single work
items. User activities are defined as follows:

Definition 2 (User activity). A user activity is the instantia-
tion of an activity type T , which corresponds to a task to be
performed by a user during process execution, and is defined
as: AU ¼ hType;Name; PV ; Statei, where

. Type is the name of the instantiated activity type,

. Name is the name assigned to the activity during
process definition,

. PV ¼ fhpi; viig are the values vi for each property pi,
and

. State is the state of the activity during process
execution (see Section 2.3 for further details).

System activities are defined as follows:

Definition 3 (System activity). A system activity is
executed by the system and can be defined as AS ¼ hType;
Name; PV ; Statei, where

. Type 2 fStart; End; AndSplit; OrSplit; AndJoin;
OrJoin; LoopSplit; LoopJoing,

. Name is the name assigned to the activity,

. PV ¼ ; (system activities do not have properties), and

. State is the state of the activity during process
execution (see Section 2.3 for further details).

The Start and the End activities denote the beginning and
the end point of a process definition, respectively. All the

other types denote routing points, which are needed to
structure the process flow. The AndSplit allows the creation
of parallel execution flows, synchronized by means of an
AndJoin. The OrSplit allows the creation of alternative
process flows, where only one flow can be activated for
execution. The LoopSplit and the LoopJoin allow the defini-
tion of cycles. The semantics of system activities is standard,
see, e.g., [32]; our main choice was adopting an exclusive
semantics for the OrSplit.

The instantiation of a user activity requires the associa-
tion of the activity with the users that will execute it. Users
may pertain to user groups.

Definition 4 (User group). User groups represent clusters of
users that express the roles that users may play in the system.
Each user may belong to one or more user groups.

The instantiation of a user activity may also involve the
association of the activity with resources.

Definition 5 (Resource). A resource is an instance of data
(e.g., a tuple in a database or a file on the hard disk) that can
be associated with one or more activities for inspection or
manipulation.

Given the previous definitions, the process model our
approach relies on can be summarized as follows:

Definition 6 (Process model). A process model is defined as
the tuple PM ¼ hName;A;R; U; succ; res; acti, where

. Name is the name of the process;

. A is the set of user and system activities in the process;

. R is a set of document resources associated to user
activities (R may be empty);

. U is the set of users participating in the process
execution, possibly grouped by role—each user activity
is associated either with one individual user (meaning
that only the specified user is required to execute the
activity) or with a user group (meaning that any user
of the group may execute the activity);

. succ is the function that allows the construction of the
(directed) process graph by associating each activity in
A with one, more, or no successor activities (user
activities always have one successor, system activities
may have one or more successors, with the only
exception of the End node that has no successor3);

. act is the function that associates each user activity
either with an individual user or with a user group; and

. res associates resources with user activities.

2.2 Process Creation

Definition 6 leads to the specification of arbitrary process
models, based on the notion of activity types. The aim of
our framework is, however, to guide users in the definition
of correct process models. This can be partially achieved
through the availability of the predefined activity type
library. In addition, we propose the adoption of a simple set
of fixed modeling constructs that can be recursively
composed in order to achieve arbitrarily complex process
logics:

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 3

2. Each activity type has a very own set of properties specified at activity
type definition, which cannot be anticipated in this general definition.

3. The semantics of the function succ depends on the standard semantics
of system activities, see [32].

Definition 7 (Modeling construct). Modeling constructs are

particular modeling configurations that are composed of user

and system activities and, recursively, of other modeling

constructs. As illustrated in Fig. 1, allowed constructs are

. single user activities,

. steps of parallel branches, which are opened by a
system activity of type OrSplit or AndSplit and
closed by the corresponding join system activity
(the OrSplit implies the execution of only one of the
parallel branches of a step, the AndSplit implies the
parallel execution of all the branches), and

. cycles, which are opened by a LoopJoin system
activity and closed by a LoopSplit system activity.

The previous modeling constructs enable building

complex process logics, by adopting the following con-

struction rules:

. Each process must start with a Start activity.

. Process definition proceeds by iteratively adding
new constructs after the last inserted construct, until
the process definition is completed. More precisely,
the insertion of new constructs is allowed only after
a Start node or after any of the allowed constructs.

. The addition of a new construct may lead to the
following situations that depend on the construct type:

- If the new construct is an activity, the new
activity is concatenated to the last construct in
the process definition.

- If the new construct is an And/Or-step, the
opening split is connected to the last construct
in the process definition, and a corresponding
closing join is added. The step definition then
proceeds by constructing each branch by the
arbitrary concatenation of the allowed con-
structs. After the definition of the branches of
the step, the step definition is closed.

- If the new construct is a cycle, an opening LoopJoin
and a corresponding LoopSplit are inserted, and
the body of the cycle is constructed by arbitrarily
concatenating allowed constructs. Once the body
of the cycle is defined, the cycle is closed.

. Each process must end with one End node.

Lemma 1. The process model resulting from the application of the

previous modeling rules is a structured process model, as

defined in [19].

Proof. We note that the composite modeling constructs
allowed in our process model (cf. Fig. 1) comply with the
basic workflow models in [19]: the Or-step is equivalent
to the Decision structure, the And-step is equivalent to the
Parallel structure, and the Cycle is a simplified version of
the structured loop, in which we only use the repeat-until
configuration.

Analogously as in [19] and based on the previous
construction rules, we can thus inductively say that

. a process consisting of a single activity is structured,

. the concatenation of two structured processes is
structured,

. the Or-step and the And-step of structured pro-
cesses are structured, and

. the Cycle having a structured process as body is
structured. tu

Theorem 1. A process model constructed according to the
previously described construction rules is well formed, i.e., it
never leads to a deadlock, nor to multiple active instances of the
same activity.

Proof. We observe that a generic process model will deadlock
if the branches of an OrSplit are joined by an AndJoin, and
that a generic process model may lead to multiple instances
of an activity that are active at the same time if the
branches of an AndSplit are joined by an OrJoin. In
Lemma 1, we showed that process models constructed
according to the described construction rules are struc-
tured. Hence, splits and joins are coupled correctly by
construction, thus effectively avoiding situations of dead-
lock or multiple running instances of a same activity. tu

It is worth noting that our process model is lightweight in
that it does not require any process variables to guide the
control flow at runtime; conditions over process variables
are thus not necessary, and this eases the comprehension of
a process model and yields a process semantics that is more
accessible to users who are not familiar with process
modeling. The state of a running process is therefore
determined by the progression of the workflow and the
contents produced by its users.

This design decision depends on the peculiar nature of
collaborative processes addressed by our framework, which
are as a matter of fact user-driven. Namely, users are the
driving force that controls the process flow. For instance, if
there is an OrSplit routing node in the process definition,
we do not base the routing decision on the evaluation of a
predicate over process variables, but instead we consider
explicit user decisions: the user decides which branch to
execute by simply starting one of the ready activities. Once
an activity of one branch has been chosen, activities of the
other branch are disabled, i.e., they are no longer execu-
table. The same holds for cycles: after each execution of the
cycle’s body, an explicit user input decides whether to
iterate or to leave the cycle.

2.3 Process Enactment

Up to now we discussed the static properties of our process
model. In the following, we define its dynamic properties,

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

Fig. 1. High-level process modeling constructs in the guided process

definition procedure. Rounded boxes are atomic activities, squared

boxes are constructs that recursively may contain other constructs.

which refer to the execution phase and turn the so far static
process model into a dynamic process model.

Dynamic properties represent a distinguishing feature of
the proposed model with respect to other proposals
discussed in the literature [11]. In fact, our approach
overlaps the ideas of process model and process instance.4

Each process definition has only one executing instance or,
the other way around, each process execution has its own
process definition. This interpretation of the process leads
to self-describing processes: A process definition bears all
metadata (process structure, role assignments, resource
assignments) and runtime data (state of the process, states
of activities, execution time stamps) necessary for the
correct execution and for the monitoring of the process.
Self-describing processes allow us to support process
modification operations (see Section 2.4).

Fig. 2 describes the legal execution states of an activity in
a running process. The state chart diagram is composed of
three kinds of states, each corresponding to a different
execution mode of the activity: normal execution, cyclic,
and modification mode. The normal execution mode (in
boldface) includes all standard states of activities in a
running process; the cycle mode (in dotted lines) includes
the states of activities that are part of a cycle and have
already been executed at least once;5 and the modification
mode (in dashed lines) includes the states into which
activities are automatically entered when process execution
is halted because a new process definition activity takes
place. Table 1 summarizes the meaning of the states an
activity may assume during its life cycle.

Table 2 summarizes the transitions that determine state
changes in Fig. 2. Transitions correspond to operations
which are performed either by the user or by the system.
Accordingly, we distinguish between user operations (i.e.,
start, suspend, submit, delete, create, and modify) and system
operations (enable, disable, block, and free). The user operations
start, suspend, and submit reflect the typical actions a user
may perform in a WfMS during runtime, while the
operations delete, create, and modify show the actions the
user may perform during the runtime process modification
(see the next section). Analogously, the system operations
enable and disable refer to the execution of a process, while

the operations block and free refer to the transition from
execution mode to modification mode and vice versa.

The logic of Fig. 2 can thus be summarized as follows:
during the execution of a process, activities are either in the
normal execution mode or in the cycle mode. If a process
designer starts the modification mode, already completed
activities cannot be altered anymore; only activities in the
created and the ready state may be modified. In order to
prevent inconsistencies between the process under mod-
ification and its execution, no activities are enabled during
the modification, and activities in the ready state get blocked;
running activities may be completed without impacting the
process definition. When modifying a running process, a
process definer may thus delete or modify created or blocked
activities only, or she/he may create new activities.

After the process modification, blocked activities are freed
(i.e., they are again ready for execution), and the normal
execution of the process proceeds according to the possibly
modified process description.

2.4 Process Modification

As described in Fig. 2, during process modification, a process
definer may create, delete, or modify activities. The existence of
such modification operations at runtime is the essence of
flexible processes. To prevent possible inconsistencies
during process modification, we propose a set of process
editing operations that respect the idea of “correctness by
construction,” based on the modeling constructs already

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 5

4. As we will show in Section 2.5, we also allow the definition of process
templates, which play the role of process models.

5. We need to distinguish activities that are completed, but will not be
executed anymore (normal execution mode), from activities that are
completed, but could be executed again (cycle mode), in order to guarantee
correctness during process modification.

Fig. 2. Life cycle of instantiated (created) activities in a dynamically changing process definition. States in the state chart diagram represent the

phases that an activity undergoes in its life cycle, transitions represent system or user actions. For the description of the states and the transitions,

see Tables 1 and 2.

TABLE 1
Description of the Activity States

adopted for the process definition phase. The “correct-by-

construction” approach can be assessed by considering the

operational semantics of the operations that may alter the

structure of a process definition:

. Inserting a new modeling construct after an existing
one. The respective operation is defined as
insertAfterðC;CpreÞ, with C being the new construct
and Cpre being the construct after which C is to be
inserted. Fig. 3 shows the situations that may occur:
1) a new construct may be inserted after an existing
construct (Fig. 3a) or 2) a new construct may be
inserted after a split node, thus causing the creation
of a new branch in the respective step (Fig. 3b).

. Inserting a new modeling construct before an
existing one. The respective operation is defined
as insertBeforeðC;CsuccÞ, with C being the new
construct and Csucc being the construct before
which C is to be inserted. Fig. 4a shows how to
insert a new construct before an existing construct,
Fig. 4b shows how to insert a new construct before
the first construct in a branch of a step (the same
approach also applies to the body of a cycle).6

. Defining a step starting from an already existing
concatenation of constructs, which must be a struc-
tured process as defined in Section 2.2. The existing
concatenation thus becomes a branch of the step,
while other branches are to be added afterward. Fig. 5
graphically illustrates the modification. The respec-
tive operation is defined as stepðtype; Cfirst; ClastÞ,
with type being either Or-step or And-step, Cfirst being
the first construct of the concatenated constructs, and
Clast being the last construct of the concatenated
constructs. As side effect, the creation of a step causes
the insertion of a split node before Cfirst and of a join
node after Clast, as well as the creation of the
construct C3 to be further specified, according to
the general structure of the step construct (cf. Fig. 1).

. Defining a cycle around an already existing concate-
nation of constructs, which must be a structured
process as defined in Section 2.2. The existing
concatenation thus becomes the body of the cycle

(cf. Fig. 5 that shows the creation of a step; the
creation of a cycle proceeds analogously, but with-
out the need to define additional branches). The
respective operation is defined as cycleðCfirst; ClastÞ,
with Cfirst and Clast being the first and the last
construct of the concatenation, respectively. This
causes the insertion of a LoopJoin before Cfirst and of
a LoopSplit after Clast.

. Deleting a modeling construct, by using the operation
deleteðCÞ, with C being the construct to be deleted.
Deleting an existing construct may have an intuitive
meaning like in Fig. 6a, or it may present side effects,
as in Figs. 6b and 6c. Indeed, if one deletes the last
construct of a branch in a step (Fig. 6b, first step), the
whole branch is removed from the step; if the last
construct of the last branch is removed, the whole
step (i.e., its split node, the construct, and the join
node) is deleted (Fig. 6b, second step). If the last
construct of a cycle is removed, the whole cycle
construct is deleted (Fig. 6c).

. Modifying an activity, by using the operation
modifyðAÞ, with A being the activity to be modified.
Modifying properties and associations of an activity

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

6. The distinction between insertions before and after is required to allow
the addition of new constructs in each possible position in a process
definition and the creation of new branches in steps.

Fig. 3. insertAfter operation. (a) Creation of a new modeling construct

after another construct. (b) Creation of a new branch in an existing step.

Fig. 4. insertBefore operation. (a) Creation of a new modeling construct
before another construct. (b) Creation of a new construct in an existing
branch.

TABLE 2
Description of the Transitions

Fig. 5. Defining a new step construct starting from existing constructs.

with resources or users does not alter the process
structure and, hence, does not represent a threat to
the correctness of the process. Modifying an existing
activity grants the process designer access to the
activity’s configuration panel, already used for the
instantiation of the activity. There is no modification
operation for steps or cycles.

Considering that the process model underlying our
flexible processes is well formed and given the previous
characterization of the possible operations that may be
performed on a flexible process model, we can say that

Theorem 2. Flexible process models are always well formed.

Proof. Modification operations are applied to structured,
well-formed process models. None of the legal modifica-
tion operations breaks the structuredness of the input
process:

. The insertion of a new construct before or after an
existing construct corresponds to a concatenation
(cf. Theorem 1).

. The creation of a new branch in an existing step is
performed in accordance with the construction
rule of the step construct (cf. Section 2.2).

. A new step or a new cycle may only be defined
around structured constructs. Therefore, there are
no spare splits or joins (splits or joins without
corresponding join or, respectively, split) in the
body of the step or cycle.

. The deletion of an existing construct takes into
account the structure of the process model
(cf. Fig. 6).

. The modification of the properties of an activity does
not impact on the structure of the process model.

Hence, the allowed operations preserve the well
formedness of the input process, i.e., they never lead to
an AndSplit followed by an OrJoin or to an OrSplit
followed by an AndJoin. tu

We can conclude that, just as the high-level guidance
during the definition of a new process allows us to ensure

the correct construction of the process model (see Section 2.2),
the semantics of the create, modify, and delete operations
allows us to guarantee the correct modification of a process
model during runtime.

2.5 Process Templates

Templates are predefined processes, available to users; they
can be considered as a library of predefined processes,
available to them. Users copy templates into processes,
which are then identical to any other process created from
scratch; however, some of the activities of a template can be
tagged as mandatory.

Definition 8 (Process template). A process template is a
process model that includes the possibility of tagging some of
the activities as mandatory.

Mandatory activities must be executed in any legal
enactment of the process (hence, they cannot be directly or
recursively included within disjunctive steps). When a
template is copied into a process, the process inherits these
constraints; therefore, mandatory template activities cannot
be removed from such processes, neither due to their
deletions, nor due to the creation of steps such that the
mandatory activity can be bypassed. Moreover, if manda-
tory activities are related by a precedence relationship, then
that precedence relationship must be preserved when the
process is modified.

Setting an activity as mandatory is a choice of the
template designer, who can constrain the way in which all
processes derived from the template may evolve. For
instance, the activity of delivering a final report could
considered mandatory in a template that otherwise includes
arbitrary activities. That same template could include as
initial mandatory activity the definition of requirements,
and then any derived process would include the activities
of requirement definition and of final report delivery, with
the former one occurring earlier than the latter one. In light
of these considerations, the use of template-based processes
can be considered as an instrument for the specification of
process invariants, i.e., of a set a minimum requirements that
process definitions must satisfy.

3 FLEXIBLE PROCESSES IN E-LEARNING

Computer Supported Collaborative Learning (CSCL) pro-
vides learning environments where learners’ teams colla-
borate by means of computer-mediated services with the
aim of reaching a common learning goal [15]. In this context,
learning environments are organized so that students can
1) act individually, by producing separate results later
combined to achieve a group result, 2) cooperate, by sharing
and discussing ideas, and 3) jointly collaborate on some
artifacts, possibly following some planned procedures, to
reach a team result.

Collaboration requires the most intensive form of
interaction, since it also implies some form of coordination
[14] based on the definition of processes guiding the
learners’ activities. The need to support coordination
through process-based learning is becoming more and more
relevant: some studies have indeed showed that enabling
learners to plan their collaboration, by allowing them to
define processes on their own, is a success factor to improve
learners’ productivity [9].

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 7

Fig. 6. Delete operation. (a) Deletion of a modeling construct. (b) Deletion

of the last construct in a branch. (c) Deletion of the last construct in a

cycle.

In line with the previous observations, the COOPER
project [6] aims to support team-based, project-centered
learning processes, where learners belonging to distributed
teams are asked to work on projects and to cooperate to
produce some results. In particular, the scenario in which
the project moves is shaped up around the lifecycle of
projects. As illustrated in Fig. 7, three main phases allow
managing and developing projects. In a preproject phase,
projects are first defined, by evaluating project proposals,
which are then assigned to teams. During the following
project development phase, teams work on the assigned
project to achieve predefined goals. Finally, the postproject
phase addresses the evaluation of results and their dis-
semination. Dissemination also implies storing results
persistently into a knowledge repository describing the full
history of the project, available to the user organizations
and/or stakeholders.

In this general scenario, our framework for flexible
processes has been adopted to support the project devel-
opment phase, offering facilities for a flexible schedule and
organization of collaborative tasks. The result has been the
production of a Web-based collaborative platform, covering
the requirements for project-based education posed by the
users’ institutions involved in the COOPER project. The
platform provides users at work on projects with easily
customizable project management activities (e.g., for build-
ing teams, for assigning roles and privileges to individuals,
for defining work plans and agendas, for agreeing upon
decisions, for organizing repositories of documents, etc.), as
well as cooperation tools, including asynchronous ones
(repository management, forum, and so on), as well as
synchronous communication tools (chats or conferencing
environments, using Voice-over-IP (VoIP) technology) [1].
In accordance with the process model defined in Section 2,
such tasks can also be easily composed into flexible
processes, to guide the team activity during the develop-
ment of their projects.

The rest of this section concentrates on the features of our
collaborative platform that supports flexible processes.

3.1 The Actors

In order to clarify the organization and functionality of the
platform, it is useful to clarify the different roles that users
can play in the definition and the execution of flexible
processes. The user roles depend on the expertise required
to set up the domain- or application-specific activities (work
tasks or learning assignments), to organize work into
processes, to perform work or learning tasks, and to
monitor the executed tasks. The COOPER platform reflects
these four competencies in the form of four different roles,

i.e., activity designers, process designers, users (students), and
tutors (professors). Typically, the activity designer specifies
the activity types that are available in the platform, the
process designer then defines process templates, the users
perform the actual work or learning tasks, and the tutor
monitors the process and the users’ learning progression
and may also define process templates. More precisely, the
four roles are defined as follows:

The activity designer identifies and defines application-
specific activity types, together with their properties and
constraints. In this way, she/he tailors the support for
flexible processes to the chosen application domain, by
extending the activity type library. Activity design typically
requires the analysis, prior to the deployment of the
platform, of the particular application domain that the
platform must address, and therefore the activity designer
operates at design time. Once the activity type library has
been defined, and thus the platform has been set up, two
further roles then take part in the definition and execution
of processes.

Starting from the activity type library and/or from
predefined templates, the process designer instantiates
activities and composes them into processes. In most cases,
the activity designer is a tutor supervising the team during
the project development who wants to schedule and
organize the team activity. More specifically, it may happen
that the tutor defines process models in form of templates,
to suggest a basic organization for the team collaboration.
Team members can also play the role of process designers.
They are indeed enabled to define new processes by
extending templates, or by composing new models from
scratch.

Given a process definition, the users are then the actors
who have been assigned with some activities within the
process, and that therefore perform such activities during
the process execution. Users are also allowed to modify
process definitions during runtime, after the process has
been launched, with the only limit of not violating the
template constraints that the process may hold by definition.

A relevant feature in e-learning scenarios is assessment.
At this proposal, tutors are allowed to monitor process
execution; they have, therefore, access to monitoring
interfaces that enable them to evaluate the activity of the
whole team as well as of each individual user.

3.2 The E-Learning Activity Type Library

Based on the e-learning scenarios analyzed within the
COOPER project, we have developed a library that includes
some 40 activity types, classified according to the main
cooperation goals they are related to the following:

. Teamwork planning. This category refers to the
organization and the scheduling of the team work,
which is supported by activity types such as: “Assign
roles,” “Collect team member competencies,” “Define
tasks,” “Assign tasks,” “Agree on task division,”
“Define milestones,” and “Plan deliverables.”

. Resource management. This category refers to the tasks
for publishing, accessing or also recommending
resources (e.g., documents, forum messages, wikies,
etc.). The related activity types are “Publish re-

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

Fig. 7. Phases and activities in the project lifecycle.

sources,” “Acquire resources,” and “Recommend
resources.”

. Communication. This category refers to tasks for the
invocation of synchronous [1] and asynchronous
communication services. The activity types in this
category include making a VoIP call, creating,
opening, moderating, joining, and closing synchro-
nous activities (such as a one-to-many videoconfer-
ence), moderating meetings, defining and taking
part to chat rooms, co-browsing or co-editing for
application sharing, and voting through polls.

. Reviewing and assessing. This category covers some
reviewing activities, as well as assessment for team
members, for themselves and also in the context of the
project team [30]. Activity types in this category are
“Creating Review Reports,” “Designating reviewers,”
“Submitting reviews,” and also “Define assessment
criteria,” “Define performance indicators,” and “Plan
assessment.”

For all the previous activity types suitable hypertext
interfaces have been defined, which allow users to execute
the activities instantiated starting from such types.

3.3 Web-Based Definition and Execution of
Processes

Our collaborative platform makes use of a Web front
end, which provides users with easy-to-use interfaces for
the definition and execution of their collaboration
processes.

Process definition is performed by means of a form-
based and/or a visual process editor (see Fig. 8a), which do
not require users to be aware of process modeling concepts.
Users are indeed “guided” to apply the composition rules
illustrated in Section 2; the result is the construction of a
structured process that can then be executed correctly.

Just to give an example of process definition, Fig. 8a
reports a page from our process editor, which allows the
user to instantiate an activity within a process, starting from

an activity type. The user selects the activity type (e.g.,
“UPLOAD”), and then enters the activity name and the
values for all its properties, e.g., the activity description and
the deadline for the activity execution. She/he then assigns
the activity to an individual user or to a group of users (to
instantiate the act function in the process model). Depend-
ing on the activity type, the user may also associate the
activity with some resources to manage possible document
flows (the res function in the process model). The process
definition can then proceed by adding other modeling
constructs (activities, steps, or cycles), as allowed by the
construction rules illustrated in Section 2 until the end of
the process is reached. In particular

. as illustrated by the example above, if the process
designer adds an activity, she/he is required to
specify the activity properties, the associated users
and possible resources; the system then automati-
cally creates the connection with its previous
constructs (corresponding to the succ function in
the process model);

. if a process designer adds an And-step or an Or-step,
the system automatically creates the required rout-
ing nodes (split and merge) and also defines the
required connections of the routing nodes with the
previous and next constructs (the designer is just
required to specify the branches of the step); and

. if a process designer adds a cycle, the system
automatically creates a LoopJoin and a LoopSplit,
and all their required connections with the
constructs preceding and succeeding the cycle
(the designer is then required to specify the
constructs forming the cycle body, plus the
condition that will control iterations during pro-
cess execution).

As showed in Fig. 8a, process creation by means of the
form-based paradigm is also accompanied by a visual
representation of the process diagram under construction.

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 9

Fig. 8. Screen shots of the COOPER platform. (a) Form-based process definition with visual preview. (b) Editor for visual process definition.

(c) The user’s to-do list.

In each moment, users are able to shift to the visual
paradigm, which leads them into a page (see Fig. 8b) where
they can directly compose the graph in a WYSIWYG
manner.

If the process definition is performed through the form-
based paradigm, the process model is constructed from left
to right. For example, steps are constructed by specifying
a branch at a time, with a “depth-first” procedure: the
definition of a branch must be completed before the
definition of another parallel branch in the same step can
start. The “left to right” construction is not preserved when
the visual modality is adopted for process definition, since
the user is potentially allowed to visually insert constructs
in any order; but the definition procedure still reflects the
construction rules illustrated in Section 2. For example, the
addition of a step implies the automatic insertion of the
corresponding routing nodes. Also, some validation rules
allow checking the correctness of constructs, as the designer
inserts them into the diagram as well as when the diagram
is finalized. These features guarantee that the resulting
process definitions are well formed.

Once a defined process is launched for execution, the
involved users are notified through their to-do list. Fig. 8c
depicts the page where a user can see the state of her/his
tasks, having access to the list of the processes she/he is
involved in, with the possibility to get an overview of the
process activities involving the whole team, as well as
details about her/his activities. The user is also alerted
about her/his overdue activities. She/he can therefore start
the execution of her/his pending activities. Every time an
activity is started, the user is redirected to the page(s)
enabling its execution.

During process execution, tutors in charge of supervising
teams are then provided with a monitoring panel that
summarizes the execution state of the process activities for
all their teams. Tutors can access the details of all the
activities. They can also filter the completed activities as
well as the overdue activities. For the latter, they can
undertake some “compensation actions,” such as assigning
them to other users or extending the deadline.

4 IMPLEMENTATION

Fig. 9 illustrates how the application features described in
the previous section are composed into one comprehensive
Web application, i.e., the overall COOPER platform. Starting
from the discussed Web front ends of the COOPER
environment, the functional architecture depicted in Fig. 9
shows how the single modules interoperate and make use of
data and metadata.

Process definition is performed via a process editor, which
makes use of the predefined activity type library and,
possibly, of existing process/template models. Process execu-
tion is performed via the COOPER’s collaboration environ-
ment, which leverages on the hypertext front ends of the
predefined activity types to allow users to produce and
consume process data in form of resources stored in the
resource repository. Process advancement is governed by the
stored process definitions, which are interpreted during
process execution by a dedicated process engine that contains
the necessary application logic to maintain the running

processes’ metadata and, hence, to drive the activity flow in
the collaboration environment. During the execution of a
process, it is possible to check the status of the process and
of the single activities composing the process by means of
the process monitor. Fig. 9 also highlights the competences of
the individual actors in the COOPER platform.

The design and implementation of the above Web plat-
form for project-centered e-learning has been achieved by
suitably extending Web Modeling Language (WebML [12]), a
conceptual modeling language and development method for
data-intensive Web applications. The choice of WebML for
the implementation of the platform is justified by both its
data-driven and model-driven approach. The data-driven
approach fits best to the need for a simple and efficient
management of process data and metadata and to the need
for easily sharing such process data and metadata among
different application components, i.e., collaboration environ-
ment, process editor, and process monitor. The model-driven
design fits best to the need for a fast and efficient
development process, as the one enabled by the automatic
code generation technique that accompanies the WebML
method [33].

The main extensions to the modeling language that have
been developed in the context of the COOPER project refer
to novel, collaboration-specific requirements in Web appli-
cation design such as7

. instant messaging for synchronous text-base
discussions,

. push & speak for VoIP telephony,

. audio/videoconferencing tool for VoIP phone confer-
ences among a group of people, also equipped with
webcam-based videoconferencing support, and

. application sharing for the collaborative, synchronous
work on one shared application, e.g., by means of
the novel co-browsing feature.

The previous features represent important enabling
technologies for the synchronous communication among
team members. While asynchronous communications (e.g.,

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

Fig. 9. The conceptual architecture of the COOPER framework,

supporting the definition and execution of flexible processes.

7. For a detailed description of the COOPER extensions for WebML, refer
to [1].

email and discussion forums) could easily be implemented
by means of the standard WebML constructs, the described
synchronous communication mechanisms have required a
proper extension of the language and the underlying
runtime framework.

According to the WebML development process, the
implementation of the COOPER platform has therefore
proceeded in two main development steps: data design and
hypertext design.

4.1 Data Design for Flexible Processes

The adoption of a data-driven paradigm for the manage-
ment of flexible processes requires that different elements
describing process data (resources and documents created
or consumed by users) and process metadata (process
model, runtime process management data) be explicitly
represented as data in the data layer underlying the
COOPER platform. Accordingly, the process model for
flexible processes introduced in Section 2 has been
formalized by means of appropriate data entities and
relationships that, during process definition and execution,
maintain the necessary runtime data.

The result of this formalization is summarized in Fig. 10.
The dashed boxes in the Entity-Relationship diagram show
how the single components of the process model contribute
to the four information repositories identified in Fig. 9. At
the left-hand side, the user model contains the basic
identification and authentication data (entity User), as well
as the entity Group, which provides for the association of
users with user groups and, thus, for the management of
access rights. The relationships templateDesigner and
processDesigner also express the association of some
users playing the role of template designer or process
designers with the corresponding templates and processes.

At the top right corner of the figure, we have the activity
type library, which in its simplest version only contains the
name of the hypertext portion providing the Web interface
for the execution of the activity. As we will see in the
following, the hypertext portion corresponds to an area in
the WebML hypertext schema. In the lower right corner of
the figure, we have the resource repository, containing the
descriptions and references to the data objects produced or
consumed during process execution, typically attachments
in form of files stored in the platform. In the center of the
figure, we finally have the process/template models, which
represent the main process metadata required for the
execution of the flexible processes. In the top part, the

entities Template and Activity store template models,
in the lower part, the entities Process and Task store
process models. Template models cannot be executed
directly and only serve to instantiate process models, which
is achieved by copying all template-specific metadata from
the entities Template and Activity to the entities
Process and Task. Process models, on the other hand,
may also be executed; the entities Process and Task

therefore also contain some runtime data required for the
automatic management of the process advancement and the
monitoring of the process state. The relationship between
the entity Task and the entity ActivityType is required
to track the association of tasks that are created after the
instantiation of the template with their activity type; the
activity types of the tasks that are part of the original
template definition are inherited from the entity Activity

at process instantiation time.
As for the mapping of the process model introduced in

Definition 6, we can thus say: The set A of activities is
represented by the entity Task, the set R of resources is
represented by the entity ResourceDesc, and the set U of
users is represented by the entity User. The functions succ,
act, and res, instead, are modeled by means of the
relationships succ, act, and res. The relationship succ

assigns to each activity of a process a set of successor
activities; the relationship act assigns to each activity a
user; and the relationship res assigns to each activity the
possibly used resources.

The last named relationship in Fig. 10 is sjoin, which
is required to keep track of the start and end system
activities of the modeling constructs step and cycle. More
precisely, this is achieved by assigning to the step’s or the
cycle’s opening system activity (AndSplit, OrSplit, or
LoopJoin) its respective closing system activity (AndJoin,
OrJoin, or LoopSplit). This technique is necessary to
guarantee the correctness of the process models, as
described in Sections 2.2 and 2.4.

It is worth noting that, due to the adoption of self-
described processes, the entities Process and Task are
used both at design time, to store the initial process model,
and at execution time, to capture possible process modifica-
tions and runtime metadata for process monitoring. The
management of these data is performed by the process engine.

4.2 Hypertext Design

The model-driven, visual paradigm of WebML for the
specification of the application’s hypertext front ends is
tightly coupled with the organization of the application’s
data. The previously described formalization of the process
model as application data (Fig. 10), therefore, represents the
starting point for the development of the Web front ends of
the COOPER platform. In line with the focus of this paper,
we limit the following discussion of the development of the
hypertext front ends to the part concerning the execution of
flexible processes in the COOPER platform; for the
complete discussion of the platform and its implementation,
the reader is deferred to [6] and [13].

Fig. 11 shows a simplified WebML hypertext schema that
shows how, during process execution, the COOPER plat-
form dynamically computes the process flow that needs to
be followed for each user. Starting point for this computa-

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 11

Fig. 10. The data model of the COOPER platform.

tion is the activity type library introduced in Section 2 and
represented in Fig. 11 by means of a set of WebML areas (for
presentation purposes, the areas in the figure are left
empty), which contain for each activity type the hypertext
portion that represents the actual interface that is presented
to the user for the execution of the activity.

Hypertext computation during process execution there-
fore proceeds as follows: A user accesses her/his Home

page (the rectangle labeled with an H in the left part of the
figure) by logging in to the COOPER platform. The platform
provides the user with her/his personalized list of ready
activities she/he can choose from. Selecting one of the
activities invokes the Start proxy unit (representing a
business logic operation in WebML), which selects the
appropriate hypertext portion associated with the activity
chosen by the user. Choosing a hypertext portion means
forwarding the user to the start page of the respective area
in the hypertext schema. Fig. 12, for example, shows how a
hypertext portion of an activity type is defined internally (in
this case, the WebML model is showed as it is displayed in
the WebRatio CASE tool): Just as the rest of the platform, an
activity’s hypertext specification makes use of pages (one
page in the case of the View poll results activity
depicted in Fig. 12), content units that are rendered inside
the hypertext pages, and possibly operation units that are
placed outside the pages to model the business logic of the
activity type. Each activity is completed by means of a
Complete command, which connects the hypertext portion of
the activity to the End proxy unit (at the right-hand side in
Fig. 11), which forwards the hypertext computation to the
Process engine.8 The engine is in charge of keeping up-
to-date the process metadata required for the management
of the process executions. For example, the process engine
manages the activity states and transitions described in
Fig. 2. Finally, after completion of an activity, the user is
presented with an updated Home page, showing the new
list of ready activities.

The model-driven approach highly facilitates the exten-
sion of the activity type library with new activity types. The
addition of a new type in fact only requires the modeling of
the respective hypertext area (similarly to the one illustrated

in Fig. 12) in the visual WebML modeling tool, the
generation of the corresponding application code, and the
deployment of the activity in the COOPER platform. In
short, adding a new activity type requires the introduction of
new Web pages into the platform, without being forced to
know how the rest of the platform is implemented and
interconnected. This feature directly derives from the fact
that process execution is totally independent of the activity
types actually available in the platform and largely facilitates
the extension and the customization of the platform to the
needs of varying institutions and application domains.

4.3 Implementation and Deployment

As already hinted at in Fig. 12, the availability of the
COOPER-specific communication extensions for WebML
and the novel support for flexible processes has allowed us
to develop the entire platform with the help of the WebML
CASE tool, WebRatio [33], in a fully WebML-conform
fashion. With the help of WebRatio’s code generators, the
entire platform has been automatically generated on top of a
J2EE platform and deployed in a Tomcat Web server. The
final WebML project of the platform spans several hundreds
of WebML elements, comprising pages, content and opera-
tion units, links, and areas.

4.4 User Experience

The design of the collaboration environment described in
this paper descends from the requirement analysis con-
ducted together with two academic institutions involved in
the COOPER project [6]:

. Advanced Learning and Research Institute (ALaRI—
http://www.alari.ch), a school offering master pro-
grams at the Università della Svizzera Italiana.

. Alta Scuola Politecnica (ASP—http://www.asp-
poli.it), a school for talented students founded by
Politecnico di Milano and Politecnico di Torino.

The learning activities at ALaRI and ASP are organized
around geographically distributed teams working on
projects. In particular, teams need to create their own work
plan and use communication tools. A prototype of our
collaborative platform was deployed at both institutions;
we then evaluated at ASP the use of flexible processes and

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

Fig. 11. Simplified WebML hypertext schema that shows how the activity

type library (the set of WebML areas that is hinted at in the center part of

the figure) is connected to the overall COOPER platform.

8. In Fig. 11, the process engine is symbolically represented as WebML
operation unit, but the actual business logic of the engine spans several
dozens of operations, which have been omitted for presentation purposes.

Fig. 12. The WebML hypertext schema of the View poll results activity

type in the WebRatio CASE tool.

VoIP communication. We enrolled five different teams, for a
total of 25 students. The evaluation lasted for 6 months
(from April 2007 to October 2007) and was organized into
two steps: 1) preproject evaluation, aimed at evaluating the
students’ expectations and 2) postproject analysis of the
students’ feedback and of the system logs, aimed at
evaluating the real usage of the platform [26]. To support
the evaluation, we extended our platform with a module
that manages questionnaires by offering functions for
publishing questions, collecting users’ answers, and auto-
matically generating reports [26].

Before starting the evaluation, two training seminars
were organized to illustrate the platform organization; the
majority of students (80 percent) did not need further
training. Then, students were asked to fill in an online
questionnaire with 25 closed questions, addressing their
expectations on the team collaboration improvements that
could be achieved from the use of flexible processes and
their preferences about communication tools. Their answers
indicated that

. Fifty-four percent of students expected the platform
to be useful for improving the effectiveness of
communication between them and their teams and
teachers,

. Eighty-three percent of them expected to spend
less time for the development of their projects,
due to the positive effect induced by the
coordination of team activities, and

. Sixty-five percent of them expressed a clear pre-
ference for VoIP tools (used for communication in
our platform), while 35 percent of them prefer other
channels, such as chats and forums.

After this preliminary evaluation, students used the
platform for six months, for coordinating their team work
by means of synchronous communication tools and flexible
processes. Logs of users’ interactions were collected.

A postproject questionnaire was submitted to the
students after the evaluation period, to collect their feed-
back about the ease of use of the interface, the effectiveness
of the approach, and the overall satisfaction. Some ques-
tions evaluated the communication activities described in
Section 3.2, as they are crucial for the usability of a
collaborative platform. Users were asked to give marks
from 1 (very bad) to 4 (very good) to different aspects of the
platform:

. Seventy-four percent of the students rated the inter-
face as “easy to use” (40 percent of the respondents
scored the item with 4 out of 4).

. Eighty percent of them rated the platform interface
as “quite effective” (a score of 3 or above out of 4).
The average score given to the overall satisfaction in
the use of the platform is 2.8, an indicator of the
users’ general positive perception of the platform
usability and effectiveness.

. Seventy-five percent of the participants positively
rated the use of the synchronous tools (chat and
VoIP), outperforming the result of the pre project
questionnaire, while 65 percent gave a positive
opinion on asynchronous communication tools (spe-
cifically, a forum).

The usage logs show that, after a few weeks of
acquaintance to flexible processes, students managed to
adapt the system to the needs of their teams. They were
indeed able to define and modify processes so that their goals
could be achieved in time. In fact, the rate of uncompleted or
reassigned activities decreased, while the processes sketched
in preliminary phases of the evaluation were successfully
reshaped by means of the operations described in Section 2.4,
to better suit the team’s way of working.

5 RELATED WORKS

Given the always increasing emphasis on the “learning-by-
doing” paradigm, several research and industrial efforts are
being devoted to enhance e-learning teamwork activities.
Approaches range between two broad classes, groupware
and WfMSs.

Communication support systems or groupware (such as
LearningSpace, [17], Lotus Notes and Domino [21], MS
Groove [23], BSCW [24], Blackboard and WebCT [5], etc.)
offer facilities for workspace creation, resource sharing, and
synchronous and asynchronous communication, especially
aimed to support rapidly changing, nonrepetitive pro-
cesses. However, while some studies have demonstrated
that supporting learning by structured collaboration pro-
cesses is a success factor for the team productivity [9], the
majority of the proposed systems are still “task-oriented,”
not “process-oriented” [20]. More specifically

. they support individual tasks, offering very limited
support to sustain collaborative processes,

. they provide a given set of hardwired collaboration
tasks, and their extension toward unanticipated
collaboration activities is difficult or even impossi-
ble, and

. even when they offer facilities for collaborative
process definition, they lack a high-level, global
perspective over the defined processes, as they offer
a low-level interface based on parameter setting and
component composition within scripts.

As a consequence, with such platforms, users have
difficulties in understanding the ongoing processes and
keeping track of the accomplished tasks.

On the opposite site, WfMSs (see [32]) are too rigid to
support the variable nature of collaborative processes. They
indeed ask application designers to predict at design time
the structure of the processes; then the runtime modifica-
tion of processes and the addition of new tasks become
cumbersome.

Positioned between the two extremes are evolving work-
flows [11], [29], which support partially specified processes,
i.e., processes where only part of the flow can be adequately
predefined, while the full specification of the activities and
their sequencing can be completed during process enact-
ment. In [28], authors identify three dimensions character-
izing workflow evolution:

. The first dimension is dynamism, which is based on
the assumption that the predefined models under-
lying processes have to be changed if the related
business processes change [18], [14]. The more
severe problem emerging in this context is the
compliance of the already active workflow instances,

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 13

enacted on the basis of the original model, with the
new process specification [11].

. The second dimension is adaptability, which is the
ability of a process to react to exceptional situations.
The majority of exceptions that could occur at
execution time can be anticipated when designing
the process [10]; however, the complete set of
exceptions for a given process can never be
captured, and dealing with not planned exceptions
requires several efforts [27].

. The third dimension is flexibility: the process is
executed on the basis of a loosely (or partially)
specified model, and the full definition of the
process is provided at runtime, and may be unique
to each instance.

Our approach focuses on flexibility. In the literature,
very often flexibility has been managed by providing
extensions to workflow definition languages, for example,
by introducing new and more complex control constructs
supporting the variability of the activities to be enacted at
runtime and/or their sequencing [31]. However, the new
languages often result into proprietary solutions requiring
complex implementations of execution engines, thus lack-
ing portability.

Very few proposals have so far emerged that, in line
with our approach, support flexible processes in virtual
teams (see, for example, [16], [4], and [14]). They provide
users with environments for process definition and
modification. More specifically, some proposals address
“flexible e-learning” and introduce environments based on
workflow technologies, where users can define their own
learning paths and collaboration is driven by flexible, yet
controlled, means of progressing through the defined
processes. However, very often in such proposals flexibility
covers limited features. For example, in the Flex-el learning
environment [20], flexibility is limited to the relaxation of
time constraints. Also, in [29], authors provide support for
pockets of flexibility, i.e., special build activities, embedded
in the process model, that allow users to define the
sequencing of some workflow fragments predefined in a
process template.

Our notion of flexibility is broader. We enable users to
fully play the role of process designers, by allowing them to
modify at runtime predefined templates (updating activity
properties and sequencing, as well as adding and deleting
activities), and also to define completely new processes in
order to meet the coordination and collaboration require-
ments of their teams. Such a level of flexibility is achieved
thanks to our notion of activity types, which is the basis for the
runtime composition and modification of processes. This is in
line with the recent proposal of the Activity-Based Computing

(ABC) paradigm [3], which aims at supporting the organiza-
tion and execution of parallel users’ activities, distributed in
time and space. According to this paradigm, the basic
computational unit is no longer the file (e.g., a document)
or the application (e.g., a word editor), but the activity of a
user. The user is thus enabled to initiate, suspend, store, and
resume activities. ABC also supports collaboration through
asynchronous and synchronous activity sharing.

ABC is inspired to the Activity Theory [22], a framework
focused on the conceptualization of the dynamic and

situated nature of workflows [2]. The Activity Theory
paradigm has also been proposed for the description of
collaborative learning processes [8]. However, all the
approaches based on it still focus on predefined and static
processes, without supporting the definition of collabora-
tion processes by users. We instead believe that supporting
process definitions—through user-friendly interfaces—is
essential for enhancing teamwork activities.

6 CONCLUSIONS

In this paper, we have presented a framework for the
design and execution of flexible collaborative processes. The
solution has been conceived in the context of project-
centered learning, a scenario experienced by two academic
institutions in the context of an EU-funded project.
However, the characterization of our approach is domain-
independent and can be used in a variety of other
contexts—provided that the typical activities for that
context are detected, specified, and implemented as Web
applications. As the flexible process model resulting from
the described research is general in nature, and an
implementation of the respective runtime support in form
of a specific extension of an existing e-learning tool (e.g.,
Moodle) would have limited its applicability, we have
opted for an extension of WebML and WebRatio. This
choice will allow us to easily apply the conceived solutions
to other collaborative domains and to further assess the
model’s viability. The experiments in the e-learning domain
have already demonstrated the usefulness of flexible
process support and the appreciation of the proposed
environment by students.

Our environment is already fully functioning. Our
current activity focuses on extensively experimenting the
framework to improve its effectiveness and efficiency with
respect to the user needs. We are also working on extending
the WebRatio development environment, by means of a
“wizard” to further facilitate the definition and extension of
the library of activity types, and by developing effective and
easy-to-use monitoring applications.

A promising direction for future work is the identifica-
tion of process templates by mining process execution data.
Given that activities are well understood (they belong to
known types), the mining of the process execution is trivial,
and reconstructing templates as the recurrent processes
performed by users is possible. This mining activity can be
regarded as a bottom-up process design method—a quite
novel approach, given that process modeling is regarded as
prototypical top-down method.

Some further efforts are being devoted to improve the

portability of the defined processes, by complementing the

data-driven representation of processes with more standard

and portable specifications, such as the XML Process

Definition Language (XPDL) [34] proposed by the Work-

flow Management Coalition.

ACKNOWLEDGMENTS

This work is founded by the FP6 EU Project COOPER
(IST027073). The authors are grateful to Professor Jan van

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

Bruggen and to Howard Spoelstra for the help offered in the
identification of the activity types for the e-learning domain,
Vlad Posea for providing the data of the COOPER platform
evaluation, and the students and staff at ASP and ALaRI.

REFERENCES

[1] N. Aste, A. Bongio, S. Ceri, M. Fais, M. Matera, and A. Raffio,
“Model-Driven Design of VoIP Services for E-Learning,” Proc.
First Int’l Workshop Collaborative Open Environments for Project-
Centered Learning (COOPER ’07), CEUR Workshop Proc.
(CEUR-WS.org), vol. 309, 2007.

[2] M. Adams, E. Edmond, and A.H.M. ter Hofstede, “The Applica-
tion of Activity Theory to Dynamic Workflow Adaptation Issues,”
Proc. Seventh Pacific Asia Conf. Information Systems (PACIS ’03),
pp. 1836-1852, 2003.

[3] J. Bardram, J. Bunde-Pedersen, and M. Soegaard, “Support for
Activity-Based Computing in a Personal Computing Operating
System,” Proc. SIGCHI Conf. Human Factors in Computing Systems
(CHI ’06), pp. 211-220, 2006.

[4] P. Barthelmess and C.A. Ellis, “The Neem Platform: An Evolvable
Framework for Perceptual Collaborative Applications,” J. Intelli-
gent Information Systems, vol. 25, no. 2, pp. 207-240, 2005.

[5] Blackboard Academic Suite, Blackboard, http://www.black
board.com, 2007.

[6] A. Bongio, J. van Bruggen, S. Ceri, V. Cristea, P. Dolog,
A. Hoffmann, M. Matera, M. Mura, A. Taddeo, X. Zhou,
and L. Zoni, “COOPER: Towards a Collaborative Open
Environment of Project-Centred Learning,” Proc. First European
Conf. Technology Enhanced Learning (EC-TEL ’06), vol. 4227/2006,
pp. 561-566, Oct. 2006.

[7] M. Brambilla, S. Ceri, P. Fraternali, and I. Manolescu, “Process
Modeling in Web Applications,” ACM Trans. Software Eng. and
Methodologies, to appear.

[8] M. Caeiro, L. Anido, and M. Llamas, “A Critical Analysis for IMS
Learning Design,” Proc. Conf. Computer Support for Collaborative
Learning (CSCL ’03), pp. 363-367, 2003.

[9] A. Carell, T. Herrmann, A. Kienle, and N. Menold, “Improving the
Coordination of Collaborative Learning with Process Models,”
Proc. Conf. Computer Support for Collaborative Learning (CSCL ’05),
pp. 18-27, 2005.

[10] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and
Implementation of Exceptions in Workflow Management Sys-
tems,” ACM Trans. Database Systems, vol. 24, no. 3, pp. 405-451,
1999.

[11] F. Casati, S. Ceri, B. Pernici, and G. Pozzi, “Workflow
Evolution,” Data and Knowledge Eng., vol. 24, no. 3, pp. 211-238,
Jan. 1998.

[12] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and
M. Matera, Designing Data-Intensive Web Applications. Morgan
Kauffmann, 2002.

[13] S. Ceri, M. Matera, A. Raffio, and H. Spoelstra, “Flexible
Processes in Project-Centred Learning,” Proc. Second European
Conf. Technology Enhanced Learning (EC-TEL ’07), vol. 4753,
pp. 463-468.

[14] F. Charoy, A. Guabtni, and M. Valdes Faura, “A Dynamic
Workflow Management System for Coordination of Cooperative
Activities,” Proc. First Int’l Workshop Dynamic Process Management
(DPM ’06), vol. 4103/2006, pp. 205-216, 2006.

[15] P. Dillenbourg, M. Baker, A. Blaye, and C. O’Malley, “The
Evolution of Research on Collaborative Learning,” Learning in
Humans and Machine: Towards an Interdisciplinary Learning
Science, E. Spada and P. Reiman, eds., pp. 189-211, Elsevier,
1996.

[16] S. Dustdar, “Caramba—A Process-Aware Collaboration System
Supporting Ad Hoc and Collaborative Processes in Virtual
Teams,” Distributed and Parallel Databases, special issue on
teamware technologies, vol. 15, no. 1, pp. 45-66, Kluwer Academic
Publishers, Jan. 2004.

[17] IBM Learning Solutions, IBM, http://www-304.ibm.com/
jct03001c/services/learning/ites.wss/zz/en?pageType=page&c
=a0001106, 2007.

[18] P.J. Kammer, G.A. Bolcer, R.N. Taylor, A.S. Hitomi, and
M. Bergman, “Techniques for Supporting Dynamic and
Adaptive Workflow,” Computer Supported Cooperative Work,
vol. 9, no. 3/4, pp. 269-292, 2000.

[19] B. Kiepuszewski, A.H.M. ter Hofstede, and C.J. Bussler, On
Structured Workflow Modelling, LNCS 1789/2000, Springer Berlin/
Heidelberg, ISSN 0302-9743 (Print) 1611-3349 (Online), 2000.

[20] J. Lin, C. Ho, W. Sadiq, and M.W. Orlowska, “Using Workflow
Technology to Manage Flexible e-Learning Services,” Educational
Technology and Soc., vol. 5, no. 4, 2002.

[21] IBM, Lotus Domino, http://www-306.ibm.com/software/lotus/
products/domino/, 2007.

[22] A.N. Leont’ev, Activity, Consciousness, and Personality. Prentice-
Hall, 1978.

[23] Microsoft Office Groove, http://office.microsoft.com/en-us/
groove/FX100487641033.aspx, 2007.

[24] OrbiTeam Software, BSCW, http://public.bscw.de/, 2007.
[25] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, “Object

Exchange across Heterogeneous Information Sources,” Proc. 11th
Int’l Conf. Data Eng. (ICDE ’95), p. 251, 1995.

[26] V. Posea, S. Trausan-Matu, and V. Cristea, “Online Evaluation of
Students’ Opinions about the Collaborative Learning System They
Use,” Proc. Int’l Conf. Intelligent Computer Comm. and Processing
(ICCP), 2007.

[27] S. Sadiq, “On Capturing Exceptions in Workflow Process
Models,” Proc. Fourth Int’l Conf. Business Information Systems
(BIS ’00), Apr. 2000.

[28] S.W. Sadiq, M.E. Orlowska, and W. Sadiq, “Specification and
Validation of Process Constraints for Flexible Workflows,”
Information Systems, vol. 30, pp. 349-378, 2005.

[29] S.W. Sadiq, W. Sadiq, and M.E. Orlowska, “Pockets of Flexibility
in Workflow Specification,” Proc. 20th Int’l Conf. Conceptual
Modeling: Conceptual Modeling (ER ’01), pp. 513-526, 2001.

[30] H. Spoelstra, M. Matera, E. Rusman, J. van Bruggen, and R. Koper,
“Bridging the Gap between Instructional Design and Double Loop
Learning,” Current Developments in Technology-Assisted Education,
A. Mendez-Vilas, A. Solano Marten, J.A. Mesa Gonzalez, J. Mesa
Gonzalez, eds., vol. II, Technological Science Education, Colla-
borative Learning, Knowledge Management, 2006.

[31] W.M.P. van der Aalst and A. Kumar, “A Reference Model for
Team-Enabled Workflow Management Systems,” Data and Knowl-
edge Eng., vol. 38, pp. 335-363, 2001.

[32] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and
A.P. Barros, “Workflow Patterns,” Distributed and Parallel Data-
bases, vol. 14, no. 1, pp. 5-51, 2003.

[33] WebRatio Site Development Studio, WebModels s.r.l., http://
www.webratio.com, 2005.

[34] XML Process Definition Language (XPDL), Workflow Management
Coalition, http://www.wfmc.org/standards/xpdl.htm, 2007.

Stefano Ceri is a professor in the Dipartimento
di Elettronica e Informazione, Politecnico di
Milano, Milano, Italy. His research interests
include query languages for XML and on
models, methods, and tools for the design of
data-intensive WEB sites. He is the chairman of
LaureaOnLine and the vice-director of the
Executive board of Alta Scuola Politecnica. He
is responsible for the Politecnico of several EU-
funded projects, including COOPER: “Coopera-

tive Open Environment for Project Centered Learning” (2005-2007) and
ProLearn “Network of Excellence in Professional Learning” (2005-2008).
He is a coinventor of WebML (US Patent 6,591,271, July 2003) and a
cofounder of the startup which commercializes WebML by means of the
product WebRatio. He is a coeditor in chief of the book series Data
Centric Systems and Applications (Springer-Verlag). He has authored
nine international books and more than 200 articles.

CERI ET AL.: PROVIDING FLEXIBLE PROCESS SUPPORT TO PROJECT-CENTERED LEARNING 15

Florian Daniel received the master’s degree
in computer engineering and the PhD degree
in information technology from Politecnico di
Milano. He is a postdoctoral researcher in the
Dipartimento di Ingegneria e Scienza dell’In-
formazione, University of Trento, Povo (TN),
Italy. His research interests include business
processes, business intelligence applications,
conceptual modeling and design of Web
applications, adaptivity and context-awareness

in Web applications, component-based user interface design, and
Web mashups.

Maristella Matera is an assistant professor in
the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Milano, Italy, where she
currently teaches courses on databases. Her
research interests include models and design
methods for Web applications, adaptivity and
context-awareness, and quality analysis of
Web applications. She has authored about
100 articles on the previous topics. She is
also a coauthor of the book Designing Data-

Intensive Web Applications (the Morgan Kaufmann Series in Data
Management Systems).

Alessandro Raffio is a PhD student at the
Politecnico di Milano, Milano, Italy, where he is
also a teaching assistant in software engineer-
ing courses in the Dipartimento di Elettronica
e Informazione. His research interests include
mapping and transformation languages for
structured and semistructured data, as well as
Web-based collaboration systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 6, JUNE 2009

