
Model-driven Development of Context-Aware Web

Applications

Stefano Ceri, Florian Daniel, Maristella Matera, Federico M. Facca

Dipartimento di Elettronica - Politecnico di Milano

P.zza Leonardo da Vinci, 32 - 20133 - Milano, Italy

{ceri,daniel,matera,facca}@elet.polimi.it

Context-aware, multi-channel Web applications are more and more gaining consensus among both
content providers and consumers, but very few proposals exist for their conceptual modeling.
This paper illustrates a conceptual framework that provides modeling facilities for context-aware,

multi-channel Web applications; it also shows how high-level modeling constructs can drive the
application development process through automatic code generation. Our work stresses the im-
portance of user-independent, context-triggered adaptation actions, in which the context plays

the role of a “first class” actor, operating independently from users on the same hypertext the
users navigate. Modeling concepts are based on WebML (Web Modeling Language), an already
established conceptual model for data-intensive Web applications, which is also accompanied by
a development method and a CASE tool. However, given their general validity, the concepts of

this paper shape up a complete framework that can be adopted independently from the chosen
model, method, and tool.

Categories and Subject Descriptors: H.1 [Information Systems]: Models and Principles; H.5.4

[Information Interfaces and Presentation (e.g., HCI)]: Hypertext/Hypermedia; D.2.2 [Soft-
ware Engineering]: Design Tools and Techniques—Computer-aided software engineering (CASE)

General Terms: Design, Languages

Additional Key Words and Phrases: Context, Context-awareness, Context-aware Web Applica-
tions, Conceptual Modeling, WebML, Adaptive Hypertext, Adaptive Hypermedia

1. INTRODUCTION

As Web applications spread in almost every domain, novel challenges are posed to
developers. The current advances in the communication and network technologies
are changing the way people interact with Web applications, providing them with
different types of mobile devices for accessing at any time from anywhere and
with any media services and contents customized to users’ preferences and usage
environments. More and more users themselves ask for services and applications
highly tailored to their special requirements and, especially due to the increasing
affordability of new and powerful mobile communication devices, they also begin to
appreciate the availability of ubiquitous access. Due to such premises, new issues

Author’s address: Florian Daniel, Dipartimento di Elettronica e Informazione, Politecnico di

Milano, P.zza L. da Vinci, 32 - 20133 - Milano - Italy.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–32.

2 · Stefano Ceri et al.

and requirements need to be addressed for supporting context-aware and multi-
channel access to services and applications.

Context-awareness is often seen as recently emerged research field within infor-
mation technology, and in particular within the domain of the Web. From another
perspective, it can be however interpreted as natural evolution of personalization,
addressing not only the user’s identity and preferences, but also the usage envi-
ronment. Personalization has already demonstrated its benefits for both users and
content providers and has been commonly recognized as fundamental factor for aug-
menting the efficiency of the overall communication of contents. Context-awareness
goes one step further in the same direction, aiming at enhancing the application’s
usefulness by taking into account a wider range of properties than personalization.

The second ingredient for modern Web applications, multi-channel access, is
gaining as well increasing consensus among both content consumers and providers.
While the former are more and more attracted to portable devices equipped with
high-resolution color displays, able to provide similar browsing experiences as tra-
ditional desktop computers, the latter are increasingly facilitated by standardized
communication protocols (i.e., HTTP) and markup languages (i.e., HTML), sup-
ported by most of such devices. Consequently, multi-channel deployment does
not anymore require completely different, parallel design approaches and is thus
becoming rather a presentation problem on top of unified engineering solutions.
Cost-effective multi-channel development is therefore becoming possible, thus fi-
nally raising the inclination of content providers toward it.

In this paper we try to combine the potential behind the previous considerations
into a conceptual framework, providing modeling facilities for context-aware, multi-
channel Web applications. Conceptual modeling methods have already proved their
effectiveness for the design of personalized Web applications (see for example [Ceri
et al. 1999; Schwabe et al. 2002]). However, very few proposals exist for the concep-
tual modeling of reactive, context-aware Web applications. This paper will therefore
introduce some modeling primitives able to capture the semantics of reactive be-
haviors, and will also show how high-level constructs can drive the development
process through automatic code generation.

Differently from most conventional adaptive hypermedia systems, which mainly
address the problem of adapting the results of user-generated requests, our work
also stresses the importance of user-independent, context-triggered adaptation ac-
tions, which finally leads to interpret context as a “first class” actor operating
independently from users on the same hypertext the users navigate.

Modeling concepts at the basis of the proposed approach, as well as our imple-
mentation experiences will be introduced in the context of WebML (Web Modeling
Language), an already established conceptual model for data-intensive Web appli-
cations, which is also accompanied by a development method and a CASE tool
[Ceri et al. 2002a; Ceri et al. 2002b; Ceri et al. 2003]. However, given their general
valence, the introduced concepts suggest a design methodology that can be also
adopted independently from the chosen modeling notation and method.

This paper is organized as follows. Section 2 recalls some basic concepts about
context-awareness and reviews some notable works proposed in literature, with the
aim of highlighting the rationale and the background of our research. Section 3

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 3

investigates the main requirements that emerge when Web applications need to
be augmented through context-aware mechanisms. Section 4 introduces a model-
based conceptual view over context-awareness for Web applications, and translates
the observed requirements into proper modeling concepts. As we adopt WebML as
example modeling language for expressing our vision on context-aware applications,
Section 4 also provides a comprehensive summary of this model. Section 5 then
illustrates a modeling example taken from some experiences gained within an Italian
national research project (MAIS). Section 6 shows how possible conflicts among
concurrent actions by users and context, operating over the same hypertext, can
be resolved. Next, Section 7 gives an overview over our current implementation.
Finally, in Section 8 we draw some conclusions and also discuss our future work.

2. RATIONALE AND BACKGROUND

Although many definitions of context are given by enumerating examples or by
choosing synonyms1, inspired by the work of Dey and Abowd [2000], we define
context as any information that can be used to characterize the interaction of a
user with a software system (and vice-versa), as well as the environment where
such interaction occurs. This definition not only concentrates on interaction and
environment properties, but also includes the user and software system themselves.
We further define a system as context-aware, if it uses context either for delivering
content, or for performing system adaptations, or for doing both.

Context can be therefore used for achieving more effective and efficient interac-
tions in all those situations where the contents and services offered by the applica-
tion strongly depend on the current environmental situations, users’ (dis)abilities,
and/or the actual purpose of the application. Several situations demanding for
adaptivity might arise:

—Adaptive personalization. User profile attributes for personalization purposes
may present different levels of variability in time, which may comprise (fast)
changing properties (e.g. pulse frequency) as well as static ones, such as the
name of the respective user. Adaptive personalization mechanisms that take
into account such profile peculiarities allow going beyond common, rather static
content tailoring.

—Functional needs. Applications may depend intrinsically and in a structural
manner from context data. Location-aware applications, city map services or
navigation systems, for instance, treat position information as core content, and
proper localization mechanisms must be supported. For such kind of applications,
the use of context represents a mandatory functional requirement, rather than
an optional feature.

—Exception handling. Adaptive or context-aware mechanisms are particularly
suited for handling exceptional situations with respect to expected application

1Rather than defining context by means of synonyms as well as for better readability, throughout
this paper we will use the terms adaptive, reactive, or context-sensitive system when speaking

about context-aware applications. Also, we will speak about customization or personalization
with respect to the user’s identity, and about adaptation or adaptivity when referring to context-
driven adjustments or modifications.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Stefano Ceri et al.

behaviors. Critical events may raise exceptions and require proper reactions
being performed. Workflow-driven hypertexts, for example, represent a class of
applications that could benefit from adaptive management features for coping
with exceptions. Also, alerting mechanisms as required for critical production
processes or pro-active maintenance approaches could be achieved.

—Interaction-enabling functionalities. Context could as well consider handi-
caps or physical disabilities of users, such as vision problems, blindness or paral-
ysis, for adapting the application accordingly and providing alternative, suitable
interaction mechanisms and modalities. In that sense, adaptivity can provide
functionalities enabling handicapped users to properly interact with applications.

—Enhanced effectiveness. Several other context parameters can be exploited for
providing appropriate contents and program features at the right time, priority
and emphasis. For example, specifically targeted special offers can be advertised
and directed more efficiently or, also, presentation properties can be adapted to
varying luminosity conditions for better readability. The overall effectiveness of
applications can thus be significantly enhanced by means of adaptive or context-
aware extensions.

Based on the previous considerations, context can be described in terms of prop-
erties and attributes related to the current user, her/his current activities, the
location in which the application is used, the devices, and some other aspects of
the environment and of the application itself that can be used for determining the
required adaptation in certain situations [Kappel et al. 2003; Kobsa et al. 2001].
Also, for being able to manifest active or reactive behaviors, context-awareness fur-
ther requires automatisms on the application part that may be triggered by changes
of anyone of the parameters that make up context.

2.1 Related Work

So far context-awareness has been mainly studied in the fields of ubiquitous, wear-
able or mobile computing. A significant number of applications have been suc-
cessfully developed [Want et al. 1992; Long et al. 1996], and context abstraction
efforts have produced proper platforms or frameworks for rapid prototyping and
implementation of context-aware software solutions [Salber et al. 1999].

Within the domain of the Web, so-called adaptive hypermedia systems [Brusilovsky
1996] address advanced adaptation and personalization mechanisms, and recent re-
search efforts also address the special needs of mobile Web applications and portable
device characteristics. HyCon [Hansen et al. 2004], for example, represents a gen-
eral platform for the development of context-aware hypermedia systems with special
emphasis on location-based services. In addition to proper location-sensing devices
(like GPS receivers), support for other local and remote context sensing devices is
provided. Example HyCon applications range from location-based browsing and
annotation to geo-based search support, and essentially make use of GPS coordi-
nates. The main drawback of the approach proposed by the authors, however, lies
in the fact that a proprietary Web browser (HyConExplorer) is required.

The AHA! system proposed by De Bra et al. [2003], on the other hand, builds on
top of standard Web technologies and represents a user modeling and adaptation
tool originally developed in the e-learning domain. According to a continuously

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 5

updated user model, it allows customizing hypertext links (adaptive navigation)
and contents (adaptive presentation). AHA! is delivered as Open Source software
and provides a versatile adaptive hypermedia platform for the development of on-
line courses, museum sites, encyclopedia, etc.

Belotti et al. [2004] address the problem of fast and easily developing context-
aware (Web) applications along a technological, database-driven approach, based
on extended functionalities specifically tailored to Web publishing. The authors
propose the use of a universal context engine in combination with a suitable con-
tent management system [Grossniklaus and Norrie 2002]. In [Belotti et al. 2004] the
authors describe their resulting general context-aware content management system,
which enables developers to seamlessly adapt content, view, structure and presen-
tation of Web applications to runtime context properties. Also, they discuss the
twofold role the content management system can play within a context-aware ap-
plication, namely it can act as both consumer and provider of context information.

On the other side, some well known model-driven methodologies, such as HDM
[Garzotto et al. 1993], OOHDM [Schwabe et al. 1996], RMM [Isakowitz et al. 1995],
UWE [Koch et al. 2001], and Hera [Vdovjak et al. 2003] aid developers in the de-
sign of Web information systems, providing modeling primitives for shaping the
application structure and behavior at a conceptual level. Despite the numerous
advantages offered by conceptual, model-based development of Web applications
[Fraternali 1999], only few attempts exists that aim at modeling also adaptive or
context-aware behaviors at a conceptual level. For instance, AHA! is inspired by
AHAM [De Bra et al. 1999], a Dexter-based reference model for adaptive Web ap-
plications with a heavily educational background. According to AHAM, adaptive
hypermedia applications are based on a domain model, a user model and a so-called
teaching model. Adaptation is achieved at runtime by adapting contents from the
domain model according to rules of the teaching model taking into account prop-
erties of the user model. Unfortunately, the teaching-learning paradigm restricts
the AHAM applicability to specific domains, and also makes the method less suit-
able for modeling generic adaptive hypermedia systems. Also, AHAM’s adaptivity
mechanisms work at instance level, and are thus not very suitable for coping with
the huge amount of (dynamic) contents that today’s Web applications may require.

Within the AMACONT project, on top of the model-based framework of the
Hera project, Fiala et al. [2004] propose a component-based XML document for-
mat for the implementation and deployment of component-based, adaptive Web
presentations. Adaptation depends on user profile data and device characteris-
tics, and mainly concerns layout and presentation properties of Web pages. The
implementation of AMACONT-based applications is supported by an automatic
code generation mechanism for adaptive documents and multiple communication
channels, starting from AMACONT components and Hera schemes. However, the
Hera methodology adopted for specifying the application schemas is based on a
conventional, non-adaptive interpretation of hypertext.

Barna et al. [2004] address exactly the above mentioned lack of dynamism at
model level, and show how the Hera design methodology [Vdovjak et al. 2003] can
be used successfully for the design of adaptive, dynamic Web applications. Ac-
cording to the authors, through appropriately updating the user model at runtime,

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Stefano Ceri et al.

Hera schema views defined over the application data can capture adaptive charac-
teristics. Such schema-level adaptation specifications can (partially) overcome the
lack of proper conditional mechanisms for content inclusion/exclusion in the Hera
methodology. Like in AHAM, adaptation is mainly based on properties of the user
model, and customizations according to a broader interpretation of context are not
tackled.

The modeling approach presented in this paper capitalizes over previous works,
trying to overcome their deficiencies. Our method provides concepts, notations and
implementation technologies for the development of Web applications, without pos-
ing any constraint over their target domain, neither requiring proprietary client-
or server-side solutions. It takes advantage of the model-based paradigm, which
offers some high-level intuitive constructs for specifying the application structure
and behavior. Due to the formal definition of construct semantics, the resulting
specifications can then be transformed into running code, by means of consolidated
generative techniques [Ceri et al. 2003], thus facilitating the overall development
process. As better explained in the following sections, our method also relies on a
data-driven paradigm, which fosters the representation of personalization and con-
text meta-data within the application data source, thus leading to Web applications
where content customization and context-based reactive behavior are achieved in a
totally dynamic wise. Additionally, the main novelty with respect to other model-
based approaches is the promotion of context as “first class” actor, which leads to
reactive applications, able to respond autonomously to detected context changes.

3. CHARACTERIZING CONTEXT-AWARE APPLICATIONS

In line with most conceptual modeling approaches for Web application design [Fra-
ternali 1999], the method we propose in this paper builds on a strong separation of
concerns among data and hypertext design. The former activity aims at representing
the organization of the application data source; the latter supports the specification
of the application front-end, i.e., of content organization within pages and of the
invocation of server-side operations implementing the application’s business logic.
Also, our modeling approach is data-driven, since the overall design process starts
from data design, and most decisions during the successive phases strongly depend
on data organization.

With respect to the modeling of conventional Web applications, the introduction
of context as an actor, further determining the behavior of a Web application, poses
new requirements. We will thus concentrate on the effect of such requirements over
the two above design dimensions, and in particular on (i) the specification and
management of context data, and (ii) on the hypertext augmentation with reactive
behaviors as response to context state changes.

3.1 Functional System Requirements

According to the data-driven paradigm, the use of context within applications pri-
marily requires its representation at data level. Also, mechanisms for context data
acquisition and access are needed [Kobsa et al. 2001]. Therefore, the following is-
sues become relevant for managing data sources in context-aware applications:

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 7

(1) Context model definition and representation within the application data source.
The main context properties needed for supporting adaptivity must indeed be
identified and represented as data.

(2) Context model management, consisting of:

(a) Context data acquisition by means of measures of real-world, physical con-
text attributes, characterizing the usage environment.

(b) Context model updating, for keeping context data consistent and up-to-date
with respect to the actual environmental conditions.

(c) Context data monitoring, for detecting those variations in context that
trigger adaptivity actions. Any variation may therefore cause an automatic
(context-triggered) adaptive behavior of the Web application.

Given the previous characterization of context data and of mechanisms for con-
text management, some other funtional requirements are concerned with adaptivity
actions over the application hypertext. According to our approach, context-aware
applications must therefore ensure:

(1) Adaptivity of contents and services delivered by accessed pages, on the basis of
the current context.

(2) Adaptivity of navigation, through automatic navigations toward other pages,
which are more appropriate for the reached context.

(3) Adaptivity of the whole hypertext structure, for facing coarse-grained adaptation
requirements, for example due to changes of user’s device, role and activity
within a multi-channel, mobile environment.

(4) Adaptivity of presentation properties, in order to allow for more fine-grained
adjustments of the application’s appearance.

3.2 Architectural Requirements

In order to achieve the previous goals, it is necessary to monitor some context data,
and capture them from the environment in which the application is executed. Figure
1 shows the context data flow within a possible architecture tailored to support
context-aware hypertext solutions. The data source includes both the application
data (i.e., the business objects that characterize the application domain), and some
context data, the latter offering at any moment an updated representation of the
context status, which we call context model. At runtime, the dynamic computation
of the hypertext primarily exploits the application data for populating pages and
units. We then assume that a subset of hypertext elements, included in the so-called
adaptive hypertext, be augmented with adaptive behaviors, thus their computation
exploits also context data.

As expressed in Figure 1, the proposed architecture takes into account context-
sensing mechanisms for capturing context data from the application execution en-
vironment. This may imply using standard (off-the-shelf) sensing components. It
may also require developing proprietary sensing mechanisms on the client side, as it
happens for GPS-equipped devices, or adopting centralized sensing infrastructures
collecting context data in the usage environment and communicating them back
to the application. Examples of centralized sensing are given by the Active Badge

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Stefano Ceri et al.

Application
Data

Page
rendering

Context
Model

Hypertext
adaptation

Server-side Parameters

Client-side Parameters

Context Data

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Centralized
Sensing

Fig. 1. Context Data Flow.

location system [Want et al. 1992], based on infrared signals, or the LANDMARC
system [Ni et al. 2004], based and RFID (Radio Frequency Identification).

However, from a conceptual point of view, the adopted context sensing mecha-
nisms do not affect much the specification of the application hypertext: the only
relevant aspect is the way sensed data are communicated back to, and managed by
the application. Therefore, our modeling method assumes that some solutions allow
sensing such data, that become available to the application in three modalities:

(1) Some context parameters generated at client-side are sent back to the appli-
cation, for example as values appended to the URL of requested pages or by
means of SOAP messages.

(2) The values of some HTTP session parameters, managed at server-side, are set
according to newly captured context data.

(3) The sensing mechanism updates the context model at data level, for example
through asynchronous services.

The first two acquisition mechanisms act at the hypertext level, and do not oper-
ate directly on the data layer. However, some operations in the adaptive hypertext
must provide support for storing the fresh captured values, thus keeping the con-
text model at data level updated with respect to the observed context state. The
last acquisition mechanism, which operates on data, is particularly suited for those
adaptive systems that build on centralized context sensing mechanisms, such as
RFID.

4. MODELING CONTEXT-AWARE WEB APPLICATIONS

The previously outlined requirements can be translated into modeling concepts and
primitives, able to express at a high level the organization of context data and the
augmentation of the application through adaptive behaviors. This section there-
fore introduces some high-level abstractions that are required to support context
awareness. It also shows how such abstractions can be captured and made con-
crete within a specific conceptual model, WebML, through the definition of some
corresponding modeling primitives extending the set of constructs already offered
for “conventional” Web applications.

In order to facilitate the comprehension of the introduced concepts, this section
starts by shortly recalling WebML. The reader already familiar with this model is
referred to the remaining sections.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 9

4.1 WebML: an Overview

WebML is a visual language for specifying the content structure of Web applications
and the organization and presentation of contents in one or more hypertexts. [Ceri
et al. 2002a; Ceri et al. 2002b].

The design process starts with the specification of a data schema, expressing the
organization of the application contents, by means of well established data models,
such as the Entity-Relationship model or the UML class diagram.

The WebML Hypertext Model then allows describing how contents, previously
specified in the data schema, are published into the application hypertext. The
overall structure of the hypertext is defined in terms of site views, areas, pages
and content units. A site view is a hypertext, designed to address a specific set of
requirements. Several site views can be defined on top of the same data schema, for
serving the needs of different user communities, or for arranging the composition of
pages to meet the requirements of different access devices like PDAs, smart phones,
and similar appliances.

A site view is composed of areas, which are the main sections of the hypertext,
and comprise recursively other sub-areas or pages. Pages are the actual containers
of information delivered to the user; they are made of content units, which are
the elementary pieces of information extracted from the data sources by means of
queries, and published within pages. In particular, content units denote alternative
ways for displaying one or more entity instances. Unit specification requires the
definition of a source and a selector : the source is the name of the entity from
which the unit’s content is extracted; the selector is a condition, used for retrieving
the actual objects of the source entity that contribute to the unit’s content.

Content units and pages are interconnected by links to constitute site views.
Links can connect units in a variety of configurations, yielding to composite navi-
gation mechanisms. Besides representing user navigation, links between units also
specify the transportation of some parameters that the destination unit uses in the
selector condition for extracting the data instances to be displayed.

Some WebML units also support the specification of content management oper-
ations. They allow creating, deleting or modifying an instance of an entity (respec-
tively through the create, delete and modify units), or adding or dropping a rela-
tionship between two instances (respectively through the connect and disconnect

units).

WebML also provides units for the definition of session parameters. Parameters
can be set through the Set unit, and consumed within a page through a Get unit.

Figure 2 depicts an example WebML hypertext model. It shows a site view with
three pages, which allow users to see their reviews about a museum’s artworks, pre-
viously submitted through the Web application, and to modify them. In the Home

page a Get unit reads the identifier of the current user from the session parameter
CurrentUser and provides it in input to the following Data unit, which thus pub-
lishes the user’s personal profile data. The data to be published are restricted by
means of a selector condition, specified below the unit. The user identifier is further
propagated to the Index unit My Reviews by means of a so-called transport link.
In the Review page, a Data unit shows a review previously selected through the
home page’s My Reviews index. Also, a link leads the user to the Modify Review

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Stefano Ceri et al.

Siteview

Home

Get User

CurrentUser
User

[User.OID = CurrentUser]

User Details My Reviews

Review
[User2Review(User.OID)]

CurrentUser User.OID

Review

Review

Review Details

Modify Review

Entry unit Modify

Review
<Review.Body := Body>

KO

OK
Body

Fig. 2. An example of WebML hypertext schema.

page, which includes an Entry unit for inserting new text for the modification of
the review. The form submit link than activates a Modify operation, which updates
the review data within the application data.

Besides having a visual representation, WebML primitives are provided with an
XML-based textual representation, which specifies additional detailed properties,
not conveniently expressible in the graphic notation. Web application design based
on WebML can be therefore represented as visual diagrams, as well as XML docu-
ments. The availability of an XML specification also enables the deployment of the
same design into multiple rendering formats, such as HTML (which is the standard
choice for deployment), but also WML [Hjelm et al. 1998], SALT [SALTforum.org
2005] or VoiceXML [W3C 2004] for multi-modal interactions. This feature greatly
supports the development of multi-channel applications.

For a more detailed and formal definition of WebML, the reader is referred to [Ceri
et al. 2002a].

4.2 Modeling Context as Data

In accordance with our data-centric approach, we now enrich the application data
source with a context model to keep a consistent and updated representation of
meta-data needed for supporting adaptivity. As better shown later on in this paper,
by explicitly representing context properties within the data source, many useful
customization policies can be expressed declaratively in the hypertext specification,
instead of being buried in the source code of the application.

Context data can derive from several sources integrating sensed, user-supplied
and derived information [Henricksen and Indulska 2004; Henricksen et al. 2002].
While user-supplied data are generally reliable and tend to be static, sensed data

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 11

1:N 1:N

Access

Basic user sub-schema

Location

Longitude
Latitude
Height

Activity

Name
Handycap
Description

1:1

1:1

Device

CPU
InputDevice
Display
Memory

Context Model
sub-schema

1:1 1:N

DefaultSV

Group

GroupName

SiteView

SiteViewID

Review

Title
Body

Belonging

Personalization
sub-schema

Artwork

Title
Photo

User

UserName
Password
EMail

1:1
0:N

1:N 1:N

1:1
0:N

DefaultGroup

Membership

1:1

0:N1:1

1:1

Preference

1:1
0:N

Fig. 3. Combined data design of user, personalization, and context sub-schemas. The entity
User is the center of the three sub-schemas, providing the starting point for navigating
context data.

are highly dynamic and can be unreliable due to noise and sensor errors. The
problem of unreliability has been already addressed by some modeling solutions,
which associate context information with quality data [Lei et al. 2002]. Our ap-
proach does not explicitly cover these issues, although we recognize the distinction
between physical and logical context data, the latter being a transformation of the
former providing meaningful abstractions with respect to the application domain
[Schmidt et al. 1999]. Such transformation can be achieved by means of proper
filters over raw context data. Our modeling approach therefore assumes that data
feeding the context model are normalized with respect to such filtering.

Also, we assume that the actual context model of a real application can vary de-
pending on the application domain and, also, on the adaptivity goals to be fulfilled.
Even though there are several properties commonly regarded as context attributes
(e.g. position, time, or device characteristics), there exists no universal context
model that applies to all kinds of applications. For this reason, we do not prescribe
a precise, rigid characterization of context; rather we introduce some guidelines on
how to extend an application’s data source with context meta-data.

Figure 3 illustrates an Entity-Relationship diagram exemplifying an application
data source with a possible context model. As can be noted, we propose augment-
ing the application data schema with three sub-schemas that serve the following
purposes:

—User profile sub-schema. Users, groups and site views are represented as
“first-class citizens” in the application data source. The entity User provides a
basic profile of the application’s users, the entity Group allows managing access
rights, and the entity Site View allows representing and associating views over
the application’s data source tailored to the needs of the respective user group.
The many-to-many relationship Membership expresses that users may belong to
multiple groups, which in turn cluster multiple users. The relationship Default-

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Stefano Ceri et al.

Group connects a user to his/her default role and, when logging into the appli-
cation, by means of the relationship DefaultSV the user can be forwarded to
the default site view of his/her default group. The many-to-many relationship
Access describes which site views a specific group can access. This relationship is
required only in the case of adaptive applications that may require different inter-
action and navigation structures for a same group, according to varying context
properties. Therefore, depending on the context state, the application is able to
determine and forwarding the user to the most appropriate site view.

—Personalization sub-schema. Figure 3 also shows a possible personalization
sub-schema mainly consisting of some relationships connecting entities of the ap-
plication schema to the entity User. For instance, the entity Review is connected
to the entity User by means of the relationship Belonging, which expresses to
which user reviews posted to the Web application belong. Similarly, the rela-
tionship Preference links a user to the artworks he/she likes most (for example,
among those published by a possible museum Web site).
In general, personalization relationships between the entity User and some other
entities have the meaning that the user is the creator/owner of the specific ob-
ject, or that he/she has expressed explicit or implicit preferences over it. Similar
relationships allow thus personalizing contents with respect to the identity of
users. Personalization schemas can vary in complexity, according to the amount
of contents to be tailored to individual users.

—Context model sub-schema. Finally, Figure 3 proposes a possible configura-
tion of context meta-data, as it could apply, for example, to mobile and multi-
channel Web applications. The entities Device, Location and Activity describe
the particular properties of context considered by the application. As within the
personalization sub-schema, context entities are connected to the entity User for
associating each user to his/her (personal) context.
Applications may require different sets of context entities, according to their
functional requirements and goals. Therefore, our approach just prescribes to
have such entities associated, directly or indirectly (as in the case of the en-
tity Location in Figure 3), to the user, which is the actual starting point for
navigating the context model and extracting context information.

In a certain sense, also the relationship Access within the user profile sub-schema
can be considered being part of the context sub-schema, as it is only justified when
context conditions may require the overall hypertext structure to vary according to
specific context states. Users belonging to a given group might in fact act in totally
different contexts, and might hence require different site views to switch among,
as soon as the context changes. The modeling of conventional (i.e., non context-
aware) applications, would instead simply require only one relationship associating
one user group to one (default) site view.

4.3 Structuring the Context-Aware Hypertext

Besides augmenting the application data schema with context data, our modeling
approach also introduces some new constructs at hypertext level, required for spec-
ifying adaptive application behaviors. We further clarify how different adaptivity
policies, based on automatic polling, can enact the evaluation of adaptivity actions.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 13

Siteview

Context-aware Area

Context-aware Page

Source

Data Unit

P:
Context
Parameter

P

OID: Object
 Identifier

C

C

Conventional
Page 1

Conventional
Page 2

Fig. 4. WebML hypertext schema with two conventional pages, one context-aware page,
one context-aware area, together with their context clouds. The parameter P exempli-
fies the propagation of reusable context data through the hierarchical passing of context
parameters from an outer area to an inner page.

4.3.1 Context-aware Pages. Figure 4 graphically illustrates our vision on context-
aware hypertexts. Our basic assumption is that context-awareness is a property to
be associated only to some pages of an application, not necessarily to the applica-
tion as a whole. Location-aware applications, for example, adapt “core” contents
to the position of a user, but typical “access pages” (including links to the main
application areas) might not be affected by the context of use.

As can be seen in Figure 4, we tag adaptive pages with a C-label (standing
for context-aware) for distinguishing them from conventional pages. This label
indicates that some adaptivity actions are associated with the page, and that during
the execution of the application such actions must be evaluated prior to the page
computation, because they can serve for customizing the page content or modifying
the predefined navigation flow.

In order to show a context-aware behavior, each C-page must be provided with the
capability of monitoring the context state and, based on that, triggering its adaptiv-
ity actions. This can be achieved in part by evaluating the adaptivity actions every
time the page is accessed, before the actual computation of the page. A different
policy may require evaluating and executing the adaptivity actions after the user’s
access to the C-page. When accessed, the page is therefore rendered according to
the user selection, and its content is successively adapted by refreshing the page,
based on the current context state. The standard HTTP protocol underlying most
of today’s Web applications implements a strict pull paradigm, in which refresh
can only occur as response to client-side generated page requests. Therefore, in ab-
sence of dedicated server-side push mechanisms for delivering updated pages when
needed, the HTML http-equiv META-option, or also JavaScript, JavaApplets, or
Flash scripts, provide valuable client-side mechanisms for “simulating” the required
active behavior. More precisely, this simulation implies generating proper HTTP
requests toward the application server, which serve a twofold purpose:

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Stefano Ceri et al.

—On one hand they provide the necessary polling mechanism for querying the
context model and triggering the adaptivity actions attached to the page, thus
reacting to possible context changes.

—On the other hand, when the page request carries client-side sensed data, the
polling also enables the communication of such context data to the application
server.

4.3.2 Adaptivity Policies. Based on the previous observations, the evaluation of
adaptivity actions for C-pages can be triggered according to two different policies:

—Deferred Adaptivity : the user is granted the highest priority. Therefore, after
the user has entered the page and the page has been rendered according to the
user’s selections, periodic polling generates automatic page requests that trigger
the evaluation of the adaptivity actions.

—Immediate Adaptivity : context is granted the highest priority. Therefore, the
adaptivity actions are evaluated every time the page is accessed, prior to the
actual page computation. This means that the adaptivity actions are evaluated
at the first time the page is accessed by users, as well as at each automatic polling.

In our approach, we assume the deferred adaptivity as default policy: adaptivity
is started only by automatic refreshes coming after the user has entered the page.
When a user navigates to a particular page, the first generated response always
produces the expected results based on user selection; only afterward that page
might become subject to adaptation, according to the current context. This choice
aims at minimizing application behaviors that might be perceived as invasive or
annoying by users, and has been experienced as the most natural for modeling
adaptation.

However, the immediate policy could be needed for handling exceptional sit-
uations, as in such cases the timely reaction to context changes could be more
important than following the user’s indications.

The choice of the policy, as well as the specification of the required polling interval
must be expressed as properties of C-pages. Therefore, each C-page is associated
with the pair of properties < Adaptivity Policy, Polling Interval >. It is worth
noting that different C-pages may adopt different adaptivity policies as well as
different polling intervals.

4.3.3 Context Clouds. We call the set of adaptivity actions attached to a page
context cloud. As sketched in Figure 4, the cloud is external to the page and the
chain of adaptivity actions it clusters is kept separate with respect to the page
specification. The aim is to highlight the two different logics deriving from the role
played by pages and context clouds: while the former act as providers of contents
and services, the latter act as modifiers of such contents and services.

The context cloud is associated to the page by means of a directed arrow, i.e.,
a link, exiting the C-label. This link ensures the communication between the page
logic and the cloud logic, since it can transport parameters deriving from page
contents, which may be useful for computing actions specified in the cloud. Also,
on the other way around, a link from the cloud to the page can transport context
parameters or in general values computed by the adaptation actions, which might
affect the adaptivity of page contents with respect to the renovated context.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 15

Context cloud are computed before the actual rendering of the page, according
to the adaptivity policy associated to the page (immediate or deferred).

4.3.4 Context-Aware Containers. The central context-aware element is the page.
However, as represented in Figure 4, we also propose to define context-aware con-
tainers (site views and areas, in terms of WebML) as grouping facilities that allow
one to insulate, and to specify only once, redundant adaptivity actions to be per-
formed for every C-page within the container. There are in fact actions to be
evaluated for every C-page. Specifying such actions once, associated to a page
container, allows us to keep the specification easy to read.

Figure 4 also illustrates the possibility of hierarchically passing parameters from
an outer cloud to an inner one. More precisely, if the evaluation of an outer cloud
produces results to be reused at an inner level, as it happens for some context
parameters, it passes such values back to the C-label that activated the computation
of the cloud. At the inner level, such parameters can then be “consumed” within
context clouds. Parameter passing from outer containers to the current context
cloud occurs through the cloud-activating link. At the end of the adaptivity action
chain, links exiting from the last evaluated cloud might carry parameter values for
the computation of page units.

Typical actions to be specified at the container level are the acquisition of fresh
context data and the consequent updating of the context model. We therefore
propose two levels for the specification of context-adaptivity actions:

—Actions for context model management, addressing operations for context data
acquisition and the consequent context model updating. These adaptivity actions
need to be executed prior to the execution of any other action within the context
cloud, for gathering an updated picture of the current context. Therefore, they
can be associated with the most external containers (site views or areas), and are
inherited by all the internal containers (areas or pages).

—Actions for hypertext adaptivity, addressing the definition of rules for page and
navigation customization associated with C-pages.

As for C-pages, each container has its own adaptivity policy (immediate or de-
ferred). When a C-page is requested, the context clouds of its containers (if any),
from the outermost container to the innermost, are evaluated immediately (at the
first user access) or in a deferred manner (at the page refresh), depending on the
value of the Adaptivity Policy property declared for the containers. In general,
the container policy is independent from the policy of inner containers and pages2.
Therefore, it may happen that the actions in a container’s context cloud are eval-
uated immediately, even when the actions associated to the inner containers and
pages require a deferred evaluation or vice-versa. In this sense, the context cloud
hierarchy also facilitates the specification of different “layers” of adaptivity actions
requiring different evaluation policies.

Differently from C-pages, containers do not require the specification of a polling
interval, which is derived by the interval associated to the inner C-pages.

2The only exception occurs when a dependency exists among clouds at different levels, due to
parameter passing.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Stefano Ceri et al.

Parameter
Get ClientPar

Client Parameter

@

Visual Notation Description

Input: no input

Source Parameter: parameters generated at the
client side

Output: parameter value

Fig. 5. Visual notation for the Get URL Parameter unit.

4.4 Specifying Adaptivity

The main novelties for modeling context-aware pages lay in the specification of
actions clustered within context clouds. In the following, we will introduce new
WebML modeling constructs that ensure full coverage for the specification of con-
text model management and hypertext adaptivity actions. The latter allow speci-
fying in a visual manner actions for acquiring and updating context data, as well as
ECA (Event-Condition-Action) rules, where the event consists in the page request,
the condition for rule activation (if any) consists in the evaluation of context para-
meters previously acquired, and the action consists in adaptations of the hypertext
front-end.

4.4.1 Managing Context Data. In order to gather adaptivity with respect to the
current state of context, the application must be able to acquire and manage context
parameters, according to the mechanisms illustrated in Section 3.1. The modeling
of conventional applications already provides primitives for managing server-side
parameters. For example, in WebML context data made available as HTTP session
parameters can be handled by Get units (see Section 4.1). However, new primitives
and mechanisms are required for:

—Specifying the acquisition of fresh context data, sensed at the client side. A new
Get ClientPar unit (see Figure 5) is needed for supporting the retrieval of pa-
rameters generated at the client side and communicated back to the application.

—Specifying the acquisition of context data from the context model. In conventional
applications, page computation implies retrieving from the data source data to
be published within pages. As already discussed in Section 3, the execution
of adaptivity actions also requires the retrieval and evaluation of context meta-
data. In WebML, a so-called Get Data unit (see Figure 6) has been introduced
for retrieving values (both scalars and sets) from the data source, according to
a selector condition. Its semantics is similar to the one of content publishing
units, with the only difference that data retrieved from the data source are not
published in a page, but just used as input to successive units or operations.
It therefore represents a facility for accessing context meta-data stored in the
application’s data source whenever no visualization is required, for example in
situations where certain data are just needed to evaluate condition expressions.

—Updating the context model. Once fresh context parameters have been retrieved,
they must be used for updating the context model at data level. This action
consists in modifying values previously stored in the data source. In WebML,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 17

{Entity.Attribute}Parameters
Get Data

Entity
[Selector(Parameters)]

Visual Notation Description

Input: parameters for selector condition evaluation

Source Entity: database entity from which to
extract the data rows to be filtered by the selector
condition

Output: (set of) parameters or attributes retrieved

Fig. 6. Visual notation for the Get Data unit.

its specification uses operation units (see Section 4.1) providing support for the
most common database management operations (modify, insert, delete).

—Monitoring the context model. This feature is achieved by introducing periodic
checking mechanism for querying the context model and identifying any variation
of the page context that requires the execution of adaptivity actions. Such check
implies the periodic polling of C-pages and the evaluation of some conditions, as
described in the following.

4.4.2 Evaluating Conditions. The execution of adaptivity actions may depend
on the evaluation of some conditions. The most recurrent pattern consists of eval-
uating whether context has changed, hence triggering the adaptivity actions. The
evaluation of conditions is specified through two control structures, represented by
the If and Switch operation units that have been recently proposed for extending
WebML for workflow modeling [Brambilla et al. 2003].

4.4.3 Executing Adaptivity Actions. Once the current context state is deter-
mined, and possible conditions are evaluated, adaptivity actions can be activated
for customizing the page contents, the navigation, the current site view and the
presentation style. Such actions are specified as follows:

—Adapting Page Contents. Page contents are adapted by means of proper data
selectors, whose definition is based on context parameters retrieved from the
context model or newly computed within the page’s context cloud. The use of
parameterized selectors allows for both filtering data items with respect to the
current context, and also conditionally including/excluding specific content units.

—Adapting Navigation. In some cases, the effect of condition evaluation within
the context cloud can be an automatic, i.e., context-triggered, navigation action
causing the redirection to a different page. The specification of context-triggered
navigations just requires connecting one of the links exiting the context cloud to
an arbitrary destination page of the hypertext, for redirecting the user to that
page. Therefore, links exiting the context cloud and directed to other pages than
the cloud’s source page represent automatic navigation actions.

—Adapting the Site View. In some cases, a context-triggered switch toward a differ-
ent site view is performed. Changes in the interaction context may in fact ask for
a coarse-grained restructuring of the whole hypertext, for example because the
user device has changed, or because he/she shifted to a different activity. There-
fore, we have introduced a Change Site View unit (see Figure 7), which takes

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Stefano Ceri et al.

Parameters
KO

Change SV

Visual Notation Description

Input: identifiers of target site view and target page,
last user selections, global parameters, context
parameters

Output (KO-link): no output

Fig. 7. Visual notation for the Change SiteView unit.

ChangeStyle

A A
Parameters OK

KO

Visual Notation Description

Input: filename of CSS file to be associated to
current site view

Output: no output

Fig. 8. Visual notation for the Change Style unit.

in input the identifiers of a target site view and a target page, to be visualized
in case a switch toward the specified site view is required. In order to support
“contextual” switching, the input link also transports parameters characterizing
the current state of interaction, i.e.:

(1) The input parameters of the source page, which represent the last selections
operated by the user;

(2) Global parameters, representing session data (e.g., user OID and group OID),
as well as some past user selections;

(3) Parameters characterizing the current context, retrieved through the latest
performed data acquisition cycle and not yet stored persistently into the
context model.

—Adapting Presentation Style. Sometimes context changes may require only fine-
grained adaptations of presentation properties (i.e., due to varying luminosity
conditions), not a complete restructuring of the overall hypertext. While adap-
tations of the page layout can be achieved by means of this latter approach or by
conditionally including/excluding content units, we also defined a Change Style

unit for dynamically selecting presentation style properties (see Figure 8). Style
properties are collected in proper .css (Cascaded Style Sheet) files, and the unit
allows changing at runtime the style sheet associated to the application.

5. A MODELING EXAMPLE

The modeling framework described so far has been conceived and applied within
the Italian FIRB research project MAIS (Multichannel Adaptive Information Sys-
tems [MAIS Consortium 2005]). For validating the project results, an Integrated
Tourist Information System (ITIS) has been considered as case study; it provides
tourists with up-to-date, personalized and location-aware information. For presen-
tation purposes, in this paper we present a simplified version of the overall system

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 19

User

UserOID
UserName
Password
Email
PersonalRFID

Group

GroupName

SiteView

SiteViewID

1:1 1:N

1:N 1:N

1:N 1:N

1:1 0:N

MuseumLocation

Area
Description
Dimensions

0:1

0:N

0:1

Artwork

ArtworkOID
Title
Description
Date
Photo

Artist

ArtistOID
Name
Surname
Birthdate
DateOfDeath
Description
Photo

0:1 1:1 1:N

GpsPosition

PosOID
Longitude
Latitude

CityMap

MapOID
minLongitude
maxLongitude
minLatitude
maxLatitude
ImageFile

Room

Number
Name
Description

0:1

1:1

1:1

1:N

Fig. 9. Sample data schema for the Integrated Tourist Information System ITIS.

design3. By combining outdoor and indoor location mechanisms, ITIS allows for
suitable coarse-grained and fine-grained information support. Outdoors, ITIS pro-
vides mainly city maps and sights descriptions as well as possible advertisements of
nearby restaurants. Indoors, the available contents are defined autonomously by the
administrators of the respective structures and vary from building to building. For
example, the City Museum provides their visitors with location-aware descriptions
of artworks and artists.

For the outdoor positioning of tourists, the system makes use of GPS (Global
Positioning System) coordinates, whereas indoor sensing is achieved by means of
active RFID tags. Each tourist is equipped with a PDA, a GPS module and a per-
sonal RFID tag, possibly integrated into the PDA. HTTP requests directed to ITIS
are enriched with GPS coordinates by means of a small proxy server installed on
the client PDA and managing the communication between PDA and GPS module.
Indoor-sensed positions are directly fed into the application’s context model by the
sensing infrastructure.

Derived from this scenario, Figure 9 depicts the data source adopted by ITIS.
Besides proper application data (entities CityMap, Room, Artwork and Artist),
the entities GpsPosition and MuseumLocation build up the application’s context
model. While the GPS coordinates associated to users are updated by means of
proper operations at hypertext level (see Figure 10), the association of locations
inside the museum with users is maintained by the indoor sensing infrastructure,
based on the PersonalRFID attribute of each user. More precisely, when a user
enters one of the sensible areas in the museum, its PersonalRFID is revealed and
the association area-user is updated.

The hypertext model of the ITIS Web application depicted in Figure 10 is built
on top of the data source of Figure 9. The schema includes both C-pages and
C-areas, and shows only context-triggered navigation alternatives. Each container

3For more details and a demo, see http://dblambs.elet.polimi.it/Demos/

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Stefano Ceri et al.

AreaArea

AreaMuseum Area C

Artwork

Artwork

Artwork Details

C

Get Area

MuseumLocation
[User2MuseumLocation]

Area

C

Get Longitude

Longitude

@

Get Latitude

Latitude

@

Get User

CurrentUser

Modify

GpsPosition
[User=CurrentUser]
<Longitude=Lon>

<Latitude=Lat>

Lon

CurrentUser

Lat

CurrentUser,
Lon, Lat

City Map

CityMap

Map

C

Get Map

CityMap
[minLongitude<Lon<maxLongitude]

[minLatitude<Lat<maxLatitude]

Get Artwork

Artwork
[MuseumLocation2

Artwork]

IF

Artwork.OID != NULL

Area

Area,
Artwork.OID

Room

Room
[MuseumLocation2Room]

Room Details

C

[result = true] [result = false]

Area

Lon, Lat

CurrentUser

Artwork.OID Area

CityMap.OID

Fig. 10. Hypertext schema for the ITIS application. The schema only depicts context-
related navigations (links), while user navigations are omitted for improving readability.
Concurrency between user and context is discussed later on in this paper.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 21

has its own chain of adaptivity actions, and some context parameters are passed
hierarchically from outer context clouds to inner ones. For example, the parameters
Lon and Lat (as well as the parameter CurrentUser) are generated by the outermost
area and consumed by the cloud of the City Map page; also, the parameter Area is
produced by the adaptivity actions associated to the Museum Area and is consumed
for adapting the two pages Artwork and Room.

The outermost area is associated with actions for acquiring fresh context data
and for updating the context model. More precisely, the current outdoor position
of users is managed according to the following steps:

—The value of the session parameter CurrentUser, holding the current user ID, is
retrieved through the Get User unit.

—The value of client-side parameters representing the current longitude and lati-
tude are retrieved by means of the Get Longitude and Get Latitude units.

—The new GPS position is associated with the retrieved user by modifying the
respective data entity (Modify unit).

These steps are executed each time the context clouds associated to one of the
inner C-pages are evaluated. In order to guarantee the consistency of the context
parameter passing mechanism, the steps are executed before any of the inner context
clouds are evaluated. The Adaptivity Policy property for both the area and its
pages is set to deferred; therefore the context clouds, from the outermost to the
page’s one, are evaluated only when automatic refreshes following the user access
are generated. In other words, when a user is viewing page City Map, before
executing the adaptivity actions on page refresh, the outer cloud is executed and
the parameters CurrentUser, Lon, and Lat are set. Only afterward, the page
adaptivity actions that require the parameters Lon and Lat in input are performed,
and a suitable city map is chosen for rendering the HTTP response.

On the other hand, the pages contained in the area Museum Area are built upon
indoor position data, which are retrieved by means of the context cloud associated
to the Museum Area. Also for this area, the Adaptivity Policy is deferred. The
only operation of the cloud consumes in input the parameter CurrentUser and
produces in output the parameter Area, to be passed on to the inner pages.

The page Artwork, for example, uses the parameter Area for evaluating its adap-
tation rule that retrieves the ID of the artwork associated to the user’s current
position, checks whether the ID is not null (which would mean that no artworks
exist in that position), and updates the content of the Artwork page if the retrieved
ID contains a valid identifier. Otherwise, not being able to provide meaningful art-
work details, the rule redirects the user to the page Room publishing details about
the current exhibition room. The Room and Artwork pages share the same adaptiv-
ity actions, which trigger automatic navigations between the two pages in function
of the availability of proper artwork data.

6. COMPUTING CONTEXT-AWARE PAGES

The introduction of context-awareness demands for a revision of the WebML page
computation algorithm [Ceri et al. 2002a], which now needs to cope with the auto-
matic execution of adaptivity actions associated to pages and containers.

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Stefano Ceri et al.

The computation algorithm for conventional WebML pages is based on the com-
putation of page-internal units. It starts by computing all the units that do not
receive any link in input, and therefore do not need any parameter for their compu-
tation. Then, it proceeds with externally dependent units for which however there
are sufficient input values in the parameters passed to the page. Hence, until all
possible units inside the page have been computed, the algorithm iteratively selects
the unit to be computed next, on the basis of the following conditions:

—All mandatory input parameters of the unit must have a value;

—All units that could supply a value to an input parameter of the unit must have
already been computed.

When computing hypertext schemas supporting adaptivity, the page logic must
be adapted for covering the automatic execution of adaptivity actions associated to
both pages and their outer containers. Therefore, computation of adaptive pages
must not only tackle the problem of how to compute the units contained in the page,
but it also must guarantee the correct activation and execution of the associated
context cloud. As already expressed by Figure 4, this implies recursively evaluating
each context cloud before actual page computation, starting from the outermost
one and up to the innermost one (i.e., the cloud associated to the page to be
computed). Hence, the computation logic for ordinary pages keeps its validity,
but it now handles also possible adaptation operations by recurring over context
clouds defined for pages and their containers. This behavior can be summarized by
the following codeGen function, where buildContext and buildPage perform the
computation of the context cloud and the page, respectively:

FUNCTION codeGen(C:Container)

BEGIN

IF (contextAware(C) THEN {

IF (included(C,C’) AND contextAware(C’)) THEN

codeGen(C’);

newPage = buildContext(C);

IF (newPage != null) THEN

codeGen(newPage);

}

IF (isPage(C)) THEN

buildPage(C);

END

In particular, buildContext returns a value that, when the evaluation of the con-
text cloud triggers an automatic navigation to a different page newPage, represents
a pointer to the target page. This value is null when any automatic navigation is
required. Also, the immediate or deferred activation of the context cloud computa-
tion within the buildContext function is subject to the adaptivity policy associated
to the C-container under evaluation.

6.1 Specificity Rules

In some page configurations it may happen that a unit has multiple incoming links
assigning values to the same parameter. Since only one value has to be considered,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 23

the computation of the unit results to be ambiguous. Some specificity rules are
therefore necessary for deciding which one of the incoming values to use.

For ordinary pages, the specificity of input parameters is assessed according to
the following principles [Ceri et al. 2002a]:

(1) Values which derive from the current user’s choice, expressed by the last navi-
gation event, are the most specific;

(2) Values that depend on past user’s choices or derive from global parameters
accessed through Get units are the second most specific;

(3) Values heuristically deriving from the content of other units are the less specific.

In case of context-aware pages, the specificity rules are extended by means of
a further condition to be evaluated before any other rule. Such a rule states that
values deriving from the computation of the page’s context cloud (if evaluated) are
the most specific. The new specificity rule promotes context as a new actor that
can cause navigation actions or page adaptations.

Coherent with this choice, the following classification shows the three possible
situations that may occur when accessing pages:

—Non-context-aware pages : the ordinary specificity rules, not considering any
adaptivity actions, apply, and units are computed as usual.

—Access to C-labeled pages with deferred adaptivity : adaptivity actions possibly
defined for such pages are ignored at the first page access, in order to grant the
user the highest priority. Possible adaptivity actions, specified for the page and
its outer areas, are evaluated in response to automatic refreshes, periodically
generated after the first user access to the page. This may result in overwriting
previous user choices.

—Access to C-labeled pages with immediate adaptivity : the adaptivity actions are
evaluated at each page request, also including the fist page access by the user.

Figure 11 illustrates the steps required at runtime for computing dynamic page
templates, and highlights the additional computation required by context-aware
pages. The use of a parameter automatic, appended to the HTTP page request,
becomes necessary for identifying that a page has been requested by the automatic
refresh mechanism and not by the user. As the figure shows, when the Web server
receives a new page request, it decodes the incoming request parameters and, only
for C-pages, it verifies whether adaptivity is needed. This check consists of (i)
evaluating the value assigned to the Adaptivity Policy page property and (ii)
verifying the existence of the automatic parameter in the URL string. Accordingly,
page computation proceeds as follows:

—If adaptivity is not required (i.e., for conventional pages or for the first user’s
access to C-pages with deferred policy), computation proceeds along the left hand
side.

—If adaptivity is required, i.e., when Adaptivity Policy = ‘‘immediate’’, or
when Adaptivity Policy = ‘‘deferred’’ and parameter automatic = ‘‘yes’’,
the computation proceeds along the right hand side. Two different adaptivity
actions can be undertaken:

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Stefano Ceri et al.

Decode request parameters

[no]

Request parameters

Query results

Rendered Page

Connect to the database &
prepare and execute database

queries

Print page contents and links

Connect to the database &
execute adaptation operations
with respect to current page

[yes]

User Request

Adaptation results

[no] Automatic
navigation
needed?

[yes]

Generate new page request

Update request
parameters

Page
request

Is
Adaptivity
needed?

Ordinary
computation
steps

Additional
steps for
adaptive pages

Fig. 11. Computation of context-aware page templates.

—Page adaptation: the database is accessed for reading the current state of the
context, and some parameters are updated accordingly. Thus computation
proceeds as with ordinary pages. The new value of context parameters will
cause the adaptation of page content or style.

—Navigation toward a different page, within or outside the current site view: in
this case, the computation process generates a new page request, and the page
computation process starts anew, with the parameter automatic = ‘‘no’’.

It is worth noting that infinite loops with non-terminating evaluations of the con-
text state could arise in the execution of chains of context clouds. This may occur
when the target page of an automatic navigation starting from an “immediate”
C-page adopts as well an immediate adaptivity policy and its context cloud is in
conflict with the adaptivity actions specified for the source page. This in fact could
redirect the user back to the source page, then again to the target page (due to the
immediate policy), and so on.

The problem of non-termination is well-known in active databases (see, e.g.,
[Widom and Ceri 1996; Aiken et al. 1992; Baralis and Widom 1994]) and it is not
surprising to find it applicable to adaptive Web computations; however, a sensi-
ble design of the Web application should rarely cause conflicts or non-termination.
Design-time techniques can be used for checking either the acyclicity of page in-
vocation graphs (a sufficient condition) or the lack of interference of cyclic page
invocations (based upon semantics), along the directions marked in [Widom and
Ceri 1996].

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 25

Artwork

Artwork
[MuseumLocation2Artwork(Area)]

Artwork Details

C

Get Area

MuseumLocation
[User2MuseumLocation(User)]

Get User

CurrentUser

List of Areas

Areas

MuseumLocation

Link2
Area

AreaUser

Link1

Fig. 12. Hypertext schema presenting either an adaptive or a non-adaptive behavior at
runtime. Link1 and Link2 represent possible user navigations toward the context-aware
page under investigation.

A design guideline for preventing infinite loops is to avoid cycles of automatic nav-
igations involving source and target pages both with immediate adaptivity. When
cycles need to be defined, a deferred policy for the involved pages is recommended.
This ensures that the target page is rendered to the user before considering addi-
tional adaptivity actions. Therefore, the user can interrupt the (possible) cycle by
disabling the context-aware modality or navigating to another page.

6.2 Context-Aware Page Computations

This section shows some examples of page computation with the objective of clarify-
ing the interleaving and cross-effects between user navigation actions, automatically
generated page requests, and adaptivity actions. The examples show that the page
modeling logic needs to be well understood when pages are context-aware.

Consider the page in Figure 12, and assume it not to be “context-aware”, in
the sense that it does not reflect any change of context (therefore the figure has
to be seen “without” the C-label); however, it reads context-specific meta-data,
as represented by the Get User and Get Area units, respectively retrieving the
current user, and its current museum area as shown by the User2MuseumLocation

relationship. The page can be accessed along two links. Link1 does not carry
parameters to the page, while Link2 carries as parameter an area, selected by the
user by means of the area index shown in page List of Areas. The logic of the
page, computed according to “standard” specificity rules, as described by items
(1-3) of section 6.1, is to show the details of the artwork of the user-selected area
if the page is accessed along Link2, and otherwise to show the artwork details for
the user’s current area. In particular, when Link2 is traversed the specificity of the
user-selected area prevails in the computation of the Artwork Details unit, and
the page does not adapt its content to the current area where the user is located.

Consider then what happens if the page behaves as a context-aware page, as it
is indeed represented by the C-mark in the figure. The following behavior occurs
(independently from the chosen adaptivity policy):

—If the page is accessed along Link1, changes to the location of the user are
reflected by a change of the artwork details being displayed; the page correctly
adapts its content to the current area thanks to the Get User and Get Area

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Stefano Ceri et al.

Artwork

Artwork
[MuseumLocation2Artwork(Area)]

Artwork Details

C

Get Area

MuseumLocation
[User2MuseumLocation(User)]

Get User

CurrentUser

List of Areas

Areas

MuseumLocation

Link2
Area

AreaUser

Link1

Get Area

MuseumLocation
[User2MuseumLocation

(User)]

Get User

CurrentUser

User

Link3

Area

Fig. 13. Overwriting out-of-date link parameters. Link1 and Link2 represent user-
navigated access to page Artwork. Link3 transports fresh context data, retrieved within
the context cloud, which overwrite past user choices.

units, able to read context data. At each refresh following the first user access,
the page is also updated with respect to the current context.

—However, if the page is accessed along Link2, then the user-selected value (the
most specific) prevails, and the page does not adapt its content. This value also
prevails at each refresh.

The second behavior keeps the content of the page unchanged when the page is
initially accessed by a link carrying a user selection; the designer could instead opt
for a uniform behavior for both cases (and therefore, a “uniform adaptivity” re-
gardless the navigated link). This uniform behavior can be achieved by redesigning
the page so as to make the retrieval of the current area an explicit context-specific
operation. Such evaluation should therefore be part of a context cloud, as indi-
cated in Figure 13. In this way, adaptivity actions are given a higher priority with
respect to past user selections. Assuming a deferred adaptivity policy, the page is
then computed as follows:

—Page access along Link1. The page Artwork is accessed through a link which
does not carry any parameters, and the page shows the details of the monuments
in the area where the user is located. Being the first page access, this user-
navigated link does not activate the adaptivity actions in the context cloud.
Context data are however retrieved by means of the Get Data unit inside the
page.

—Page access along Link2. The page Artwork is accessed through a link pro-
viding the area selected by the user. As in the previous case, this link does not
trigger the context cloud. The page does not adapt its contents at all, because
the parameter of Link2 prevails over the Area parameter produces by the Get

Data unit.

—Page access through refresh. The context cloud actions are executed. As
a result, the current user area is passed in input to the unit Artwork Details

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 27

by using Link3. For the data unit to be computed, three values of the Area

parameter are now available: the last user-selected area OID provided by Link2,
the area OID retrieved by means of the get data unit internal to the page, and
the area OID retrieved by the context cloud and provided by Link3. According
to the specificity rules, values generated within the context cloud prevail over
user-generated values; thus Link3 “overwrites” Link2, regardless of the initial
access to the page.

In case of an immediate adaptivity policy, values generated within the context
cloud always prevail, because the context cloud is evaluated at each page access, re-
gardless of the navigated link and the actor of the navigation (user versus automatic
refresh).

The three examples discussed in this section show three possible types of context-
awareness: static (for conventional pages, making use of Get units for retrieving
the current values for context data), dynamic with distinct refresh semantics based
on the initial access as represented in Figure 12, and dynamic with uniform refresh
semantics as represented in Figure 13. Each of them is applicable in given cases,
and the designer should choose the most appropriate one.

7. IMPLEMENTATION EXPERIENCES

In the context of the MAIS project, model extension, code generation, and run-
time experiments were conducted, allowing us to successfully cover all aspects of
the outlined modeling approach. Prototype development proceeded by two com-
plementary steps; the first produced an external proof-of-concepts extension of the
WebML runtime environment, the latter finally yielded to an (internal) extension
of the WebML CASE tool WebRatio [WebModels s.r.l. 2005].

The external solution fully reflects the page computation logic outlined in Figure
11 and builds on a pre-processing mechanism for page requests. Within the MVC
(Model View Controller [Davis 2001]) architecture of the WebML runtime environ-
ment [Ceri et al. 2003], a modified application controller accepts arbitrary HTTP
requests and checks whether they refer to context-aware pages (as indicated by the
presence of the request parameter automatic – see Section 6.1) or to conventional
ones. In case of requests for conventional pages, the controller simply proceeds with
page content computation; in case of context-aware pages, it first performs the asso-
ciated adaptivity actions and then proceeds with the computation of page contents.
Controller and adaptivity actions are implemented by hand, and allow managing
(i) access to context data, (ii) adaptivity of page contents by overwriting request
parameters, and (iii) automatic navigation actions by generating substitutive page
requests. Controller logic and page-specific adaptation logic are intermixed and
hardwired within a dedicated Java servlet in charge of pre-processing HTTP re-
quests directed to the Web application.

This first proof-of-concepts prototype allowed us to assess the feasibility of the
proposed conceptual modeling solutions, to set up an experimentation environment
for simulating and testing their viability and, finally, to improve some minor as-
pects. The external adaptation solution takes full advantage of the existing WebML
runtime environment by pre-processing its input, but lacks support for visual design
and automatic code-generation starting from adaptive WebML schemas.

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Stefano Ceri et al.

The previous two aspects are addressed by the second prototype that consists
in the extension of the WebRatio tool to fully reflect the proposed (visual) design
method. The implementation exploits WebRatio’s native extension mechanisms
that allow adding new features by means of so-called custom units, a mechanism
that already has demonstrated its power when extending the CASE tool to support
communications with Web services [Manolescu et al. 2005] and workflow-driven
hypertexts [Brambilla et al. 2003].

In particular, the extension occurred along two complementary dimensions: the
first dimension referred to the new adaptivity actions described in Section 4.4 (to
be applied in the context cloud), while the second dimension concentrated on the
introduction of context-aware pages as described in Section 4.3 (context-aware areas
or site views are not supported yet). Novel operations defined as custom units are:
the Get ClientPar unit4, the Get Data unit, the Change Site View unit, and the
Change Style unit. The introduction of context-aware pages required an extension
of the page logic, yielding a further new content unit (called Context unit), to
be used in place of the C-label associated to context-aware pages and triggering
the context cloud logic. This unit also contains the parameter passing logic and
manages the polling mechanism, granting the context cloud control when required,
according to the chosen adaptivity policy.

With respect to the first experiments conducted, this second prototype imple-
mentation finally allows us:

—To support the design of arbitrary context-aware Web applications and the au-
tomatic generation of the respective program code;

—To fully reflect the adaptive design method proposed in this paper;

—To capitalize on the WebML CASE tool and runtime environment.

The screenshot in Figure 14 refers to the extended visual WebRatio environment,
and shows a WebML model fragment of the location-aware ITIS Web application
described in Section 5. Context-aware pages contain the aforementioned Context

unit, which takes in input the current user’s longitude and latitude (accessed by
means of two Get ClientPar units) and forwards them to the single pages’ context
clouds in case adaptivity actions must be triggered. We omit a detailed description
of the single modeling constructs, and rather focus the reader’s attention on the
following two peculiarities: (i) City map data are retrieved by means of an external
Web service5; the operations outside the Assistant area manage the respective
communications. (ii) Since proper context-aware containers, i.e. areas, are not
supported yet by the current version of WebRatio, typical area-level adaptivity
actions (i.e., accessing longitude and latitude) are repeatedly specified as page-level
operations. Support for context-aware containers is planned for future versions of
the WebML CASE tool.

4In the current implementation, the communication of client-side sensed data occurs by appending
parameters to the URL of the requested page. Other communication mechanisms, also based on

the SOAP communication protocol, are planned for future releases.
5Microsoft MapPoint Web Service, http://www.microsoft.com/mappoint/products/webservice/
default.mspx

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 29

Fig. 14. Screenshot of the visual environment of the WebML CASE tool, showing a fragment of

the location-aware ITIS Web application design.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have considered a relevant aspect of modern Web applications, i.e.
adaptability to context, and we have shown how such aspect requires increasing
the expressive power of Web application models so as to incorporate changes in the
page generation logic that depend on the context. The proposed approach, based
on WebML, enables a fully automatic generation of adaptive applications. How-
ever, the proposed design primitives are general in nature, and context modeling,
adaptation changes, parameter passing, and the use of refresh, can be manually
encoded by Web programmers.

The solutions described in this paper have been extensively tested in the context
of the MAIS project, by altering the run time component of WebRatio; this proved
that the solution is feasible and meets an important customer demand. As such,
it will be integrated in a future release of the WebRatio environment (first quarter
2006).

As a continuation of this research, we are now defining a formal model for ana-
lyzing possible conflicts and inconsistencies that may be caused by the activation
of adaptivity actions. We are also studying how device-specific Web services could
be published (by using the new “service view” concept of WebML [Brambilla et al.
2005]), so as to enable the model-driven specification of meta-data management for

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Stefano Ceri et al.

context data. Additionally, we are studying adaptability modes, which are either
time-dependent (i.e., whose refresh delay can be modeled according to given poli-
cies) or real-time (i.e., whose triggering is immediate thanks to client-side aware
extension).

Further efforts will investigate the potential of post-processing mechanisms for
fine-grained adaptation of presentation properties, i.e., adaptive link hiding, and
study techniques for non-invasive refresh management. Especially, the adoption
of Rich Internet Application (RIA) technologies [Macromedia Inc. 2003; Laszlo
Systems 2005] in this regard will enable a background communication between the
client devices and the application server, useful for querying the context state and
refreshing pages only when required. This will lead to an “active” context-awareness
[Ceri et al. 2005] stressing the importance of context monitoring as a mechanism
operating autonomously and transparently in the background, thus providing active
support. The expected result is an improvement of the overall application efficiency
and usability. In order to verify the usability of the proposed adaptivity paradigm,
we are planning some experiments involving real users. The aim is to investigate
the right balance between user-controlled interactions and context-triggered adap-
tations.

ACKNOWLEDGMENTS

This work has been supported by the Italian FIRB Project MAIS (Multi-channel
Adaptive Information Systems).

REFERENCES

Aiken, A., Widom, J., and Hellerstein, J. M. 1992. Behavior of Database Production Rules:
Termination, Confluence, and Observable Determinism. In Proc. of the SIGMOD Conference,
1992. ACM, 59–68.

Baralis, E. and Widom, J. 1994. An Algebraic Approach to Rule Analysis in Expert Database
Systems. In Proc. of the VLDB Conference, 1994. Morgan Kaufmann, 475–486.

Barna, P., Houben, G.-J., and Frasincar, F. 2004. Specification of Adaptive Behavior Using
a General-Purpose Design Methodology for Dynamic Web Applications. In AH’04 - Proc. of
Adaptive Hypermedia. 283–286.

Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M. C., and Palinginis, A. 2004.
Interplay of Content and Context. In ICWE. 187–200.

Brambilla, M., Ceri, S., Comai, S., Fraternali, P., and Manolescu, I. 2003. Specification

and Design of Workflow-Driven Hypertexts. Journal of Web Engineering 1, 2 (April), 1–100.

Brambilla, M., Ceri, S., Fraternali, P., Acerbis, R., and Bongio, A. 2005. Model-driven
Design of Service-enabled Web Applications. In Proc. of the 2005 SIGMOD Conference, 2005.

ACM, 851–856.

Brusilovsky, P. 1996. Methods and Techniques of Adaptive Hypermedia.. User Model and
User-Adapted Interaction 6, 2-3, 87–129.

Ceri, S., Daniel, F., Facca, F. M., and Matera, M. 2005. Model-driven Engineering of Active
Context-Awareness. Technical Report 11.9.2005, Politecnico di Milano. Available at http:

//dblambs.elet.polimi.it/DBLambs/Publication.php?Publication_OID=38.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M. 2002.
Designing Data-Intensive Web Applications. Morgan Kaufmann.

Ceri, S., Fraternali, P., Bongio, A., Butti, S., Acerbis, R., Tagliasacchi, M., Toffetti,

G., Conserva, C., Elli, R., Ciapessoni, F., and Greppi, C. 2003. Architectural Issues and
Solutions in the Development of Data-Intensive Web Applications. In Proceedings of CIDR
2003, January 2003, Asilomar, CA, USA.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Model-driven Development of Context-Aware Web Applications · 31

Ceri, S., Fraternali, P., and Matera, M. 2002. Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing 6, 4 (July-August), 20–30.

Ceri, S., Fraternali, P., and Paraboschi, S. 1999. Data-Driven One-To-One Web Site Gen-
eration for Data-Intensive Applications. In Proc. of VLDB’99. Morgan Kaufmann.

Davis, M. 2001. Struts, an Open-source MVC Implementation. http://www-106.ibm.com/

developerworks/library/j-struts/?n-j-2151.

De Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B., Santic, T., Smits, D.,

and Stash, N. 2003. AHA! The Adaptive Hypermedia Architecture. In HYPERTEXT ’03:
Proceedings of the fourteenth ACM conference on Hypertext and hypermedia. 81–84.

De Bra, P., Houben, G.-J., and Wu, H. 1999. AHAM: a Dexter-based Reference Model for
Adaptive Hypermedia. In HYPERTEXT ’99: Proceedings of the tenth ACM Conference on
Hypertext and hypermedia : returning to our diverse roots. 147–156.

Dey, A. K. and Abowd, G. D. 2000. Towards a Better Understanding of Context and Context-
Awareness. In Workshop on The What, Who, Where, When, and How of Context-Awareness,
as part of the 2000 Conference on Human Factors in Computing Systems (CHI 2000), The

Hague, The Netherlands.

Fiala, Z., Hinz, M., Houben, G.-J., and Frasincar, F. 2004. Design and Implementation of
Component-based Adaptive Web Presentations. In ACM SAC. 1698–1704.

Fraternali, P. 1999. Tools and Approaches for Developing Data-Intensive Web Applications: A
Survey. ACM Computing Surveys 31, 3 (September), 227–263.

Garzotto, F., Paolini, P., and Schwabe, D. 1993. HDM - a Model-based Approach to Hyper-
text Application Design. ACM Trans. Inf. Syst. 11, 1, 1–26.

Grossniklaus, M. and Norrie, M. C. 2002. Information Concepts for Content Management. In
WISE Workshops. 150–159.

Hansen, F. A., Bouvin, N. O., Christensen, B. G., Grønbæk, K., Pedersen, T. B., and

Gagach, J. 2004. Integrating the Web and the World: Contextual Trails on the Move. In Proc.
of ACM-Hypertext’04. 98–107.

Henricksen, K. and Indulska, J. 2004. Modelling and Using Imperfect Context Information.
In PerCom Workshops. 33–37.

Henricksen, K., Indulska, J., and Rakotonirainy, A. 2002. Modeling Context Information in
Pervasive Computing Systems. In Pervasive. 167–180.

Hjelm, J., Martin, B., and King, P. 1998. WAP Forum - W3C Cooperation White Paper.

http://www.w3.org/TR/NOTE-WAP.

Laszlo Systems Inc. 2005. OpenLaszlo - an XML Framework for Rich Internet Applications.

Laszlo Systems Technology White Paper.

Isakowitz, T., Stohr, E. A., and Balasubramanian, P. 1995. RMM: a Methodology for

Structured Hypermedia Design. Commun. ACM 38, 8, 34–44.

Kappel, G., Proll, B., Retschitzegger, W., and Schwinger, W. 2003. Customization for
Ubiquitous Web Applications - A Comparison of Approaches. International Journal of Web

Engineering and Technology.

Kobsa, A., Koenemann, J., and Pohl, W. 2001. Personalized Hypermedia Presentation

Techniques for Improving Online Customer Relationships. The Knowledge Engineering Re-
view 16, 2.

Koch, N., Kraus, A., and Hennicker, R. 2001. The Authoring Process of the UML-based Web

Engineering Approach. In First International Workshop on Web-oriented Software Technology
(IWWOST01), D. Schwabe, Ed.

Lei, H., Sow, D. M., II, J. S. D., Banavar, G., and Ebling, M. 2002. The Design and Appli-
cations of a Context Service. Mobile Computing and Communications Review 6, 4, 45–55.

Long, S., Kooper, R., Abowd, G. D., and Atkeson, C. G. 1996. Rapid Prototyping of Mobile

Context-Aware Applications: The Cyberguide Case Study. In MOBICOM. 97–107.

Macromedia Inc. 2003. Developing Rich Internet Applications with Macromedia MX 2004.

Macromedia White Paper.

MAIS Consortium. 2005. MAIS Project Home Page. http://www.mais-project.it/.

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Stefano Ceri et al.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P. 2005. Model-Driven
Design and Deployment of Service-Enabled Web Applications. ACM TOIT 5, 3 (August), In
print.

Ni, L. M., Liu, Y., Lau, Y. C., and Patil, A. P. 2004. LANDMARC: Indoor Location Sensing
Using Active RFID. Wireless Networks 10, 6, 701–710.

Salber, D., Dey, A. K., and Abowd, G. D. 1999. The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In Proc. of CHI’99. 434–441.

SALTforum.org. 2005. Speech Application Language Tags (SALT). http://www.saltforum.

org/.

Schmidt, A., Aidoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven, K. V., and de Velde,

W. V. 1999. Advanced Interaction in Context. In HUC. 89–101.

Schwabe, D., Guimaraes, R., and Rossi, G. 2002. Cohesive Design of Personalized Web Appli-
cations. IEEE Internet Computing 6, 2 (March-April), 34–43.

Schwabe, D., Rossi, G., and Barbosa, S. D. J. 1996. Systematic Hypermedia Application
Design with OOHDM. In HYPERTEXT ’96: Proceedings of the seventh ACM conference on
Hypertext. ACM Press, New York, NY, USA, 116–128.

Vdovjak, R., Frasincar, F., Houben, G.-J., and Barna, P. 2003. Engineering Semantic Web
Information Systems in Hera. Journal of Web Engineering 2, 1-2, 3–26.

W3C. 2004. Voice Extensible Markup Language (VoiceXML) Version 2.0. http://www.w3.org/

TR/2004/REC-voicexml20-20040316/. W3C Recommendation.

Want, R., Hopper, A., Falcao, V., and Gibbons, J. 1992. The Active Badge Location System.
ACM Trans. Inf. Syst. 10, 1, 91–102.

WebModels s.r.l. 2005. WebRatio Site Development Studio. http://www.webratio.com.

Widom, J. and Ceri, S. 1996. Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann.

Received Month Year; revised Month Year; accepted Month Year

ACM Journal Name, Vol. V, No. N, Month 20YY.

