
Extending WebML for modeling multi-channel context-aware Web applications

Stefano Ceri, Florian Daniel, Maristella Matera
Dipartimento di Elettronica e Informazione - Politecnico di Milano

P. zza Leonardo da Vinci, 32 – 20133 - Milano – Italy
{ceri, daniel, matera}@elet.polimi.it

Abstract

This paper focuses on some issues related to the
conceptual modeling of multi-channel, context aware
Web applications, and in particular it proposes some
solutions conceived within the WebML method. WebML is
a conceptual model for data-intensive Web applications,
which already offers some constructs for one-to-one
personalization and multi-channel delivery. In this paper
we introduce some new extensions that will allow
representing a context model at data level, and exploit it
at hypertext level for offering customized services and
contents, accessible through multiple channels.

1. Introduction

As Web applications spread in almost every domain,

novel challenges are posed to developers. The current
advances in the communication and network technologies
will change the way people interact with Web
applications, providing them with different types of
mobile devices, for accessing at any time, from anywhere,
and with any media services and contents customized to
users’ preferences and usage environment. Due to such
premises, the traditional design methods will not be
anymore exhaustive, since new issues and requirements
need to be addressed for supporting multi-channel,
context-aware access to services. This paper focuses on
the emerging new requirements, and proposes some
solutions conceived within the WebML method.

WebML (Web Modeling Language) is an already
established conceptual model for data-intensive Web
applications, which is accompanied by a development
method and a CASE tool [3, 4, 9]. WebML, and in
general conceptual modeling, have already proven their
effectiveness for the design of personalized Web
applications [5, 8]. In this paper we illustrate how some
extensions can also support the design of applications
able to adapt themselves to the variability of the adopted
communication channel and of the usage context.

The paper is organized as follows. Section 2-4
provides a short overview of WebML, recalling its basic
concepts and notations and illustrating how the model
already supports the specification of one-to-one
personalization and multi-channel delivery. Section 5
introduces some new emerging requirements for the
design of context-aware applications, and clarifies some

assumptions at the basis of our approach. Section 6 and 7
then illustrate the proposed extensions along two design
dimensions: data and hypertext modeling. Section 8
presents the extended WebML at work for the
specification of a museum application supporting users
guided tours through exposed artworks. Section 9 finally
draws some conclusions.

2. WebML: an overview

WebML is a visual language for specifying the content

structure of a Web application and the organization and
presentation of contents in one or more hypertexts.

The design process starts with the definition of a data
schema, expressing the organization of the application
content. The WebML Data Model adopts the Entity-
Relationship (ER) primitives for representing the
organization of the application data. Its fundamental
elements are therefore entities, defined as containers of
data elements, and relationships, defined as semantic
connections between entities. Entities have named
properties, called attributes, with an associated type.
Entities can be organized in generalization hierarchies,
and relationships can be restricted by means of cardinality
constraints.

The WebML Hypertext Model allows then describing
how data, specified in the data schema, are published into
the application hypertexts. The overall structure of
hypertexts is defined in terms of site views, areas, pages
and content units. A site view is a particular hypertext,
designed to address a specific set of requirements. It
consists of areas, which are the main sections of the
hypertext, and comprises recursively other sub-areas or
pages. Pages are the actual containers of information
delivered to the user; they are made of content units,
which are the elementary pieces of information extracted
from the data sources and published within pages.
Content units and pages are interconnected by links to
constitute site views.

Several site views can be defined on top of the same
data schema, for serving the needs of different user
communities, or for arranging the composition of pages to
meet the requirements of different access devices like
PDAs, smart phones, and similar appliances.

Data unit Data unit

It displays a set of
attributes for an entity
instance.

Multidata
unit

Multidata unit

It displays all the instances
for a given entity.

Index unit Index unit

It displays list of properties,
also called descriptive keys,
of a given set of entity
instances.

Scroller
unit

Scroller unit

It represents a scrolling
mechanism, based on a
block factor, for the
elements of a set.

Entry unit Entry unit

It displays a form for
collecting input values into
fields.

Table 1. Content units in the WebML composition
model.

The WebML Hypertext Model includes:
− The composition model, concerning the definition

of pages and their internal organization in terms of
elementary pieces of publishable content, called
content units. Content units offer alternative ways
of arranging content dynamically extracted from
entities and relationships of the data schema.
WebML units (see Table 1 for their visual
notation) denote one or more instances of the
entities of the data schema, typically selected by
means of queries over entities, attributes, or
relationships, and also forms for collecting input
values into fields. Unit specification (excepting for
the entry unit) includes the indication of a source
and a selector: the source is the name of the entity
from which the unit’s content is extracted; the
selector is a predicate, used for determining the
actual objects of the source entity that contribute
to the unit’s content.

− The navigation model, based on the definition of
links that connect units and pages, thus forming
the hypertext. Links can connect units in a variety
of legal configurations, yielding to composite
navigation mechanisms. Links between units are
used to carry some information (called context)
from the source unit to the destination unit.

Create unit Create

It specifies the creation of
an entity instance.

Delete unit Delete

It specifies the deletion of
entity instances.

Modify unit Modify

It specifies the updating of
entity instances.

Connect unit Connect

It specifies the creation of a
relationship instance.

Disconnect
unit

Disconnect

It specifies the deletion of a
relationship instance.

Table 2. Basic units of the WebML operation model.

− The operation model, consisting of a set of units
for specifying content management operations.
The basic primitives for expressing update
operations can be specified as reported in Table 3:
they allow creating, deleting or modifying an
instance of an entity (respectively represented
through the create, delete and modify units), or
adding or dropping a relationship between two
instances (respectively represented through the
connect and disconnect units).

WebML also provides units for the definition of global

parameters. Parameters can be set through the set unit,
and consumed within a page through a get unit. The
visual representation of such two units is reported in
Table 3.

Get unit Set unit

Get unit

Set unit

Table 3. Visual notation of get and set units.
Besides having a visual representation, WebML

primitives are also provided with an XML-based textual
representation, used to specify additional detailed
properties, not conveniently expressible in the graphic
notation. Web application specifications based on
WebML can be therefore represented as visual diagrams,
as well as XML documents.

User
UserName
Password
EMail

Group
GroupName

SiteView
SiteViewID

1:1
0:N

1:N 1:N
1:1

1:N

DefaultGroup

Membership

Access

Figure 1. WebML user model.

3. WebML and one-to-one personalization

Several application requirements impose that a given

user accesses a sub-set of data and functionality,
according to his/her own user profile. The WebML
method supports personalization of contents and services,
assuming the key principle that users and their roles must
be modeled as data. At this aim, the WebML data schema
of a Web application typically includes entities
representing users and the groups in which they are
clustered.

Additionally, the delivery of different viewpoints and
functions to selected user groups requires designing
alternative WebML site views and “attaching” each site
view to the user group for which it has been designed.
Such an association can be obtained by modeling also site
views as data, for example introducing into the data
schema a SiteView entity, and connecting this entity to the
Group entity by means of a relationship. In this way,
during application execution, it is possible to forward the
user to the home page of the appropriate site view, based
on the group membership.

The essential aspect of the WebML approach to one-
to-one personalization is therefore the inclusion of users,
groups and site views as “first-class citizens” in the
application data schema. The data schema of every
application designed with WebML thus includes a default
sub-schema, which is showed in Figure 1:
1. The entity User includes the basic properties of each

user. The entity Group includes collective properties.
2. A many-to-many relationship (called Membership)

connects User to Group, denoting that a user may
belong to multiple groups, and that a group clusters
multiple users.

3. A many-to-one relationship (called DefaultGroup)
connects User to Group, denoting that a user may
have one group as the default one among the groups
he belongs to. This additional information is useful for
assigning the user to the default group after he logs
into the application, and for forwarding him to the site
view of the default group.

User
UserName
Password
EMail

Group
GroupName

SiteView
SiteViewID

1:1
0:N

1:N 1:N 1:1

1:N

Artwork
Title
Period

Review
Title
Body

Preference Belonging

1:1

1:N

1:N

1:N

DefaultGroup

Membership

Access

Figure 2. Data schema for a personalized

application.

My page

User

User My Artworks

Artwork
[User_Artwork]

GetUser

CurrentUser

My Reviews

Review
[User_Review]

Figure 3. Hypertext schema of a Web page

delivering personalized content.

The described user model applies also to those Web

applications in which users remain anonymous, but are
nonetheless individually tracked, for example in virtue of
their IP addresses or session identifier. In this case,
anonymous users can be considered as instances,
although temporary, of the User entity. This permits to
provide them with personal data for the duration of the
session, for example with an individual trolley, even
though their credentials are unknown.

The definition of relationships between the entity User
(or Group) in the user model, and some other information
objects in the application content makes it possible
modeling preferences over any information object, and
ownership over objects created and managed by
individual users. For example, in Figure 2 the application
entities Artwork and Review are associated to individual
users through relationships expressing the user
preferences over artworks and user participations in
writing reviews. On this schema it is possible to specify
the personalized hypertext of Figure 3. By means of the
global parameter CurrentUser, representing the identifier
of the current user, the page publishes exactly some data
about the current users plus the list of artworks preferred
by the users and the list of reviews s/he has written about
artworks.

4. WebML and multi-channel delivery

Site views may also serve the purpose of expressing

alternative forms of content presentation on different
devices. Each site view may cluster information and
services at the granularity most suitable to a particular
class of devices.

For example, one application can feature two different
hypertexts defined over the same content: one for PC
browsers, the other for WAP devices. Given the difficulty
of browsing with a small screen, the WML version must
be defined so as to provide very concise contents and
minimized interactions.

Hypertext modeling can be therefore applied to multi-
channel applications, by devising the site view structures
most suited to the specific delivery medium, that take into
account the specific requirements of each device with
respect to the amount of information that can be placed
within pages and the complexity of navigation.

It is worth noting that WebML requires the definition
of distinct sit views only when devices show very
different rendering capabilities, and therefore require
completely different hypertext structures. For devices
with similar features, at design time it is possible to model
one only hypertext, and then translate it into the multiple
mark-up languages required by devices. Once the site
view schemas for the different devices are established,
producing the actual pages in the proper markup language
is a matter of implementation, generally based on the
definition of XSL style sheets for the production of
markup code.

5. WebML and context-awareness

Context-awareness is often seen as a recently emerged

research field within information technology. From
another perspective, it can be however interpreted as just
an extension of personalization, addressing not only the
user’s identity and preferences but also the interaction
environment that hosts applications.

Context can be described in terms of properties related
to the current user, her/his current activities, the location
in which the application is used, the devices, and some
other aspects of the environment and of the application
itself that can be used for determining the needed
adaptation [6, 7]. Besides users data, adaptive solutions
for context-aware applications thus exploit context data
for providing users with more useful and usable services,
in a scenario where, especially due to the mobility and
multiplicity of devices, the context can vary.

Context-awareness therefore requires automatisms on
the application part that are triggered by changes of
anyone of the parameters that make up context.

5.1 Functional requirements

In this paper we focus on WebML and its extensions

for supporting the specification of context-aware
applications. WebML supports data and hypertext
modeling. Thus we will introduce some new concepts
along these two dimensions, which allow representing the
context status at data level, and also specifying some
reactive behaviors of the application with respect to the
context state.

Since the WebML modeling approach is data-driven,
the use of context within application primarily requires its
representation at data level. However, also mechanisms
for context data acquisition and access are needed [7].
Therefore, a set of the envisioned extensions allows
fulfilling the following goals:

− Context model representation through a dedicated
data sub-schema;

− Acquisition of context data made available by the
usage environment;

− Continuous update of the context model within the
application data source, for reflecting the newly
reached context state.

Some other goals are concerned with adaptivity
actions over the application hypertext:

− Adaptivity of currently visited page, based on a
new reached context.

− Adaptivity of navigation, through automatic
navigation1 towards pages, within a same site
view, which are considered more appropriate for
the reached context.

− Adaptivity of the whole hypertext structure, by
means of site views switching, for facing changes
of the user’s device, role or activity.

5.2 Architectural requirements

In order to reach the previous goals, it is necessary to

monitor some context data, and capture them from the
environment in which the application is executed. Figure
4 shows the context data flow within a possible
architecture tailored to support context-aware hypertext
solutions. It is composed of two layers related to the
application data source and hypertext. The data source
includes both the application data (i.e., the business
objects that characterize the application domain), and
some context data, the latter offering at any moment an
updated representation of the context status, which we

1 By automatic navigation we mean jumps to pages driven by

the application, not by the user actions.

Hypertext

Context sensing

Context
Model

Hypertext
adaptationPage rendering

To Server-side
Parameters

To Client-side
Parameters

To DB

Adaptive Hypertext

Application Data

Figure 4. Context Data Flow.

call context model. The hypertext computation primarily
exploits the application data for page and unit
computation. We then assume that only a subset of
hypertext elements, included in the so-called adaptive
hypertext, is augmented with adaptive behaviors. The
computation of such elements will exploit also context
data. Moreover, the adaptive hypertext includes the
invocation of operations that, on the basis of newly
sensed context data, update the context model.

As expressed by the gray box, the proposed
architecture also features context-sensing mechanisms for
capturing context data from the application execution
environment. Since context sensing is a technological
issue, which does not affect the specification of the final
hypertext, we will not focus on it. We only assume that
some solutions, for example a sensor infrastructure, allow
sensing such data. We then identify three possible
mechanisms for context data acquisition and
representation:

− As parameters generated by client-side
mechanisms and communicated back to the
application through the URL of requested pages;

− As session parameters, generated at server-side.

− As data retrieved from the context model in the
application data source.

While the first two mechanisms act at the hypertext
level, providing session variables used for computing the
adaptive hypertext, the last acquisition mechanism acts at
data level. As it will be better described in the following
sections, some dedicated operations, invoked within the
adaptive hypertext, will serve the purpose of keeping the
context model updated on the basis of fresh captured
values. However, we can also assume that asynchronous
services are used for this purpose.

The reminder of the paper describes the WebML
extensions that are required to support context awareness.

User
UserName
Password
EMail

Group
GroupName

SiteView
SiteViewID

1:1
0:N

1:N 1:N 1:N
1:N

Location
Longitude
Latitude
Height

Activity
ActivityID
Name
Description
Handycap

1:1

0:N

1:1

0:N

1:N
1:1

Device

CPU
InputDevice
Display
Memory

1:N 1:1

Figure 5. Context sub-schema.

Similarly to other proposed extensions of WebML (e.g.,
to process management [1] or to Web services [2]), the
extensions are performed by (i) defining a suitable data
schema for modeling context (Section 6) and (ii) defining
model extensions for managing adaptivity (Section 7).

6. Modeling context through data sub-
schemas

The modeling approach proposed by WebML is data-

driven. We therefore propose to enrich the application
data schema with a context model, that is the
representation of metadata needed for supporting
adaptivity. By explicitly representing these concepts as
entities, many useful customization policies can be
expressed declaratively in the data and in the hypertext
schema, instead of being buried in the source code of the
application.

The context model can vary depending on the
application domain, and also on the adaptivity goals to be
fulfilled. For this reason, we will not provide a precise,
rigid characterization of context. Rather, we will
introduce some guidelines about how to extend the data
schema through context metadata.

Figure 5 shows a possible sub-schema for representing
context information, which extends the user model sub-
schema illustrated in Section 3. It is possible to note two
main extensions, consisting of elements represented with
black borders: the context entities, for representing
context data, and a new relationship between the entities
Group and SiteView.

The context entities are associated to each user. In
Figure 5, they for example represent the user device and
its location, and the user activity. Some applications may
also require a different set of entities for representing the
context. However, our approach just prescribes to have
such entities associated (directly or indirectly) to the User
entity, which is the starting point in the schema for
navigating within the context model and extracting
context information.

The new many-to-many relationship between Group
and Site View represents all the site views associated to a
given group, among which users can switch during the
application execution, according to the adaptivity rules
defined in correspondence of context changes. With
respect to the WebML user model (see Section 3), this
new relationship expresses that users belonging to a given
group can however act in different contexts.

Site view switching can therefore occur when the user
change devices, thus a new hypertext for accessing
contents is required - this allows capturing multi-channel
requirements. Also, switching is needed when contents
and services to be provided in a new context are totally
different, thus a new application view is required. For
example, a museum application could provide users with
completely different hypertexts when they are visiting
artworks inside the museum building using a PDA for
accessing artwork description, and when they are
accessing the application with the same device outside the
building, for getting information about the current
expositions and the opening hours.

The one-to-many relationship remains unchanged with
respect to the WebML user model. In the context model it
however represents the association of a group with a
default site view, to be provided to a group of users when
information about the current context are not available.

7. Extending the hypertext model for
capturing context awareness

Besides introducing a data sub-schema for

representing context, it is necessary to introduce some
extensions also at hypertext level, for specifying context
model operations and hypertexts adaptivity.

Our basic assumption is that context awareness is a
property to be associated only to some container
elements, i.e., pages, areas, and site views. The contained
elements will inherit the adaptivity actions defined for
their containers and, additionally, can be associated with
more specific actions.

As represented in Figure 6, it is possible that within an
application only some of the defined pages, areas, and site
views need to be adaptive with respect to context. Some
pages, for example “access” pages, as those reported in
Figure 6 for invoking searching services, could not need
adaptivity actions.

During requirements specification, the application
designer will identify the context-aware elements and tag
them with a C-label (standing for context-aware). The
“C” label indicates that some adaptivity actions are
specified for the marked element, and that, during the
application execution, such actions must be evaluated and
applied prior to element computation.

Product Details

Museum Visit Siteview

Home Search Artwork by
Name

D

L L

Search Artwork by
Category

L

AreaRoom Visit Area

Room Description Artwork DetailC C

C

Figure 6. Graphical representation of context-aware

areas and pages.

During the execution of the application, the process of
context-based adaptivity is initiated by the request of a
“C-labeled” page. This event triggers the acquisition of
context information first, according to the three
mechanisms already described in Section 4.2. If fresh
context data are captured as session parameters, some
operations for updating the context model within the
application data source are performed. Finally, some
operation chains allow retrieving possible data from the
data source, or also computing new data, needed for
adapting the page to the renovated context status. Only
after such actions, the page computation starts.

While the user is still visiting the page, the context can
change, for example because the user moves to a new
location. In order to track the context status, and
eventually undertake adaptivity actions, we associate
some refresh properties to “C” pages, so as the associated
adaptivity actions can be eventually repeated.

The central context-aware element is therefore the
page. As shown in Figure 6, we however propose to
define “C” areas as grouping facilities, that allow us to
insulate some redundant adaptivity actions to be
performed for every “C” page within the area, and
represent them once at the area level. The adaptivity
actions associated to areas are to be executed every time a
“C” page within the area is accessed, and before
executing the adaptivity actions specified at the page
level. Typical actions to be specified at the area level are
the acquisition of fresh context data and the consequent
updating of the context model. We therefore propose two
levels for the specification of context adaptivity actions:

− Actions for context model management, addressing
operations for context data acquisition and context
model updating. Such actions can be associated
with the most external containers (site views or
areas), and are inherited by all the internal
elements (pages or areas).

Get

Unit
Parameter

Get Parameter

Parameter

It specifies the
retrieval of the
current value of a
global parameter,
previously set
through a set unit.

Get URL
unit

Parameter
Get UrlParam

URL Parameter

@

It specifies the
retrieval of the
current value of a
context parameter
appended to the page
request.

Get Data
unit

{Entity.Attribute}Parameters
Get Data

Source
[Selector(Parameters)]

It specifies the
retrieval of values
extracted from the
database according to
the specified selector
condition.

Table 4. Get Parameter, Get URL-Parameter and
Get Data units.

− Actions for hypertext adaptivity, addressing the
definition of rules for page and navigation
customization. Such actions are generally
associated with “C” pages.

The main profit of extending the “C” property to areas
and site views is the reduction of specification
redundancy. Therefore, in general we assume that each
request of a “C” page causes first the computation of
actions associated to its “C” containers (if any), starting
from the most external one.

In the following sections, we will introduce some new
hypertext constructs that allow us to express actions for
context-model management and hypertext adaptivity.

7.1 Units for accessing fresh context data

In order to specify actions for accessing fresh context

data, according with the three access mechanisms
illustrated in Section 4, we use three units able to access
both sensed data and database objects. Table 4 presents
their visual notation.

The Get unit is the one used in WebML for accessing
global parameters, as already described in Section 2 and
formally specified in [4].

The Get URL unit differs from the Get unit in that it
refers to user-device generated parameters, appended to
the request of the current page. WebML already supports
the specification of link parameters and global
parameters that at runtime correspond to values appended
to the page URL. However, those parameters are server-
generated, while through the Get URL unit we intend to
specify parameters generated by client-side sensing
mechanisms.

Finally, the Get Data unit is used for extracting values
(both scalar values and values set) from the data source,

IF

[condition]

SWITCH

[expression]

Parameter 1

Parameter n

[result=true]

OK

[result=false]

OK

Parameter 1

Parameter n

result
[result = R1]

OK

result
[result = R2]OK

OK

KO

KO

Figure 7. IF and SWITCH control primitives as

WebML units.
according to a selector condition. It is similar to the data
unit, with the only difference that the retrieved data are
not published in a page, but just used as input to some
successive operations. It is therefore a facility for
accessing database information whenever no visualization
is needed, e.g. in situations where certain data are just
used to evaluate condition expressions.

7.2 Units for condition evaluation

The execution of context model updating, as well as of

hypertext adaptivity actions depends very often on the
evaluation of some conditions. At this proposal, in order
to specify test over certain conditions, we use two control
constructs, the If and the Switch operation (see Figure 7),
that have been recently proposed for extending WebML
for modeling Workflow [1].

The two units have incoming links carrying possible
parameters, and use such parameters for evaluating an
expression. If the evaluation succeeds, one of the output
OK links is followed, depending on the result of the
evaluation. In particular, the If unit evaluates a Boolean
expression, and provides two different OK links, one to
be followed when the condition is true, the other when
the condition is false. The Switch unit evaluates an
expression, defined over the input parameters, and
provides a set of OK links, to be followed depending on
the matching between the results of the expression and
the guard condition specified over the link.

If the expressions for the two units are not computable,
the KO-link is followed. In addition, the switch unit
presents one OK-link without guard condition; which is
followed when the computation results do not match any
of the guard conditions, but the calculation has been
successful.
7.3 Unit for site view switching

In some cases, the change of context may ask for a
change of site view. In order to specify this action, we
have introduced the ChangeSiteView unit (see Figure 8
for its visual notation).

Change SV
Parameters

KO

Figure 8. Change SiteView unit.

The unit takes in input the identifier of the new site
view and of the specific target page within it. The input
link also transports all the parameters required by the
target page for reconstructing the current state, as well as
those parameters representing selections operated by the
user while interacting with the origin site view and that
can be useful for the computation of the new page.

8. Case study: the museum guided tour

In this section, we show – by means of a simple

example – how to integrate application data and context
data for the provision of context-aware hypertexts.

Our scenario refers to an application assisting visitors
of a museum. It can be seen as a new enlargement of an
already existing Web application, publishing general
information about the current and future expositions, its
artworks and its artists, and providing the user with a
reservation mechanism for the various guided tours
through the museum. The desired extension is a guided
indoor visit. It allows users to walk along the museum
rooms, accessing the description of exposed artworks
through a portable device, for example a PDA, able to
access the wireless network inside the museum.

For location detection, we suppose the device being
able to sense its position and adding the result as
parameters to each page request. The device is able to
gather the signals that the numerous transmitters installed
above the exposed artworks emit, which allows locating
the visitor’s position inside the museum and delivering
the associated contents. The positioning of the
transmitters forms sensitive cells within the rooms (see
Figure 9) that the receiver is able to identify and
communicate back to the application via a URL-
parameter that carries the unique identifier of the
corresponding area. Whenever the visitor enters a new
cell, the application shows the description of the
corresponding artwork or artist or, when the user is in the
center of the room, it shows a general description of that
room.

The museum guided tour aims at exhibiting maximum
of adaptability by automatically changing the content
displayed on the PDA as a function of the position of the
user; it can be considered as an extreme case of
adaptability, whose usability needs to be thoroughly
assessed.

5
(room 1)

1
(reception)

...

4

7 6

3
2

8

...

...

next
floor

Figure 9. Plot of the ground floor of the museum,
showing the various sensitive areas that can be

associated to the user’s position.

8.1 Data modeling

As reported in Figure 10, the data schema related to

the indoor visit application supports the delivery of data
concerning artworks, artistic movements and artists’
biographies.

The bottom of the figure is about the Context Model.
In this case, for sake of simplicity, beside entities
representing the user model, only the Location entity is
used for completing the context representation. Its
attributes reflect the specific features of the museum
infrastructure previously described. Its instances represent
all the sensible areas for which the application is able to
supply descriptions. In a given moment, a user can be
associated to a specific location. If the user location
changes, then the relationship between User and Location
gets updated.

The connection point between context data and
application data is the relationship between sensitive
areas inside the rooms and the exposed artworks. The
relationship expresses that each area exposes always
exactly one artwork, while not every artwork is placed in
an area inside the museum; the dataset may indeed
contain artworks that are not currently exposed to visitors.
Connected to the Artwork entity, we can then find the
remaining application data, modeled by means of the
entities Artist and Movement.

8.3 Hypertext modeling

Figure 11 reports a fragment of the hypertext schema
for the museum application, which will allow us to show
the new introduced extensions at work.

Application
Data

Specific Context Data

Structure Scheme
User

UserName
Password
EMail

Group
GroupName

SiteView
SiteViewID

1:1
0:N

1:N 1:N

1:N 1:N

1:1
0:N

Location
AreaNumber
Description
Dimensions

1:1

0:N

Artwork
Title
Description
Date
Photo

Movement
Name
Description
TimePeriod

Artist
Name
Surname
Birthdate
DateOfDeath
Description
Photo

Floor
FloorNumber

Room
RoomNumber
Name
Description

1:N1:1 1:N1:1

1:1

Biography
Biography

sample

famous for

representative

0:1

0:N

1:N

1:N

1:N

1:1

1:N

0:N

0:1

0:N

1:N1:N

1:N

1:1 1:1

Figure 10. Entity-Relationship schema of the

museum application, and identification of Application
Data and Context Data.

The hypertext represents a context-aware area (as
represented by the C label at the right upper corner),
which includes two context aware pages: one presenting
details of artworks exposed in the current user location,
the other showing details about the current room.

The “C” property associated to the area triggers an
action chain, for the retrieval of fresh context parameters
and the consequent context model updating, whenever
one of its “C-labeled” pages is accessed. The chain starts
with the retrieval of the current user identifier (Get User
unit), then of the location currently associated to the user
(Get Location unit), and finally of the (possibly new) user
location sensed through the device (Get URLParam unit).

The user location stored in the data source and the new
sensed location are used by the If unit, for evaluating if
the two values are different. If yes, the context model
needs to be updated. Therefore:

− A Disconnect operation deletes the current
relationship between the user and the currently
stored location;

− A connect operation creates the new relationship
between the user and the location instance
corresponding to the new sensed value.

As actions associated to the context-aware pages, the
figure shows some operations for customizing the content
of the current page to the current user location.

Figure 11. Hypertext fragment of the museum

application.
The chain of get units, represented in the top of the

figure, extracts from the database the artwork associated
to the user’s current position and provides the following
If unit with this value. The If unit checks whether there
exists an artwork exposed within that position and, in
case the artwork has been found, updates the data unit of
the page Artwork Details. If there is no artwork
associated to the current user position, it means that the
user is located in the center of the current room.
Therefore, the If unit triggers a page change by first
extracting the respective room identifier from the
database and then forwarding the user to the page Room
Details by means of a contextual link carrying the
retrieved identifier. This action implies the presentation of
the page Room Details in place of the page Artwork
Details, i.e., it represents an adaptivity action over
navigation.

The page Room Details is aimed at presenting a
description of the room, plus the index of its exposed
artworks. Its adaptive actions are similar to those defined
for the Artwork Details page, and cause a page updating
with new contents, or a navigation towards the Artwork
Details page.

9. Conclusions

This paper has presented some issues for the design of

multi-channel context-aware applications, and has
proposed some solutions for their conceptual modeling.

Several approaches have been proposed for the
development of such class of applications (see [6] for a
survey). However, since very few methods are model-
based, often customization results into programming
scripts buried within the application code.

The solution we have proposed is based on the
adoption of the WebML conceptual model, and consists
of the introduction of a new modeling dimension, for
specifying the context model, as well as the required
operations for context model management and hypertext
customization. It offers the advantage, which is proper of
conceptual modeling, to reason at a high level of
abstractions, without being influenced too much by
implementation issues. Also for this reason, we believe
that, although proposed within WebML, our solutions can
be easily adopted within other models or methods for
Web applications development.

Our current work focuses on formally defining the
semantics of the new introduced constructs, and on
identifying possible changes to hypertext computation
logic the extensions require for. We are also studying
some synchronization issues that might arise in case of
parallel sessions, through different devices, by the same
user.

In the continuation of the MAIS project, which
support this research, we aim at studying multi-modal
applications, i.e., applications which take place by
synchronizing the delivery of coordinated contents over
two or more media; we will probably consider first visual
and audio combinations. This research includes classical
aspects of multi-media delivery (such as synchronization
on various devices) but with the addition that each
delivery can be considered as a Web application in its
own rights, e.g., with browsable user interfaces (which, in
the case of audio channels, may correspond to receiving
explicit commands from the users and sending back vocal
messages). Adaptation in this case may affect one or both
of the channels (e.g., amplify one of them when the other
one cannot be properly used due to changes to the
context). The modeling will in this case require not only
the adaptation of individual site views, but also the
coordination among multiple site views.

On a separate ground, we will consider how the
extensions which are proposed in this paper, and
currently tested by "encoding" adaptability in a
conventional Web application, can be implemented on

WebRatio, the current WebML case tool [9]; this will
entail both a modification of the site designer component,
to enable the model extensions, and of the automatic
generation of the application from the specifications. Both
changes are not particularly hard, due to the extensibility
of the WebRatio architecture.

10. Acknowledgements

We are grateful to the WebML team for the useful

discussions and the valuable suggestions.
This research work is founded by the MAIS (Multi-

channel Adaptive Information Systems) FIRB project.

11. References
[1] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and I.

Manolescu, Specification and Design of Workflow-Driven
Hypertexts. Journal of Web Engineering, 1(2), April 2003.

[2] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, I.
Manolescu: "Model-driven Development of Web Services
and Hypertext Applications", SCI2003, Orlando, Florida,
July 2003

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
and M. Matera. Designing Data-Intensive Web
Applications. Morgan Kaufmann, 2002.

[4] S. Ceri, P. Fraternali, and M. Matera. Conceptual Modeling
of Data-Intensive Web Applications. IEEE Internet
Computing, 6(4), July-August 2002.

[5] S. Ceri, P. Fraternali, and S. Paraboschi. Data-Driven One-
To-One Web Site Generation for Data-Intensive
Applications. VLDB '99, Edinburgh, UK, September 1999.

[6] G. Kappel, B. Proll, W. Retschitzegger, W. Schwinger.
Customization for Ubiquitous Web Applications – A
Comparison of Approaches. International Journal of Web
Engineering and Technology, January 2003.

[7] A. Kobsa, J. Koenemann, W. Pohl: Personalized
Hypermedia Presentation Techniques for Improving Online
Customer Relationships. The Knowledge Engineering
Review, 16(2), 2001.

[8] D. Schwabe, R. Guimaraes, G. Rossi: Cohesive Design of
Personalized Web Applications. IEEE Internet Computing,
6(2), 2002.

[9] S. Ceri, P. Fraternali, R. Acerbis, A. Bongio, S. Butti, F.
Ciapessoni, C. Conserva, R. Elli, C. Greppi, M.
Tagliasacchi, G. Toffetti. Architectural Issues and
Solutions in the Development of Data-Intensive Web
Applications, CIDR2003, Asilomar, USA, January 2003.

