
Model-driven Engineering of Active

Context-Awareness

Stefano Ceri Florian Daniel Federico M. Facca Maristella Matera

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Piazza Leonardo da Vinci, 32 – 20133 Milano – Italy
{ceri,daniel,facca,matera}@elet.polimi.it

Abstract. More and more Web users ask for contents and services
highly tailored to their particular contexts of use. Especially due to the
increasing affordability of new and powerful mobile communication de-
vices, they also appreciate the availability of ubiquitous access, indepen-
dent from the device actually in use. Due to such premises, traditional
software design methods need to be extended, and new issues and re-
quirements need to be addressed for supporting context-aware access to
services and applications.

In this paper we propose a model-driven approach towards adaptive,
context-aware Web applications, accompanied by a general-purpose ex-
ecution framework enabling active context-awareness. Whereas conven-
tional adaptive hypermedia systems address the problem of adapting
HTML pages in response to user-generated requests, in this work we
especially stress the importance of user-independent, context-triggered
adaptivity actions. This finally leads us to interpret the context as an ac-
tive actor, operating independently from users during their navigations.

1 Introduction

Current advances in communication and network technologies are changing the
way people interact with Web applications. They provide users with different
types of mobile devices for accessing – at any time, from anywhere, and with
any media – services and contents customized to the users’ preferences and usage
environments. Content personalization has already demonstrated its benefits for
both users and content providers and has been commonly recognized as fun-
damental factor for augmenting the overall effectiveness of applications. Going
one step further, context-awareness can be interpreted as natural evolution of
personalization, addressing not only the user’s identity and preferences, but also
the environment that hosts users, applications, and their interaction, i.e., the
context. Context-awareness, hence, aims at enhancing the application usefulness
by taking into account a wide range of context properties.



Although many definitions of context are given by enumerating examples or
by listing synonyms1, inspired by the work of Dey and Abowd [17], we define
context as any information that can be used to characterize the interaction of a
user with a software system (and vice-versa), as well as the environment where
such interaction occurs. This definition not only concentrates on interaction and
environment properties, but also includes the user and software system them-
selves. We further define a system as context-aware, if it uses context either for
delivering content, or for performing system adaptations, or for doing both.

In this paper we discuss some conceptual modeling facilities as well as tech-
nological support for capturing the peculiarities of context-aware behaviors in
Web applications. An example of context-awareness in Web applications is the
automatic update of Web page contents based on the user’s position. This be-
havior can be very useful in some classes of mobile Web applications that are
required to provide contents and services depending on the position of the user.

In order to cope with context-awareness, we have defined a model-driven
approach that extends a well-known conceptual modeling language for Web ap-
plications, WebML (Web Modeling Language) [9]. The proposed methodology
[6, 8, 38] offers the advantage of fully covering the design and the development
of context-aware Web applications through automatic code generation, based
on a consolidated CASE tool for Web application modeling [41]. In this paper,
we specifically concentrate on active, context-aware behaviors, namely context-
triggered adaptivity actions, which enable the system to automatically take the
initiative of adapting to the current context of use, every time a significant con-
text variation is detected and independently from users’ requests.

Several adaptive Web systems (for example [18] or [20]) address the problem
of adapting HTML pages in response to user-generated requests. In the domain
of the Web, where the HTTP protocol imposes a strict pull paradigm to all
communications, the most common solution consists in adapting pages only when
explicitly requested or by periodically refreshing pages, thus polling adaptivity.
Based on our previous experiences [6, 8, 38], neither of these two mechanisms
results to be adequate for the special requirement of active, context-awareness.
In this paper we therefore refine our previous work and introduce a model-driven
approach to the design of context-aware Web applications, complemented with a
context monitor, operating autonomously and transparently in the background
to provide suitable active support. This finally leads to interpret context as “first
class actor”, operating independently from users on the same hypertext the users
navigate. This is the main difference of the proposed approach with respect to
other interpretations of adaptive hypertexts.

This paper is organized as follows. Section 2 characterizes context-aware Web
applications by means of requirements and capabilities of such class of applica-
tions. Section 3 concentrates on modeling context data, and Section 4 extends
WebML [9] towards context-aware Web applications. Section 5 introduces suit-

1 In this paper, we will also speak about adaptivity and adaptation; adaptability in-
tended as design time adaptation to device characteristics or user preferences is
already natively supported by the adopted conceptual modeling language, WebML.



able runtime support enabling active, autonomous adaptivity, while Section 6
shows how the respective application code can be generated automatically. To ex-
emplify the development of active, context-aware Web applications by means of
the introduced instruments, Section 7 describes a case study. Section 8 discusses
some related work, and Section 9 finally draws our conclusions and outlines our
current and future work.

2 A Conceptual View over Context-Aware Web

Applications

The discussion of context-awareness in Web applications first of all demands for
a precise definition of the term Web application, so as to ground the proposed
ideas and solutions on a technological context. We concentrate on the “classical”
three-tier architecture of Web applications, consisting of Web browser for visu-
alization (thin client with (X)HTML and CSS) and Web application server and
database back-end for business logic and data management. Although in Sec-
tion 5 we will make use of client-side scripting to enhance the user experience
of adaptive applications, the proposed approach, at a high level of abstraction,
does not depend on any client-side logic. We therefore assume that the core
business logic resides on the server side. This is in line with the fact that the
classical architecture is still representative of the most widespread type of Web
applications.

In this technological context, several conceptual modeling approaches for
Web application design [21] build on a strong separation of concerns among data
and hypertext design. Also when modeling context-awareness this separation can
be leveraged successfully. Figure 1 graphically summarizes such separation and
highlights some issues related to the context data representation and the flow of
context data within a context-aware application.

The application’s data source includes both the application data (i.e., the
business objects that characterize the application domain), and a context model
that offers at any moment an updated representation of the context state. The
context model captures all the context-characterizing properties (i.e., attributes

Application
Data

Page
rendering

Context
Model

Hypertext
adaptation

Server-side Parameters

Client-side Parameters

Context Data

Adaptive
Hypertext
Adaptive
Hypertext

Hypertext Client-side
Sensing

Centralized
Sensing

Fig. 1. Context data in context-aware Web applications.



and/or changes in time) that enable the system reactivity. This organization of
data requires the following issues to be addressed:

1. Context model definition and representation within the application data
source. The main context properties needed for supporting adaptivity must
be identified and represented as data.

2. Context model management, consisting of:
(a) Context data acquisition by means of measures of real-world, physical

context attributes, characterizing the usage environment. Measures can
be performed at client side (e.g. by means of GPS-equipped devices)
or by means of centralized, dedicated infrastructures (e.g. an RFID in-
frastructure) that communicate context data directly to the application
server. The acquired data are then used to update the context state
maintained in the context model.

(b) Context data monitoring to detect those variations in context data that
trigger adaptivity actions. Any variation may cause an automatic (context-
triggered) adaptive behavior of the Web application.

At runtime, the dynamic computation of the hypertext interface primarily
makes use of application data for populating pages with contents. However,
a subset of hypertext pages, the adaptive hypertext, is augmented with some
adaptive actions, whose computation also exploits context data. Adaptive actions
can be applied to:

1. Contents and services delivered by accessed pages, which are customized on
the basis of the current context;

2. The navigation, by means of automatic navigation actions towards pages of
the same application, better suited to the current context conditions;

3. The whole hypertext structure for supporting coarse-grained adaptation re-
quirements, for example due to changes of the user’s device, role or activity
within a multi-channel, mobile environment;

4. Presentation properties, in order to provide more fine-grained adjustments
of the application’s appearance.

Context monitoring mechanisms are required to identify the variations of
some context properties, evaluate them against some conditions, and trigger the
required adaptivity actions. Context monitoring can be achieved by periodically
refreshing pages, evaluating the context and triggering adaptivity actions at any
page request. This is the most frequent solution adopted so far. However, in
addition to the (passive) hypertext generation methods, an active mechanism
should be able to operate autonomously and transparently in the background,
independently from the user- or the refresh-based request of Web pages.

In the following sections, we will illustrate how the previous requirements,
from context data capturing and representation to the specification and enact-
ment of adaptivity actions, can be captured by a development methodology
supplying a conceptual model for data and hypertext design, and a set of trans-
formations for automatic code generation implemented within a CASE tool.



3 Designing the Context Model

According to the previously described separation of concerns, in our approach
the context model has a counterpart at both data and hypertext level. At data
level, context is represented by a set of data entities and relationships that
extend the application data schema; we call this extension context sub-schema. In
our previous work [7], we have investigated adaptivity solutions storing context
data at client side (mainly the user profile). The experiment consisted in the
generation of client-side guides for the adaptive visit of Web applications. In that
experiment, storing the user profile at client side was particularly advantageous,
since the generation of the guides was entirely managed by the client. In this
paper we instead assume the context state be maintained at server side, because,
as better explained in Section 4.2, the enactment of adaptive behaviors is tightly
coupled with page computation, which occurs at server side.

Figure 2 illustrates an ER diagram exemplifying a possible context sub-
schema; it includes entities, such as Device, Location and/or Activity, that
describe particular properties of the context needed by the application for adap-
tivity purposes.

Context Model
sub-schema

Location

Longitude
Latitude
Height

Activity

Name
Handycap
Description

Device

CPU
InputDevice
Display
Memory

User

UserName
Password
EMail

1:1
1:1

1:1
0:N

1:1 1:1

Fig. 2. Example context model as ER diagram.

The context model may vary depending on the application domain and, also,
on the adaptivity goals to be fulfilled. In principle, several properties are com-
monly regarded as context attributes (e.g. position, time, or device character-
istics) [37]. In practice, there exists no universal context model that applies to
all kinds of applications. Therefore, our approach just prescribes to have user
context entities (e.g., the position or the device of an individual user) associated,
directly or indirectly (as in the case of the entity Location in Figure 2), to the
entity User. Starting from the identity of a user, it is possible to navigate the
context model and to extract individual context information. System context
entities (e.g., the current load of a monitored system resource, such as a CPU)
that do not represent personalized context data can be accessed independently
form the user and therefore do not require any association to any particular user.

Orthogonally, it is also possible to distinguish between physical and logical
context [35]. The former refers to raw sensed data that can be captured both



at client-side (as in the case of GPS-based coordinates) or at server-side (as
in the case of radio signals in RFID-based sensing infrastructures). The latter
refers to concepts associated to physical data (e.g., core application data, such
as the building placed at some GPS-based coordinates), which provide mean-
ingful abstractions with respect to the application domain and the needs of the
users interacting with the application. Typically, applications react to changes
in the logical context that – in order to be signaled to users – really ask for the
adaptation of a viewed page.

4 Modeling Context-Aware Hypertexts

For the design of adaptive hypertext front-ends, we have extended WebML [9],
an already established model for the design of data-intensive Web applications.
Before concentrating on the extensions introduced for context-aware Web appli-
cations, in the following section we briefly recall the basic WebML concepts.

4.1 WebML Overview

WebML is a visual language for specifying the content structure of Web ap-
plications and the organization and presentation of contents into one or more
hypertexts [9, 11].

WebML design starts with the specification of a Data Model, expressing the
organization of the application contents by means of a well established data
model, such as the Entity-Relationship diagram. Then, the WebML Hypertext
Model allows describing how contents, previously specified in the data schema,
are published into the application hypertext. The overall structure of the hy-
pertext is defined in terms of site views, areas, pages and content units. A site
view is a hypertext, designed to address a specific set of requirements. Several
site views can be defined on top of the same data schema, for serving the needs
of different user communities, or for arranging the composition of pages to meet
the requirements of different access devices like PDAs, smart phones, and similar
appliances.

A site view is composed of areas, which are the main sections of the hyper-
text, and comprise recursively other sub-areas or pages. Pages are the actual
containers of information delivered to the user; they are made of content units,
which are the elementary pieces of information extracted from the data sources
by means of queries, and published within pages. In particular, content units
denote alternative ways for displaying one or more entity instances. Unit specifi-
cation requires the definition of a source and a selector : the source is the name of
the entity from which the unit’s content is extracted; the selector is a condition,
used for retrieving the actual objects of the source entity that contribute to the
unit’s content.

Content units and pages are interconnected by links, which represent naviga-
tion alternatives. Links can connect units in a variety of configurations, yielding



complex navigation structures. Besides representing user navigations, links be-
tween units also specify the transportation of parameters to be used by the
destination unit in the selector condition for extracting the data instances to be
displayed.

Some WebML units also support the specification of content management
operations. They allow creating, deleting or modifying an instance of an entity
(respectively through the Create, Delete and Modify units), or adding or drop-
ping a relationship between two instances (respectively by means of Connect

and Disconnect units).
Besides having a visual representation, WebML primitives are provided with

an XML-based textual representation, which specifies additional detailed prop-
erties, not conveniently expressible in the graphic notation. Web application
design based on WebML can therefore be represented as visual diagrams, as
well as XML documents. The XML representation constitutes the starting point
for the automatic generation of the application code to be executed by means
of a proper runtime environment. For a more detailed and formal definition of
WebML, the reader is referred to [9].

4.2 Modeling Context-Awareness

As illustrated by the WebML hypertext schema in Figure 3, our basic assumption
about context-aware hypertexts is that context-awareness is a property to be
associated only to some pages of an application, not necessarily to the application
as a whole. Location-aware applications, for example, adapt “core” contents to
the position of a user, but “access pages” (including links to the main application
areas) are typically not be affected by the context of use.

We tag adaptive pages with a C-label (standing for context-aware) for dis-
tinguishing them from conventional pages. The label indicates the association of
the page with a Page Context, i.e., a page-specific set of parameters of physical
sensed data and/or of logical context data that are monitored to trigger a page’s

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object
         Identifier

C

Conventional
Page 1

Conventional
Page 2

Fig. 3. Coarse hypertext schema highlighting conventional and context-aware pages.



adaptivity features while the page is visited. Page Context parameters corre-
spond to those physical or logical context attributes in the context model whose
variation effectively demands for a re-computation of the currently viewed page.

The state of the Page Context is observed by a Context Monitor, for detecting
significant changes demanding for adaptivity. During the user’s visit to a C-page,
such changes generate the automatic request of the page, thus the evaluation
and/or execution of the adaptivity actions associated to the page. Evaluation
occurs prior to the actual page computation, as the actions might serve for
customizing the page content or for modifying the navigation flow.

The design of adaptivity actions assumes a central role. As shown in Figure 3,
we abstract the adaptivity actions associated to pages by means of so-called con-
text clouds. Clouds are external to their pages and host the respective adaptivity
actions. While pages act as providers of contents and services, context clouds
act as modifiers.

As further shown in Figure 3, in our notation, adaptivity actions clustered in
the context cloud are associated to a page by means of a directed arrow, i.e., a
link exiting the C-label, which represents their automatic triggering that occurs
when the Page Context changes. This link ensures the communication between
the page logic and the cloud logic, as it allows transporting parameters deriving
from page contents and required for computing the actions specified within the
cloud. Also, on the other way around, a link from the cloud to the page can
transport parameters computed by the adaptivity actions, which might serve for
adapting page contents with respect to the updated context.

Analogously to the case of C-pages, context clouds may further be associated
to entire areas or site views in a WebML hypertext schema, thereby defining
common adaptivity actions to be applied to each of the contained C-pages. In
presence of multiple clouds to be evaluated for a specific C-page (i.e., in presence
of nested C-containers), the evaluation recursively considers each of the clouds,
starting from the outermost one and ending with the one associated to the page.
This convention allows designers to reduce schema redundancy and to enhance
the readability of hypertext schemas.

For the specification of adaptivity actions, some new WebML units have been
defined (see Figure 4 and Figure 5 for their visual notation and description).
Together with standard WebML content and operation units, they allow us to
address the two main requirements posed to context-aware Web applications, as
described in Section 2: context model management and hypertext adaptivity.

Context Model Management. To assure that application adaptation occurs
always on top of an up-to-date picture of the current context, context model man-
agement operations are the first actions executed every time a context-triggered
access to a C-page occurs. Issues for context model management, already ad-
dressed in Section 2, are modeled as follows:

– Acquisition of client-side-generated context data is modeled through the Get
URL Parameter unit (see Figure 4). In particular, the unit represents the
access to fresh context data sensed at the client side and transmitted by



Parameter
Get UrlParam

URL Parameter

@

Visual Notation Description

Input: no input
Source Parameter: URL 
query parameter to be 
retrieved
Output: parameter value

{Entity.Attribute}Parameters
Get Data

Entity
[Selector(Parameters)]

Input: parameters for data 
selection
Source Entity: database 
entity from which to extract 
data
Output: (set of) parameters 
or attributes retrieved

Fig. 4. New defined units for context model management.

means of device- or client-side-generated parameters, appended to the page
request string.

– Access to context data in the context model is modeled through the new
Get Data unit (see Figure 4). Usually, page computation implies retrieving
data to be published within pages. The execution of adaptivity actions may
in addition require the retrieval and evaluation of context data stored in
the context model, with the only purpose of evaluating conditions that may
activate the adaptivity actions, without requiring any visualization. The Get
Data unit allows conditions to access such data. This new construct also
supports the access to fresh context data in all those situations where a
centralized sensing infrastructure is adopted.

– Context model updating operations, needed after the acquisition of fresh con-
text data, can be specified by means of WebML operation units (i.e., Modify
or Connect units).

– Context model monitoring is achieved by extending the page logic through a
periodic checking mechanism for querying the context model and identifying
any variation of the page context that requires the execution of adaptivity
actions.

Hypertext Adaptivity. Some WebML constructs (e.g., operation units or
links) allow designers to visually define adaptivity actions within context clouds.
The computation of context clouds is triggered by the Context Monitor, based
on the evaluation of the current Page Context. The execution of the adaptivity
actions within the clouds may further depend on the evaluation of some condi-
tions, are modeled using WebML constructs, such as If and Switch units. If the
conditions are satisfied, several actions can be performed:

– Adaptation of page contents. Parameters produced during context data ac-
quisition and through condition evaluation can be used for page computa-



Visual Notation Description

Parameters
KO

Change SV
Input: identifiers of target site 
view and target page, last 
user selections, global 
parameters, context 
parameters
Output (KO-link): no output

ChangeStyle

A A
Parameters OK

KO

Input: filename of CSS file 
to be associated to current 
site view
Output: no output

Fig. 5. New defined units for hypertext adaptation.

tion. The result is a page where contents are filtered with respect to the
current context.

– Adaptation of navigation. In some cases, the effect of condition evaluation
within the context cloud can be an automatic, context-triggered navigation,
causing the redirection to a different page. The specification of context-
triggered navigations just requires connecting the last link of the context
cloud action chain to an arbitrary destination page of the hypertext, for
redirecting the user to that page. Therefore, links exiting the context cloud
and directed to other pages than the cloud’s source represent automatic
navigation actions.

– Adaptation of the hypertext structure. This allows designers to address
coarse-grained adaptivity requirements, as required, for example, in the case
of changes of the user’s device, role and/or activity within a multi-channel,
mobile environment. The new Change Site View unit in Figure 5 allows the
application to switch between site views tailored to different requirements.
The site views involved in the switching process must be defined (and de-
tailed) in advance and are not computed during runtime.

– Adaptation of presentation properties. More fine-grained adjustments of the
application’s appearance can be achieved by means of the so-called Change

Style unit (see Figure 5), which allows changing at runtime the application’s
CSS (Cascading Style Sheet) file.

5 Implementing Active Context-Awareness

When designing context-aware Web applications, different policies can be adopted
regarding when adaptivity should be performed. Indeed, not always the request
of a C-page necessarily implies the evaluation of its context cloud. For exam-
ple, in order to give high priority to a user’s selection, independently from the
current context state, a deferred adaptivity policy can be adopted. According
to this policy, when the user requests a C-page, the page is generated by con-
sidering the only parameters deriving from the selections performed by the user



in a previous page, and the context model is not queried, nor are the adaptiv-
ity actions triggered. Only afterwards (after a pre-defined time interval, or on
user’s request) the requested page becomes subject to adaptivity and updates
its contents according to the current context state.

The opposite design choice, denoted as immediate policy, grants to context a
higher priority. In this case, every time the page is accessed, the context model
is queried and the context cloud is processed prior to the page contents. Such
policy could be suggested, for example, to handle exceptional situations where
a timely reaction to context changes could be more important than following a
user’s navigation.

Consider for example a tourist guide that shows contents about the attrac-
tions located close to the user. At a given point, the user might want to get
information about one monument located in a different city area, not related
to her/his current position; this preference is typically expressed by selecting
a link to that monument from a list of city attractions. In a deferred policy,
the requested page shows the monument information as requested by the user,
without taking into account the user’s current location. Only after expiration
of the refresh interval, the page becomes again subject to adaptivity and the
contents are adapted to the user’s location. In an immediate policy, context is
granted higher priority with respect to the user and, thus, the user’s request for
the monument would be overwritten by the context and the application would
show once more the monument associated to the user’s current location. Users,
of course, can disable and enable adaptivity at will.

We thus distinguish two types of page accesses, user-triggered and context-
triggered, depending on the actor (the user or the context) that has priority
according to the adopted policy. A sensible design of adaptive features and a
suitable selection of adaptivity policies (for each page) should allow designers to
minimize application behaviors that could be perceived as invasive or annoying
by users.

According to previous observations, adaptivity actions associated to a given
page must be evaluated and executed only in case of context-triggered requests.
To distinguish context-triggered page requests from user-generated ones, we ap-
pend to automatic (i.e., context-triggered) requests a special parameter (named
automatic), which is not present on user-navigable links. Page requests are thus
user-generated if they lack the automatic parameter and automatically gen-
erated in case they carry the parameter. Accordingly, adaptivity actions are
evaluated only for those requests carrying the automatic parameter. In order to
put computation under the user’s control, dedicated links can be arbitrarily set
on each page, allowing users to explicitly ask for adaptation (e.g. a page refresh
with appended automatic parameter).

In our previous work on context-aware Web applications [6], the implementa-
tion of the adaptive behavior was based on periodic refreshes of adaptive pages.
This resulted in a continuous reloading of viewed pages and, consequently, in
a poor usability of the overall adaptive system. To overcome this shortage and
to foster active adaptivity, we introduced the Context Monitor (CM) module,



Client Brower

HTML Document Application 
Data

Context
Model

Web Server

Trigger ClientCM Client

Trigger ServerCM Server

Client-side
Sensing Module

Centralized
Sensing Module

Adaptive
Web Application

Adaptive
Web Application

Fig. 6. Functional architecture for active context-awareness.

with the main goal of triggering the evaluation of adaptivity actions (and thus
the refresh of the page) only when really required, i.e., only in case of significant
context changes, even in absence of user interactions.

Figure 6 shows the resulting functional architecture. The CM consists of
two separate modules, one on the client side and one on the server side. The
CM Client module is a piece of business logic embedded into the page’s HTML
code and executed at the client side (e.g. a JavaScript function, a Java applet,
or a Flash object), while the CM Server module works in parallel to the Web
application on the same Web server. The CM Client periodically polls the server2

to monitor the context and to decide whether possible context variations demand
for the adaptation of the currently viewed page. When the application makes
use of a client-side sensing, the CM Client is also in charge of communicating
fresh context data sensed at the client side (by querying the client-side sensing
module).

In order to take a decision about triggering or not adaptivity actions, the CM
Client is assisted by the CM Server, which has full access to the context model of
the application maintained at the server side. In response to the polling executed
by the CM Client, the CM Server queries the context model and computes a
numeric digest over the Page Context parameters of the currently viewed page.
The CM Server needs thus to be configured with suitable queries for each context-
aware page of the application, as further exemplified in Section 7.2.

The context digest is the basis for the decisions of the CM Client, since it
identifies whether variations in the physical context (represented by the fresh
context data, such as longitude and latitude) also correspond to variations in
the logical context (represented by the Page Context parameters, such as roads
and buildings). Depending on the application design, adaptivity must be trig-

2 The polling of context data, which is imposed by the restrictions of the HTTP
protocol, is performed in the background. A “real active” notification initiated by
the server and sent to the client would require the client to constantly keep open a
specific TCP port, which – due to security risks – in our view is not realistic. The
proposed solution is the best one in presence of a clear conflict.



Client Browser Client Sensing Mod.CM Client CM Server Web Application

Generate
user request

Compute page

Render page
Instantiate
CM Client

Sense new 
context data

Ask for 
Context Digest

Compute 
Context Digest

Generate 
autom. request

Wait context 
polling interval

Compute 
adapted page

new digest <>
old digest

new digest =
old digest

client-side sensing

no
client-side

sensing

Fig. 7. Active context-awareness (with client-side context sensing): communicating
context data and triggering adaptivity.

gered only when logical context variations occur. Logical context parameters
supply data that actually influence the page computation. A page update is
thus required only if their value has changed.

The context digest is computed over the Page Context parameters, expressed
by means of parametric queries over the context model, where the parameters
correspond to raw sensed data. The queries thus return the values of the Page
Context parameters, possibly in function of the sensed physical context. If such
values change from one polling to the other, it means that at least one of the Page
Context parameters has changed; the CM Client thus asks the Web application
for an adapted version of the page. If the digest does not change, the CM Client
proceeds with evaluating the next context digest, and with sending fresh context
data in case a client-side sensing is adopted.

Figure 7 details this active behavior cycle by means of an activity diagram
and shows how the single modules cooperate in order to determine whether
adaptivity is required or not. The diagram has one start node (i.e., Generate
user request), which corresponds to the user’s navigation to a C-page, and no
end node, since the cycle in the lower part of the diagram is only interrupted by



another user navigation that may lead the user to another C-page (which would
correspond to the start node of the diagram) or to a conventional page.

Note that the client-side sensing module and the sending of fresh context
data only apply to applications that sense context at the client side; if only
a centralized or server-side sensing mechanism is adopted, the step Sense new

context data and the possible communication of fresh context data are omitted.
For example, a centralized, RFID-based sensing infrastructure does not require
any transportation of context parameters from the client to the server. In this
case, we assume that dedicated software modules, which are part of the sensing
infrastructure, interact with the application and directly update the context
model, thus making fresh sensed data available in the data source.

The mechanisms previously described assume that connectivity is available
in order for the CM client to communicate with the CM server. In case of inter-
mittent connectivity, which is a very frequent situation in mobile environments,
the CM client keeps working by periodically polling the CM Server, despite the
absence of connectivity. The CM Client is programmed to manage possible lacks
of connectivity; it therefore does not generate errors, with the only side effect
that adaptivity is suspended until the connectivity is restored.

5.1 Context Monitor Implementation

The CM has been implemented as client-server module, completely independent
from the implementation of the Web application. Despite its integration into the
WebML runtime environment as described in this paper, its function is general
in nature and, assuming that the access to the context model is granted, only
demands for a mechanism to trigger adaptivity actions.

In our current implementation, the CM Client is a Macromedia Flash object3.
Its configuration is performed directly within the HTML code sent to the client
browser, and mainly consists in specifying the context parameters to be sensed
at the client side, as well as a suitable polling interval.

The CM Server, on the other hand, is implemented as a Java servlet commu-
nicating with the CM Client via the Flash Remoting Gateway4. The CM Server
generates the digests representing a fingerprint of the current context state cor-
responding to the currently viewed page. The digest computation is based on an
XML configuration file, defined for each C-page, that contains:

1. The set of Page Context parameters needed for computing the context digest.

3 Other client-side solutions have been investigated as well: JavaScript does not allow
reading from the local harddisk for accessing client-side sensed context data; Java
applets do provide access to local resources, but loading the Java Virtual Machine
noticeably delays the execution of applets, especially on small devices such as PDAs.

4 Flash Remoting is an essential part of Macromedia’s approach towards Rich Internet
Applications. Flash Remoting for J2EE consists in a single servlet acting as gateway
towards the application server’s resources, and serves the purpose of de-serializing
the proprietary Macromedia AMF (Active Message Format).



Client Browser

HTML Document

Application 
Data

Context
Model

Web Server

Trigger Client
CM

Flash Script

Remoting 
Gateway

Trigger 
Server
CM 

Servlet

Local Shared Object
(PDA File System)

HTTP

AMF

Client-side
Sensing Module

Centralized
Sensing Module

WebML Runtime 
Environment

WebML Runtime 
Environment

Fig. 8. Context Monitor Implementation.

2. For each Page Context parameter, the query for extracting the respective
value from the context model. The query conditions consist in comparing
fresh context data with the previous context state. Therefore, they may also
use client-side context parameters - if any.

Figure 8 graphically depicts the described implementation of the Context
Monitor. The adaptive and non-adaptive hypertext pages, as well as the adap-
tivity actions, as specified in the previous section, are hosted and executed by
the WebML Runtime Environment [15, 41], which is part of the deployment ar-
chitecture described in the following section.

6 Automatic Code Generation

To validate our proposal, we conducted some code generation and runtime ex-
periments that confirmed us the soundness of the methodology. In our approach,
code generation is based on WebRatio [41], a CASE tool for WebML that sup-
ports the visual design of the application schema and the automatic code gener-
ation from WebML schemas [41]. Code generation is based on parametric code
components corresponding to WebML units and on a proprietary, extensible
runtime engine for the Jakarta Struts framework [15]. Parametric components
are configured at runtime using XML descriptors that contain SQL queries and
parameters for retrieving contents from the application data source.

The implementation of the extension introduced in this paper exploits Web-
Ratio’s native extension mechanism that allows one to add new features by
means of so-called custom units, a mechanism that has already demonstrated
its power when extending the CASE tool to support other functions, such as
Web services [3]. The so achieved extension fully reflects the proposed (visual)
design method, and paves the road for the automatic generation and deployment
of active, context-aware Web applications. In particular, the extension of the
WebRatio tool occured along the following three dimensions:



Fig. 9. The WebRatio modeling tool, extended with the new adaptivity-supporting
units.

– The extension of the WebRatio visual environment by introducing the new
visual primitives. The screenshot in Figure 9, for example, refers to the
extended WebRatio visual environment and shows a WebML model fragment
of the context-aware Web application illustrated in the following case study.

– The extension of the WebRatio code generator to automatically generate
descriptors for the new units.

– The extension of the WebRatio runtime engine to properly interpret gener-
ated unit descriptors during application execution.

Active context-awareness has been achieved by revising the logic of the page
computation, yielding a further new unit (called Context unit) in addition to the
units already discussed in Section 4.2, to be used in place of the C-label associated
to context-aware pages. This unit triggers the context cloud logic at each context-
triggered page request, and manages the parameter passing between page and
context cloud. Furthermore, the Context unit supports the configuration of the
CM Client, required for the automatic inclusion of such a piece of business logic
into adaptive pages.

The current extension of the WebRatio CASE tool provides support for
the automatic generation of the (adaptive) hypertext and the automatic, page-
specific configuration of the CM Client module. The configuration of the CM
Server module consists in the declaration of the Page Context parameters that



are used to compute the context digest and in the specification of the respec-
tive DB queries that associate a value to each parameter. At the current state
of the work, this configuration still needs to be hand-coded by designers, but
we envision a visually assisted specification (e.g. by means of a proper wizard)
of Page Context parameter queries. A similar approach is for example already
supported by WebRatio for the specification of derived relationships between
data entities. Finally, since code generation starts from WebML schemas, only
WebML-related concepts can be automatically coded. The configuration of and
the interaction with application-specific context sensors is thus out of the scope
and always requires an applicaton-specific treatment. In fact, each application
may require different sensors on either client or server side, with different inter-
action modalities and software support (if any). Our solution provides a simple
interface to exchange context data (at server side, the context model in the ap-
plication’s data source; at client side, a shared file that can be read by the CM
Client), but the proper use of these interfaces must be realized for each sensor
the application requires.

7 Case Study

The research described in this paper was conducted in the context of the Italian
research project MAIS (Multichannel Adaptive Information Systems 5), officially
concluded in June 2006 with a publicly accessible demo and presentation day
held at the Politecnico di Milano, Italy. To demonstrate the viability of our work
and the extension of the WebRatio CASE tool, we implemented a context-aware
proof-of-concept application called PoliTour, supplying location-aware informa-
tion about roads, buildings and classrooms in the university campus. During the
workshop day, the demo was also complemented with a demonstration of the
overall methodology for the development of context-aware Web applications.

The event was held in one of the arcades of the Politecnico campus, which for
the event has been covered with a WiFi connection. Using this WiFi connection,
the PoliTour application could be accessed through a PDA, equipped with a
GPS receiver for (outdoor) location sensing. In PoliTour, sensed context data
are thus geographical longitude and latitude for user positioning, but also the
signal strength (RSSI) of the available WiFi connection to alert the user of low
connectivity areas; both position and signal strength are sensed at the client side.
Accordingly, as the user moves around the campus, the application publishes
location-aware details about the campus infrastructure and alerts the user in
case s/he is about to leave the WiFi-covered area. The former adaptivity implies
automatic changes of visualized contents and automatic navigation actions, while
the latter is achieved by appropriately changing the CSS style sheet associated
to the application (e.g., changing the application’s background color).

Figure 10 illustrates the data schema of the PoliTour application, where the
entity User represents the user model and the entities Location and Connectivi-

ty, associated to User, constitute the context model. In order to translate sensed,

5 http://www.mais-project.it



User 
Model

Road
Name
DescriptionLocation

MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context Model

User
UserName
Password
EMail

Building
Name
Description
Image

Classroom
Name
Description

0:1

0:N

0:1

0:1

1:N

1:N 0:N 1:1

1:1
0:N

Connectivity
Level
MinRSSI
MaxRSSI

0:1

0:N

Fig. 10. PoliTour data model.

physical position data into meaningful location information that can be used
to determine the adaptive behavior of the application, the campus can be di-
vided into a set of contiguous, rectangular areas, and roads and buildings can
be mapped onto those areas. Longitude and latitude allow thus the application
to identify the specific rectangle, which on the other hand allows the applica-
tion to identify a building or road. Therefore, four attributes characterize the
entity Location: min and max longitude, min and max latitude. The entity
Connectivity represents the translation of the WiFi connection quality from
the sensed, continuous RSSI signal values into discrete, qualitative levels (i.e.,
“Low” and “High”). The entity is described by three attributes Level, minRSSI
and maxRSSI.

The remaining entities Road, Building and Classroom refer to the applica-
tion data, as they are not strictly related to the context-aware behavior of the
application and can be navigated by users as core contents of the application.
Note, however, that the entities Road and Building are also part of the logical
context, as they store data that are location-dependent.

While the entity Connectivity contains the necessary logic to translate phys-
ical RSSI data into a logical RSSI level, the entity Location only translates the
physical position into a first level of logical context, that is geographical areas
inside the university campus. But as the application reacts to changes of build-
ings or roads and not just areas, the retrieved areas must be further translated
into buildings or roads by navigating the relationships from the context model
to the application data. Hence, since adaptivity may be also based on appli-
cation data, not just immediately available context data, the context model of
the application needs to be kept on the server side where the application data
resides.

Figure 11 shows a simplified WebML hypertext schema of the PoliTour ap-
plication; for presentation purposes, we only show three pages of the overall
application. Let’s first concentrate on the hypertext elements without adap-
tive behavior: Page Buildings in the lower left part of the figure publishes a
list of buildings (BuildingsIndex). It also shows details of a selected building



Siteview

Buildings

Building

BuildingData

C

Classroom

Classroom

ClassroomData

Get Longitude

Lon

@

Get Latitude

Lat

@

ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Get Location

Location
[MinLongitude<Lon<MaxLongitude]
[MinLatitude<Lat<MaxLatitude]

Get Building

Building
[Location2Building]

Get Road

Road
[Location2Road]

Roads

Road

RoadData

C

Nearby Buildings

Building
[Road2Building]

RoadsIndex

Road
LL

H

IF

Building.OID != null

OK

[result =
false]

OK [result = true]

C

Get RSSI

RSSI

@
ChangeStyle IF

Connectivity.Level=’Low’

[result = true]

[result = false]
OK

OK

css = default

css = warning

Get Connectivity

Connectivity
[MinRSSI<RSSI<MaxRSSI]

Fig. 11. PoliTour hypertext model.

(BuildingData) chosen from the list, together with the building’s classrooms
(ClassroomsIndex). The selection of a classroom leads the user to a new page
(Classroom, in the lower center part of the figure), which shows details about the
selected classroom (ClassroomData). Similarly to page Buildings, page Roads

(in the lower right part of the figure) shows data about roads (RoadsIndex
and RoadData) and their nearby buildings (NearbyBuildings). A user can for
example select a specific road from the list RoadsIndex to view its details in
the RoadData unit and its nearby buildings in the NearbyBuildings unit. The
pages Buildings and Roads are so-called landmark pages, which can be accessed
through links grouped in a menu displayed in every application page. The page
Classroom instead can only be accessed through a link in page Buildings, which
is also the home page of the whole site view.

Let’s now discuss how context-awareness is modeled in the hypertext schema:
The pages Buildings and Roads are C-pages; starting from the respective C-
labels, the pages are connected to the context cloud outside the pages (but
still inside the site view) that represents their adaptivity logic. In particular,
the units Get Longitude and Get Latitude access the physical location data
sensed through the client-side GPS module, the Get Location unit extracts the
corresponding logical area from the context model, and the Get Building unit,
finally, retrieves the building contained in the identified area. If no building is
associated with the current location, which is checked by means of the If unit,
the Get Road unit retrieves the road associated with the current position, and



FI

G

N

Ret Seg

S CG
CD

CECI

C

1 2
3

(a) Main campus map of Politecnico di Mi-
lano.

1 2

34

Automatic 
navigation

Manual 
navigation

Automatic 
navigation

(b) Screenshots of a typical use of the application.

Fig. 12. The running PoliTour application.



forwards the user to the Roads page. If instead a building is retrieved, page
Buildings displays the respective details. If from the Buildings page a user
navigates to the Classroom page, the context-aware behavior of the application
is interrupted, as the Classroom page is not defined as context-aware. As soon
as the user turns back to the Buildings or Roads page, the adaptive behavior
is again enabled.

Figure 12 exemplifies a possible interaction with the PoliTour application.
Let’s assume the Politecnico campus is organized as represented in Figure 12(a),
and that the user wants to move from location 1 to location 3, as highlighted on
the map. Figure 12(b) shows the respective screenshots. The user starts from the
central garden in the campus, moves to a nearby road and, finally, enters building
C. The application automatically adapts the published contents accordingly.
Once in the building, the user selects one of the classrooms of the building (see
screenshot 4), thus s/he accesses to the non-adaptive page Classroom. Turning
back to one of the two context-aware pages Buildings or Roads would again
enable the automatic adaptation of contents.

To visually alert users of low connectivity, we specify a second adaptivity
cloud that takes into account the sensed RSSI level and, in case of low connec-
tivity, changes the CSS style sheet of the application. In order to specify the cloud
only once for all C-pages of the site view, we associate it to the site view instead
of to each single page. The unit Get RSSI accesses the WiFi signal strength
registered on the PDA, and the Get Connectivity unit translates the sensed
value into a corresponding connectivity level. If the retrieved level is “Low”, the
Change Style unit sets the current CSS file of the site view to “warning”, which
means having a red page background. Otherwise, the “default” style sheet with a
gray page background is adopted. Since this cloud is associated to the site view,
it is evaluated before the evaluation of any possible context cloud associated to
C-pages.

7.1 Configuration of the CM Client

The configuration of the CM Client for the PoliTour application is achieved by
means of the following (HTML) code lines to be added when rendering the page:

<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

id="CMClient">

<param name="movie" value="CMClient.swf">

<param name="flashvars"

value="gatewayURL=http://dblambs.polimi.elet.polimi.it/

demogpspoli/gateway&refresh=5&userOID=1

&currentURL=

http://dblambs.polimi.elet.polimi.it/demogpspoli/page4.do

&contextParams=longitude;latitude;RSSI">

</object>

As described in Section 5.1, due to the client-side sensing, client configura-
tion requires to specify: the context parameters (contextParams) to be sensed



at the client side, i.e., longitude, latitude and RSSI, and the polling inter-
val (refresh), i.e., 5 seconds. These parameters are automatically configured at
design time through the WebRatio visual enviroment. The CM Client configu-
ration requires also other parameters to work properly: gatewayURL represents
the URL of the Flash Remoting Gateway, userOID represents the user identifier,
and currentURL represents the currently requested page. These parameters are
automatically configured at run time by the execution environment.

7.2 Configuration of the CM Server

The following XML code presents a fragment of the CM Server configuration file
concerning page Buildings:

<?xml version="1.0" encoding="ISO-8859-1"?>

<ConfigElements>

<CAPage id="Buildings">

<PageContextParams number="2">

<param>

<name>buildingOID</name>

<query>

select BUILDING.OID

from BUILDING, LOCATION

where LOCATION.toBUILD=BUILDING.OID

and LOCATION.MINLONGITUDE<?longitude?

and LOCATION.MAXLONGITUDE>?longitude?

and LOCATION.MINLATITUDE<?latitude?

and LOCATION.MAXLATITUDE>?latitude?

</query>

</param>

<param>

<name>connLevel</name>

<query>

select CONNECTIVITY.LEVEL

from CONNECTIVITY

where CONNECTIVITY.MAXRSSI>?RSSI?

and CONNECTIVITY.MINRSSI<?RSSI?

</query>

</param>

</PageContextParams>

</CAPage>

<CAPage id="Roads">

...

</CAPage>

</ConfigElements>

In more detail, the code fragment contains the following configurations:

– The context digest is computed over the buildingOID and connLevel values
that represent logical context values (as defined in Section 3) at the right
level of abstraction to determine the adaptive behavior of the application.



– The value of buildingOID is extracted through a parametric query that
uses the longitude and latitude values provided by the CM Client6 and
retrieves the building associated to the current user location. In case the
query does not return any result, the value associated to buildingOID is
null.

– The value of connLevel is extracted using the RSSI value provided by the
CM Client. In case the query does not return any result, the value associated
to connLevel is null.

A similar configuration applies also to page Roads, but is omitted in the
above code fragment for the sake of brevity.

7.3 Implementation and Deployment

The described application has been modeled according to the outlined approach.
Hypertext and CM Client configuration have been automatically generated with
the extended WebML code generator and deployed on top of a J2EE platform.
The configuration of the CM Server and the interaction with the sensing devices
have been coded manually. Its use is possible through PDA devices with wireless
Internet access, using Pocket Internet Explorer with Flash plugin. The commu-
nication between the GPS module and the CM Client is implemented using the
Chaeron GPS Library [12]; the WiFi received signal strength indicator (RSSI) is
acquired in the PDA using Place Lab [32]. A demo of the PoliTour application
is available at http://dblambs.elet.polimi.it/politour/.

8 Related Work

Context-awareness in general, until recently, has been mainly studied in the
fields of ubiquitous, wearable or mobile computing. A significant number of ded-
icated applicative solutions have been successfully developed [40, 30], and context
abstraction efforts have produced proper platforms or frameworks for rapid pro-
totyping and implementing context-aware software solutions [33]. Within the
domain of the Web, so-called adaptive hypermedia systems [4] use a user’s pref-
erences, knowledge and goals throughout an interaction to adapt the hypertext
to the needs of that user. Recent research efforts also address the special needs
of portable devices and mobile Web applications.

The AHA! system proposed by De Bra et al. [16] represents a user modeling
and adaptation tool originally developed in the e-learning domain. According to
a continuously updated user model, it allows customizing hypertext links (adap-
tive navigation) and contents (adaptive presentation). Adaptivity only occurs in
response to user-generated page requests.

Belotti et al. [2] address the problem of fast and easily developing context-
aware (Web) applications along a technological, database-driven approach, based

6 Variables expressed as ?name? refer to client-side sensed context data that the CM
Client provides in input to the CM Server at each request for a new context digest.



on extended functionalities specifically tailored to Web publishing. The authors
propose the use of a universal context engine in combination with a suitable
content management system [23]. In [2] they describe their resulting general
context-aware content management system, which enables developers to seam-
lessly adapt content, view, structure and presentation of Web applications to
runtime context properties. Context affects the actual Web application indirectly
by altering the state of the database and is not able to trigger autonomously
application functionalities.

At a more conceptual level, some well known model-driven methodologies,
such as HDM [22], OOHDM [36], Hera [39], and UWE [29], aid developers in
the design of Web information systems. Despite the growing number of specific
applications, only few attempts exists that aim at modeling also active, context-
aware behaviors at a conceptual level as described in this paper.

In [20] the authors show how the model-driven Hera design methodology al-
lows designers to specify the conditional inclusion or exclusion of page fragments
at content, navigation and presentation level. Adaptation is achieved by means
of so-called appearance conditions attached to design artifacts and based on
user profile and device capability information. Each of the Hera models (concep-
tual model, application model, presentation model) enables access only to those
profile attributes that are meaningful in the context of the particular model.
Adaptivity is thus mainly based on user and device data, and customizations
according to a broader interpretation of context are not addressed.

Fiala et al. [18], on top of the model-based framework of the Hera project,
propose a component-based XML document format for the implementation and
deployment of component-based, adaptive Web presentations (AMACONT pro-
ject). Adaptation depends on user profile data and device characteristics and
mainly concerns layout and presentation properties of Web pages. The im-
plementation of AMACONT-based applications is supported by an automatic
code generation mechanism for adaptive documents and multiple communication
channels, starting from AMACONT components and Hera schemas.

Similarly to Hera, Jin et al. [26] propose an ontology-based, model-driven
approach for declarative Web site design: OntoWebber. The authors stress the
importance of data integration in the context of Web portals by means of
semistructured data formats and equip OntoWebber with a suitable integration
layer. Web site design involves the design of several different models: content
model, navigation model and presentation model can be customized according
to a personalization model. Analogously to our approach, the authors distin-
guish between fine-grained and coarse-grained adaptation/personalization; the
former is achieved by incrementally rewriting a user’s site view structure, the
latter is achieved by switching between site views. Personalization, however, is
based only on three user properties, i.e., capacity, interest, and request, while
the approach described in this paper proposes the use of any kind of context
data for supporting adaptivity.

Baumeister et al. [1] explore Aspect-Oriented Programming [19] techniques
for modeling adaptivity in the context of the UML-based Web Engineering



method (UWE [29]). The authors concentrate mainly on aspects for adaptive
link hiding, adaptive link annotation and adaptive link generation. This kind
of adaptation is achieved in UWE by adding annotations, handled as indepen-
dent model aspects (the authors distinguish model time and runtime aspects),
to navigation links of the navigation model. Content adaptation or presentation
adaptation are not tackled yet, but they are under investigation by the authors.
The main contribution of the work can be identified in the strong separation
of navigation model and adaptation model, achieved by interpreting adaptation
as cross-cutting aspect with respect to application modeling. This aspect is in
line with our approach, where context cloud modeling is orthogonal to page
modeling.

Schewe et al. [34] describe an algebraic approach to personalization or adap-
tation in Web information systems by extending SiteLang, a process algebra
developed by the authors to express so-called application “stories”. User pref-
erences are specified by means of proper pre- and post-conditions that act as
filters over a Web information system’s story space and that tailor the algebraic
expression of a story space to an individual user. Unlike the previous concep-
tual approaches, this idea leverages formal reasoning about Web information
systems, which is based on algebraic expressions that make the implementation
less intuitive (compared to model-driven approaches).

Although the previous works aim at providing advanced adaptivity support
for Web applications, differently from our approach none of them grants con-
text the status of proper actor on top of the actual application. Partly, this can
be ascribed to the lack of suitable technologies for client-side adaptivity and/or
active communication protocols. The growing interest in so-called Rich Inter-
net Applications (RIAs), deployed on top of desktop-like, client-side execution
platforms, underlines the need for more powerful Web technologies. In this con-
text, above all the Macromedia MX suite [31] and OpenLaszlo [27] are paving
the road for more flexible adaptivity. However, we in general observe a lack of
conceptual primitives comparable to the notion of Page Context and Context
Monitor. We believe that such or similar abstractions are instead essential to
widen the applicability of Web technologies also to non-traditional field, such as
active adaptivity.

9 Conclusions and Future Work

In this paper we have considered a relevant aspect of modern Web applications,
i.e. adaptivity to context, and we have shown how such issue requires increasing
the expressive power of Web application models so as to incorporate context-
triggered changes in the page generation logic. The proposed approach, based
on WebML, enables the automatic generation of most application components
(in the two layers of the data source and of the hypertext front-end), which
allow us to achieve some active context-awareness features. However, the pro-
posed design primitives are general in nature, and context modeling, adaptation
changes, parameter passing, and the Context Monitor can be manually encoded



by Web programmers. Even in this case, the proposed modeling method still
constitutes a valuable support. It clarifies issues behind context-awareness for
Web applications and makes application development systematic.

The modeling primitives that we have proposed allow us to cope with some
relevant requirements that are generally valid in any class of context-aware ap-
plications, namely with context acquisition and monitoring, and with the exe-
cution of adaptivity actions along some well-acknowledged dimensions of Web
applications. However, new primitives could be needed for modeling new re-
quirements possibly emerging in specific application domains. In this case, the
WebML method and the accompanying CASE tool are still able to support an
easy extension of the modeling language through the definition of plug-in units
[9].

Despite the value of our work in providing conceptual abstractions, method-
ological tools and techniques for managing context-awareness in Web applica-
tions, we believe that some efforts must still be devoted to make it more ex-
haustive. In particular, some limits of our solution refer to the coverage of the
possible adaptive behaviors that can occur in a context-aware Web application.
In [13] we have investigated the potential of (textual) Event-Condition-Action
rules in combination with the (visual) solution described in this paper. This
implies interfacing the application runtime environment with a decoupled rule
engine for rule evaluation and action enactment [5, 13]. Such an integration leads
to the following advantages:

– The availability of a detached rule engine widens the set of events to react
to, also comprising events that are independent from user actions.

– The resulting architecture enhances separation of concerns, and supports
flexibility and evolvability: Thanks to the availability of a detached rule
engine, the modification or the addition of rules can be managed even after
application deployment by properly setting the external rule engine, without
requiring changes to the application design and the generation of a new
application version.

– The decoupled rule engine also facilitates the management of rule priorities
and conflicts, without burdening the Web application computation.

We are currently implementing the rule engine for covering sparse adaptivity
[13]. We are also studying adaptivity modes that are either time-dependent (i.e.,
whose polling intervals can be modeled according to given policies) or real-time
(i.e., whose triggering is immediate thanks to context events). Further efforts will
investigate the potential of post-processing mechanisms for fine-grained adap-
tation of presentation properties, i.e. adaptive link hiding. Nevertheless, such
new extensions do not compromise the computation logic for C-pages and the
mechanisms for context monitoring that we have described in this paper, which
therefore will keep their validity even in the extended adaptivity framework.

The solutions described in this paper have been extensively tested in the
context of the MAIS project (http://www.mais-project.it), by extending the
run time component of WebRatio (definition of new units) and accompanying



it with the Context Monitor module. This has allowed us to prove that the
solution is feasible and meets an important customer demand. As such, it will
be integrated in a future release of the WebRatio environment.

Acknowledgment

We acknowledge the contribution of Marco Valenti to the Context Monitor and
the prototype implementation.
This work has been supported by the Italian FIRB Project MAIS (Multi-channel
Adaptive Information Systems).

References

1. H. Baumeister, A. Knapp, N. Koch, and G. Zang. Modeling Adaptivity with
Aspects. In Proceedings of the International Conference on Web Engineering -
ICWE 2005, Sydney, Australia., LNCS 3579, pages 406–416. Springer-Verlag Berlin
Heidelberg, July 2005.

2. R. Belotti, C. Decurtins, M. Grossniklaus, M. C. Norrie, and A. Palinginis. Inter-
play of Content and Context. In Proceedings of the International Conference on
Web Engineering - ICWE’04, pages 187–200, 2004.

3. M. Brambilla, S. Ceri, P. Fraternali, R. Acerbis, and A. Bongio. Model-driven
Design of Service-enabled Web Applications. In Proceedings of the 2005 SIGMOD
Conference, 2005, pages 851–856. ACM, June 2005.

4. P. Brusilovsky. Methods and Techniques of Adaptive Hypermedia. User Model.
User-Adapt. Interact., 6(2-3):87–129, 1996.

5. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Transactions on Database
Systems, 24(3):405–451, 1999.

6. S. Ceri, F. Daniel, and M. Matera. Extending WebML for Modeling Multi-Channel
Context-Aware Web Applications. In Proceedings of WISE’03 Workshops, Rome,
Italy, December 12 -13, 2003, pages 225–233. IEEE Press, 2003.

7. S. Ceri, P. Dolog, M. Matera, and W. Nejdl. Model-Driven Design of Web Appli-
cations with Client-Side Adaptation. In Proceedings of ICWE 2004, LNCS 3140,
pp. 201-214, Springer Verlag.

8. S. Ceri, F. Daniel, M. Matera, and F. Facca. Model-driven Development of Context-
Aware Web Applications. ACM Transactions on Internet Technology (TOIT),
Volume 7, Number 1, February 2007.

9. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. De-
signing Data-Intensive Web Applications. Morgan Kauffmann, 2002.

10. S. Ceri, P. Fraternali, A. Bongio, S. Butti, R. Acerbis, M. Tagliasacchi, G. Toffetti,
C. Conserva, R. Elli, F. Ciapessoni, and C. Greppi. Architectural Issues and So-
lutions in the Development of Data-Intensive Web Applications. In Proceedings of
CIDR 2003, January 2003, Asilomar, CA, USA, 2003.

11. S. Ceri, P. Fraternali, and M. Matera. Conceptual Modeling of Data-Intensive Web
Applications. IEEE Internet Computing, 6th(4):20–30, July-August 2002.

12. Chaeron Corporation. Chaeron GPS (Global Positioning System) Library. http:

//www.chaeron.com/gps.html, 2005.
13. F. Daniel, M. Matera, G. Pozzi. Combining Conceptual Modeling and Active Rules

for the Design of Adaptive Web Applications. Proceedings of the First International



Workshop on Adaptation and Evolution in Web Systems Engineering - AEWSE’06,
2006.

14. R. De Virgilio, R. Torlone. A general methodology for context-aware data access.
In Proceedings of MobiDE’05, pages 9–15.

15. M. Davis. Struts, an open-source MVC Implementation, February 2001. http:

//www-106.ibm.com/developerworks/library/j-struts/?n-j-2151.
16. P. De Bra, A. Aerts, B. Berden, B. de Lange, B. Rousseau, T. Santic, D. Smits,

and N. Stash. AHA! The Adaptive Hypermedia Architecture. In Proceedings of
HYPERTEXT’03, pages 81–84, 2003.

17. A. K. Dey and G. D. Abowd. Towards a better Understanding of Context and
Context-Awareness. In Proceedings of CHI 2000 Workshop on The What, Who,
Where, When, and How of Context-Awareness, The Hague, The Netherlands, 2000.

18. Z. Fiala, M. Hinz, G.-J. Houben, and F. Frasincar. Design and Implementation of
Component-Based Adaptive Web Presentations. In Proceedings of SAC’04, pages
1698–1704, 2004.

19. R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented Software Devel-
opment. Addison-Wesley, 2004.

20. F. Frasincar, P. Barna, G.-J. Houben, and Z. Fiala. Adaptation and Reuse in De-
signing Web Information Systems. In Proceedings of the International Conference
on Information Technology - ITCC’04, Track on Modern Web and Grid Systems,
Volume 1, pages 387–391, IEEE Computer Society, 2004.

21. P. Fraternali. Tools and Approaches for Developing Data-Intensive Web Applica-
tions: A Survey. ACM Computing Surveys, 31(3):227–263, September 1999.

22. F. Garzotto, P. Paolini, and D. Schwabe. HDM A Model-based Approach to Hy-
pertext Application Design. ACM Transactions on Information Systems, 11(1):1–
26, 1993.

23. M. Grossniklaus and M. C. Norrie. Information Concepts for Content Management.
In Proceedings of WISE’02 Workshops, pages 150–159, 2002.

24. K., Henricksen and J. Indulska. Modelling and Using Imperfect Context Informa-
tion. In PerCom Workshops 2004. 33–37.

25. K. Henricksen, J. Indulska and A. Rakotonirainy. Modeling Context Information
in Pervasive Computing Systems. In Pervasive 2002. 167–180.

26. Jin, Y., Decker, S., Wiederhold, G.: OntoWebber: Model-Driven Ontology-Based
Web Site Management. In: The 1st International Semantic Web Working Sym-
posium (SWWS’01), Stanford University, Stanford, CA, July 29-Aug 1, Springer
Verlag (2001).

27. Laszlo Systems Inc. Openlaszlo - An XML Framework for Rich Internet Applica-
tions. Laszlo Systems Technology White Paper, July 2005.

28. H. Lei, D. M. Sow, J. S. Davis II, G. Banavar, M. Ebling, M. The Design and Appli-
cations of a Context Service. Mobile Computing and Communications Review 6, 4,
45–55, 2002.

29. N. Koch, A. Kraus, and R. Hennicker. The Authoring Process of the UML-based
Web Engineering Approach. In D. Schwabe, editor, First International Workshop
on Web-oriented Software Technology (IWWOST01), 2001.

30. S. Long, R. Kooper, G. D. Abowd, and C. G. Atkeson. Rapid Prototyping of Mobile
Context-Aware Applications: The CyberGuide Case Study. In MOBICOM, pages
97–107, 1996.

31. Macromedia Inc. Developing Rich Internet Applications with Macromedia MX
2004. Macromedia White Paper, August 2003.

32. Place Lab. A privacy-observant location system. http://www.placelab.org, 2006.



33. D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit: Aiding the Develop-
ment of Context-Enabled Applications. In Proceedings of CHI’99, pages 434–441,
1999.

34. Schewe, K.D., Thalheim, B.: Reasoning about web information systems using story
algebras. In: Advances in Databases and Information Systems (ADBIS 2004),
volume 3255 of Lecture Notes in Computer Science, Springer Verlag (2004) 54–66.

35. A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V. Laerhoven and W. V.
de Velde. Advanced Interaction in Context. In HUC. 89–101, 1999.

36. D. Schwabe, G. Rossi, and S. D. J. Barbosa. Systematic Hypermedia Application
Design with OOHDM. In Proceedings of HYPERTEXT’96, pages 116–128, New
York, NY, USA, 1996. ACM Press.

37. M. Theodorakis, A. Analyti, P. Constantopoulos and N. Spyratos. Context in
Information Bases. In Proceedings of CoopIS’98, pages 260–270, 1998.

38. R.Torlone et al. Front-end Methods and Tools for the Development of Adaptive
Applications. In: Barbara Pernici (ed), Mobile Information Systems, Springer Ver-
lag (2006), 209–246.

39. R. Vdovjak, F. Frasincar, G.-J. Houben, and P. Barna. Engineering Semantic Web
Information Systems in HERA. Journal of Web Engineering, 2(1-2):3–26, 2003.

40. R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location
System. ACM Transactions on Information Systems, 10(1):91–102, 1992.

41. WebModels s.r.l. Webratio Site Development Studio. http://www.webratio.com,
2005.


