
A Portable Approach to Exception Handling in

Workflow Management Systems

Carlo Combi1, Florian Daniel2, and Giuseppe Pozzi2

1 Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
carlo.combi@univr.it

2 Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milano, Italy
{florian.daniel, giuseppe.pozzi}@polimi.it

Abstract. Although the efforts from the Workflow Management Coali-
tion (WfMC) led to the definition of a standard process definition lan-
guage (XPDL), there is still no standard for the definition of expected ex-
ceptions in workflows. Yet, the very few Workflow Management Systems
(WfMS) capable of managing exceptions, provide a proprietary excep-
tion handling unit, preventing workflow exception definitions from being
portable from one system to another one.
In this paper, we show how generic process definitions based on XPDL

can be seamlessly enriched with standard-conform exception handling
constructs, starting from a high-level event-condition-action language.
We further introduce a suitable rule compiler, enabling to yield portable
process and exception definitions in a fully automated way.

1 Introduction

Workflows are activities involving the coordinated execution of atomic activities
(tasks) performed by different processing entities (agents). The process model
(schema) of a workflow includes the description of its component tasks, of the
flow of execution, of routing nodes (connectors) to activate parallel (AND split)
and conditional executions (OR split), and to resynchronize executions (AND
join, OR join). Instances of schemas are known as cases. Workflow management
systems (WfMS) support the automatic execution of workflows [1, 2].

The schema of a workflow considers the normal flow of execution, where
cases evolve through predefined execution paths according to the variables of
every case. Occasionally, during the execution of a case, some exceptional situ-
ations may occur, possibly deviating the execution path from the set of normal
execution paths. The semantics of these exceptions is not negligible and must be
foreseen at workflow design time: we call these exceptions expected exceptions [3].
Other exceptions (e.g. power fail, network disconnection. . . ) are not modelled at
workflow design time and will no longer be considered throughout the paper.

The Workflow Management Coalition (WfMC [1]), whose recommendations
and standards influence WfMS vendors, issues the XPDL language, which is
an XML-based process definition language, aimed at obtaining portability of
the process definitions among different WfMSs. While several efforts have been



done with respect to the normal process flow definition, and several WfMSs may
share the same schema based on XPDL, very few WfMSs come with an expected
exception handling unit and no standard has been achieved about exceptions.

In the following, we propose a technique to map expected exceptions inside
the XPDL schema, and: i) provide WfMSs with a primordial exception manage-
ment unit; ii) maintain the portability of the process definition among WfMSs,
capable of processing XPDL descriptions. As reference language to define, cap-
ture, and manage exceptions we consider the Chimera-Exception language [4].

In this paper, Section 2 considers related work; Section 3 and Section 4
consider process and exception specification, introducing XPDL and Chimera-

Exception. Section 5 shows how to model ECA rules in XPDL. Section 6 describes
how to support expression evaluation in XPDL, used in Section 7 to map ECA
rules onto process specifications. Section 8 describes some practical experiences
gained. Finally, Section 9 draws some conclusions and anticipates future work.

2 Related Work

The literature covers several facets of exception handling in WfMS. Mourão et
al. [5] define a suitable environment to orchestrate ad-hoc human interventions
with a minimum impact on system integrity. Golani et al. [6, 7] consider how
to increase the flexibility of a WfMS to deal with unexpected exceptions, and
propose a dynamic mechanism that allows backtracking and forward stepping at
the instance level. Luo et al. [8] focus on exception-handling schemes for conflict
resolution in the delivery of e-business transactions, with particular attention to
support conflict resolution in cross-organizational settings. Schuschel et al. [9]
exploit the functionalities of triggers defined within a WfMS to automate the
creation of process definitions by planning algorithms: by replanning and dy-
namically adapting the process, the newly defined process is capable of reacting
to unexpected events. Finally, van der Aalst et al. [10] propose a mixed approach
between workgroup management systems and WfMSs,where the normal evolu-
tion of the process is managed by predefined process control structures, while
exceptions are manually managed by a human agent and the case handling sys-
tem assists rather than guiding him/her in doing so.

Our particular attention is focused on expected exceptions as defined by Eder
et al. in [3]. To this regard, very few WfMSs include a fully fledged exception
handling unit to deal with expected exceptions. An interesting approach to ex-
ception handling is provided by the OPERA prototype [11], where exceptions
can be triggered by data events or by notifications from external applications:
tasks and control flows are used as reactions to captured exceptions. In OPERA,
as soon as an exception is detected, the process is suspended and the control
is transferred to the exception handler. COSA [12] comes with the notion of
trigger, defined as an event-action rule capturing events or deadline expirations,
and reacting by activating a task or a (sub)process instance. InConcert [13]
includes event-action triggers in its workflow model: triggering events can be
process state changes (e.g., a task becomes ready for execution), external (user



defined) events, or temporal events; actions include notification of messages to
agents, activation of a new process, or invocation of a user-supplied procedure.
Staffware [14] and HP’s Changengine allow the definition of a special kind of
task called event node (or event step), which can suspend the case execution on
a given path until a defined (exceptional) event occurs, and can then activate
an event-handling path in the workflow.

The WIDE project has a powerful exception handling unit [4], where excep-
tions are specified by means of Event-Condition-Action (ECA) rules: workflow,
temporal, external, and data events may trigger actions as suspending a case
or a task, starting a new case, changing database instances, or notifying mes-
sages to agents. In this paper, we adopt the formal Chimera-Exception language
developed within the WIDE project.

3 Business Process Modelling and XPDL

The XPDL (XML Process Definition Language) is an XML file format from the
WfMC: it has the same expressive power as the visual process specification lan-
guage Business Process Management Notation [15] (BPMN). XPDL can be used
as file format of BPMN. In this paper we shall use BPMN modelling constructs
for expressing XPDL processes and activities, instead of providing unexpressive
snippets of XPDL code. Tasks are represented as boxes, whose names describe
the performed activity. Transitions are represented as directed arcs to connect
process nodes, which, for routing purposes, may have associated a condition over
workflow-relevant, application, or system data. Each process definition has one
start and one end task, depicted by thin or thick circles, respectively. Gateways
are represented as diamonds; condition gateways also have an associated textual
condition, while AND gateways are diamonds that contain a + symbol.

An XPDL document is structured hierarchically, represents a package made
of a set of process definitions, and includes package-wide workflow participants,
applications and relevant data fields. Process definitions may contain references
to separately defined sub-flows, making up part of the overall process definition,
and inherit globally defined entities. Process definitions are articulated in pools
and swim lanes. For instance, when modelling interactions in B2B scenarios,
pools represent private business processes, while swim lanes represent the dif-
ferent participants performing each of the private processes. Process activities
represent tasks and are associated to pools and lanes. Activities are connected
by means of transitions (intra-pool flows) or message flows (inter-pool flows).

An Example As process model example, we consider (Figure 1) a company
trading in books with very limited editions and accepting orders by its customers
via telephone; payments are by credit card only. After receiving an order, the
Sales Office immediately checks the credit status of the customer’s credit card.
In case of overdraft, the order is declined. Otherwise, the Sales Office proceeds
and checks the stock for the requested books. If all the products are available, the
customer is notified of the immediate shipment, and the Production department



provides for shipment. If, instead, not all the requested products are available, the
Sales Office informs the user and asks for the approval of a delayed shipment. To
accelerate the overall process, the Production department plans the production
of the missing items in parallel, regardless of the user’s decision, produces them
and, if no cancellation is received, ships the complete order.

Receive 
Order

Start
Decline 
Order

End

Check 
Stock

Notify 
Shipment

Plan 
Production

Production
Ship and 
Report

End

S
al

es
 O

ff
ic

e
P

ro
d

u
ct

io
n

Enough Credit?

yes

no

Products available?

Notify Delay and 
Ask4Approval

Products available?

yes

no
Customer
approves?

Compensate 
and Decline

End

yes

no

Fig. 1. Example OrderManagement process definition

4 Handling Workflow Exceptions

Although “anomalous” with respect to the “normal” process flow, expected ex-
ceptions are part of the semantics of the overall process and can be classified [4,
16] according to synchronicity, scope, and triggering event.
Synchronicity : synchronous exceptions are bound to specific workflow events
(i.e., task start, task completion), while asynchronous ones may occur at any time
during process execution. Synchronous exceptions may be further subdivided
into localized exceptions, caused only by the execution of one or few tasks, and
sparse exceptions, caused at several stages during process execution.
Scope: process-specific exceptions may occur during the execution of one unique
process; cross-process exceptions may occur during the execution of more pro-
cesses; global exceptions may occur during the execution of any process.
Triggering event : events can be data, temporal, external or workflow events.

These characteristics strongly influence the way expected exceptions can
be mapped onto XPDL, and thus onto process definitions. Mapping exceptions
moves from Chimera-Exception definitions, as specified in the following.

4.1 The Chimera-Exception Language

Chimera-Exception builds on an object-oriented formalism. Classes are workflow-
independent (e.g., role, agent, task) or workflow-dependent (e.g., workflow-rele-
vant data fields). Rules are specified by event-condition-action constructs.



Events. Rules can be triggered by the following events: data events (changes
of the content of workflow-relevant data or within the underlying data source,
by create, modify or delete statements); temporal events, which can be (i)
instant events expressed through the @-symbol (e.g. @timestamp ‘‘December

15th, 2005’’), (ii) periodic events defined by the during keyword (1/days
during weeks denotes the first day of every week [17]), (iii) interval events
expressed as elapsed duration since instant, (e.g. elapsed (interval 1 day)

since caseStart); external events (recognized by means of the raise primitive,
which – when an external event occurs – provides the name of the triggering event
and suitable parameters); or workflow events (start and completion of tasks and
cases by the primitives caseStart, caseEnd, taskStart, and taskEnd).

Conditions. A condition consists of predicates that inspect the content of the
database. The predicate occurred enables to refer to objects or tasks that were
affected by the triggering event. The predicate old enables to access the database
state at the time of the triggering.

Actions. The actions of Chimera-Exception focus on exception management within
the workflow environment and can assign a task or a case to an agent, cancel a
task or a case, start a task or a new case, suspend a task. . .

The trigger ProductionNotification valid for the schema OrderManagement
is an example of a Chimera-Exception trigger. It monitors – as event – the com-
pletion of the task Production: after the completion of the task, the trigger
notifies the Sales Office about the terminated production.

define trigger ProductionNotification for OrderManagement

events taskEnd("Production")

condition Agent(A), A.Name = "Sales Office"

actions notify(A,"Production done.")

end

The CustomerCancel trigger reacts to cancellations of the whole process. The
process is informed of the cancellation by changes to the workflow-relevant vari-
able CustomerCalledToCancel. During case execution, should the parameter
change to ”Yes”, the task CompensateAndDecline is started.

define trigger CustomerCancel for OrderManagement

events modify(CustomerCalledToCancel)

condition OrderManagement(O),

occurred(modify(CustomerCalledToCancel),0),

O.CustomerCalledToCancel="Yes"

actions startTask("CompensateAndDecline")

end

5 Modelling ECA Rules in XPDL

In the next sections, we show how the textual specification of high-level Chimera-

Exception rules can be translated into XPDL by a mapping mechanism based on



XPDL macroes. Macro modules represent fragments of the process graph and
provide flexible interconnections of workflow fragments and macro modules.

Macroes consider events, conditions, and actions. High-level macroes are
made of lower-level macroes, such as connector macroes, and of a set of pre-
defined sub-processes, which serve for evaluating expressions.

5.1 The Rationale for Macroes

A generic macro element has at least one input node, prefixed by “In-”, and one
output node prefixed by “Out-”. The suffix specifies the kind of graph element
that can be connected to the interface. Table 1 shows the possible suffixes for
interface nodes. Triggers may have a void condition primitive (if set to none),
while the event and the action part can not be null; for simplicity, conditions will
be considered as part of the action. Therefore, the Ac suffix can connect action
macroes as well as condition macroes.

Interface Suffix Graph element

Wf Primary workflow
In Ev Event macro

Ac Action or condition macro

Wf Primary workflow
Out Ac Action or condition macro

True/False Action macro

Table 1. Possible interface suffixes for specifying the kind of graph element to connect
to a given macro element

Connecting two macroes requires connecting the output interface of the first
macro to the input interface of the second macro. In order to be connectable, the
two interfaces must present the same suffix. Interfaces are modelled by means
of task nodes, because task nodes enable more flexible connection configurations
than transitions. Transitions, in fact, would allow only one connection through
an interface, while the auxiliary tasks allow more than one incoming transition
to be connected to a specific interface.

5.2 ECA Macro Elements

We now consider the generic, minimal structure of the three high-level macroes
representing events, conditions and actions.

Events. Figure 2(a) depicts a generic macro for events with one input interface
and one output interface. Actually, events should respect the macro structure
of Figure 2(b), as generally events are not activated by incoming transitions.
However, since we are tackling the problem of mapping events to XPDL process



In-Ev Out-AcEvent

(a) Macro with In-Ev and Out-Ac interfaces.

Out-AcEvent

(b) Macro with Out-Ac inter-
face.

Fig. 2. Generic macro for Chimera-Exception events

In-Ac

Out-True

Condition

Out-False

Fig. 3. Generic condition macro

definitions/graphs, events require an input interface for connecting them to the
primary process flow, too. Indeed, as shown in Section 7.1, event macroes could
also contain the event-generating logic, rather than representing the event itself.

Conditions. Figure 3 shows a generic condition macro with one input and two
output interfaces. This macro is the only one using the suffixes True and False

to denote the interface activated if the condition evaluates true or false.
The use of condition macroes requires the introduction of an exception to

the general rule for connecting interfaces (see Section 5.1), as there is no input
interface with True or False suffixes. Therefore, if condition macroes are used,
their output interfaces can only be connected to interfaces with Ac suffixes.

In-Ac Out-AcAction

Fig. 4. Generic description of Chimera-Exception actions

Actions. Figure 4 describes the generic macro for actions. It has one input in-
terface and one output interface, both to be connected to other Ac interfaces.

5.3 Basic Connector Macroes

In order to switch between the “process environment” and the “exception envi-
ronment” within an enriched process definition, proper connector macroes are
introduced. Figure 5 depicts the three basic connectors adopted in this paper.

Serial macro This macro (Figure 5(a)) allows splitting the normal process flow
and inserting an exception handling sub-flow. The normal process is connected
to the two interfaces with suffix Wf, while the two other interfaces connect to



In-Wf

Out-Ac In-Ac

Out-Wf

(a) Serial XPDL macro element

AND Split

In-Wf

Out-Ev

Out-Wf

(b) AND Split macro element

AND Join

In-Ac

In-Wf Out-Wf

(c) AND Join macro element

Fig. 5. Basic connector macroes

conditions or actions. The serial macro is used only to map exceptions triggered
by workflow events, which are synchronous and localized (see Section 4). The
serial connector may therefore act as both connector and triggering event.

AND split The AND split (Figure 5(b)) starts parallel flows, one for the normal
process execution, one for the exception handling. The output interface with
suffix Ev is arranged for attaching proper event macroes; hence, the AND split
does not represent an event. The AND split is particularly suited for mapping
asynchronous or synchronous, sparse exceptions (see Section 4), when used in
combination with event macroes that monitor the actual triggering event (i.e.,
data events, temporal events, external events).

AND join The AND join (Figure 5(c)) aims at joining a process flow and a par-
allel exception handling flow. The join represents the termination of a triggered
rule and allows connecting in input an action or a condition macro.

Process Graph Reduction The use of task nodes for interfaces leads to a high
number of auxiliary tasks within the process graph. Input and output interfaces
as well as suffixes are particularly useful for the consistent enrichment of the
process graph with exception handling constructs. After the mapping process is
terminated, the additionally introduced interface nodes are no longer needed and
the enriched process graph can be optimized. Figure 6 exemplifies the graph re-
duction or optimization process relative to two connected AND splits: whenever
the process graph contains an output interface connected to an input interface
having the same suffix, the two nodes can be removed.



AND SplitAND Split

In-Wf

Out-Ev

Out-Wf In-Wf

Out-Ev

Out-Wf

(a) Two connected AND splits

AND Split AND Split

In-Wf

Out-Ev

Out-Ev

Out-Wf

(b) Elimination of redundant In/Out tasks

AND Split

In-Wf

Out-Ev

Out-Ev

Out-Wf

(c) Reduced graph after optimization

Fig. 6. Process graph reduction

Name

Var

Name

In Out

XPDL Macro Data Flow
Workflow-

relevant Data
XPDL

Subprocess

Fig. 7. Notation for modelling sub-processes and workflow-relevant data



6 Supporting Chimera-Exception Expressions

Chimera-Exception rules may contain complex expressions: we need some XPDL

constructs capable of interpreting object-oriented primitives. We propose a so-
lution based on sub-processes to provide basic and atomic functionalities for ex-
pression evaluation and data access (basic sub-processes). We also define expres-
sion patterns referring to particular configurations of workflow primitives and
sub-processes, implementing higher-level functionalities with respect to those
supported by sub-processes. Figure 7 depicts the notation for sub-processes, data
flows and workflow-relevant data fields. Sub-processes exhibit the names of their
input data, positioned at the left hand side, and of output data, at the right
hand side. A workflow-relevant data field connected by an arrow to an input
variable represents consumed values, while a field connected to an output vari-
able gathers produced values. An appropriate use of workflow-relevant data fields
therefore allows combining sub-processes and propagating parameter values.

6.1 Basic Sub-Processes for Expression Evaluation

Figure 8 depicts some basic sub-processes. Get(ExpRef) accesses persistent data
by object-oriented expressions (i.e., Task1.Status): ExpRef is a string vari-
able referencing the variable to be read. Set(Value,DataRef) assigns values to
workflow-relevant data fields: Value is the constant value to be assigned to vari-
able referenced by DataRef. Evaluate(PredRef) evaluates Chimera-Exception con-
dition predicates and returns the evaluation result that can be stored within
a workflow-relevant data field: PredRef references the predicate to be evalu-
ated. Calculate(OperatorRef,Op1Ref,Op2Ref) computes the 4 basic arithmetic
operations, referenced by OperatorRef, over the operands referenced by Op1Ref,
Op2Ref. Wait(IntRef) implements a temporal delay, where the termination of the
sub-process signals the expiration of the delay referenced by IntRef. Raise(Event)
implements the WfMS-specific logic required to detect external events, described
by a unique name; the termination of the sub-process implies the occurrence of
the specified external event.

Also proper sub-processes for Chimera-Exception actions are required. Actions
strongly depend on the adopted WfMS: each action requires a customized sub-
process, implementing the respective functionality on top of the chosen WfMS.

6.2 Expression Patterns

Complex expression patterns can now be defined. Expression patterns and basic
sub-processes are the starting point for the automatic translation of Chimera-

Exception triggers into XPDL.
Figure 9 shows an example of a workflow pattern GetDataObject mapping to

XPDL Chimera-Exception expressions like Task1.Status. As shown, the pattern
is composed of one Set operation and one Get operation. The former assigns the
constant value ‘‘Task1.Status’’ to a workflow-relevant data field (Exp); the



Get Set

Exp Val “Value”

(a) Data access and storage

Evaluate Calculate

Exp Val

Operator
Op1
Op2 Val

(b) Expression evaluation and manip-
ulation

Wait

Interval

Raise

Event

(c) Extended workflow capabilities

Fig. 8. Basic subprocesses for evaluating Chimera-Exception expressions

Exp

Set

“Task1.Status”

Get

Exp Val

Val

Fig. 9. Expression pattern for accessing persistent workflow data and status informa-
tion

latter evaluates the expression and accesses the respective data. The retrieved
value is then stored within the data field Val.

Besides data access patterns, other patterns manipulate strings, correctly
instantiate Wait sub-processes, evaluate Chimera-Exception predicates. . .

By combining and concatenating basic sub-processes, according to such ex-
pression patterns, we build the specification and translation of complex expres-
sions, as exemplified by Figure 10, where the expression ‘‘Status of Process

= ’’ + C.Task1.Status is expressed by proper sub-processes. For this purpose,
two expression patterns are used, one for accessing persistent data within the
underlying data source, and one for the concatenation of generic strings.

Sys1 Sys2

Set

“Status of
Process =”

Sys3 Sys4

Set

“Task1.Status”

Get

Exp Val

Sys3Sys1

Set

“+”

Calculate
Operator
Op1
Op2 Val

Val

Access to data object Concatenation

Fig. 10. Mapping of the expression ‘‘Status of Process = ’’ + C.Task1.Status



The example in Figure 10 further shows how sub-processes are configured and
connected automatically. The constant values used by the Set operations within
the depicted workflow fragment can be directly taken from the expression to be
translated, while the passing of parameters from one sub-process to another can
be achieved by means of system-generated data fields (i.e., Sys1 or Sys2). The
result of the described chain of sub-processes is stored within the data field Val.
System-generated data fields can be derived at compilation time in a completely
automated way, starting from the expression to be translated and the set of
known expression patterns.

7 Mapping Exceptions to XPDL

The mapping of expressions can be achieved in a completely process-independent
way, while the mapping of the high-level ECA constructs can only be accom-
plished in a process-dependent way. Sub-processes can directly be translated into
proper XPDL constructs for building up event, condition and action macroes,
which then are connected to the process graph by means of the already men-
tioned interface nodes. In this section, we describe in more detail how ECA
macroes can be built, starting from basic sub-processes, and how they can be
connected to the process graph.

7.1 Mapping Events

Events are the starting point for the evaluation of ECA rules and directly depend
on the kind of exception. We have workflow, data, temporal, and external events.

Task 1 Task 2

(a) Start configuration:
two subsequent tasks

Task 2In-Wf

Out-Ac In-Ac

Out-WfTask 1

In-Ac Out-AcAction

(b) After insertion of the Serial macro

Fig. 11. Mapping of the taskEnd(Task1) workflow event

Workflow Events. Workflow events are synchronous, localized, and are mapped
by the serial connector macro described in Section 5.3. Figure 11(b) shows the
fragment of Figure 11(a) after the mapping of the event taskEnd(Task1). The



serial connector macro plays the twofold role of connector and event. The two
interface nodes available after the mapping process directly allow the connection
of action or condition macroes. Events taskEnd(), caseStart() and caseEnd()

map analogously.

Data Events. Data events are asynchronous, not localized, and mapped by an
AND split connector, which splits the process flow immediately after the start
node into two parallel flows, one for the primary process, one for the handling
of the asynchronous exception.

AND Split

modify(Object)

Task 1Start In-Wf Out-Wf

Out-Ac

Temp1 Obj Temp2Obj

In-Ev Out-Ev

Temp1 != Temp2
yes

Set

“Object”

Get

Exp Val

Set

“10 sec”

Get

Exp Val

no

In-Ac

Interv

Wait

Interval

Fig. 12. Mapping of the modify(Object) data event

Figure 12 exemplifies the mapping of the data event modify(Object) and
its connection to the process graph by means of the AND split connector (inside
the grey-shaded box at the bottom of the figure). The actual event macro is con-
nected to the Out-Ev interface of the connector by means of an In-Ev interface.
The modify(Object) event further presents two other interfaces towards condi-
tion or action macroes (Out-Ac and In-Ac). The former enables the execution of
the rule’s actions in case of modifications of the data object Object, the latter
re-connects the output interface of the action macro to the event macro.

The event macro in itself, rather than representing a real event, contains the
runtime logic required for “generating” actual data events. This is achieved by
cyclic monitoring (polling) of the respective data attribute within the underlying
data source and transferring control to the condition and action macroes, in case
a modification is detected. In such a case, re-connecting the output interface of
the action macro to the In-Ac interface of the event macro closes the polling
cycle, which is suspended for the whole time taken to execute the rule’s actions.



Internally, the modify(Object) event consists in the following steps: the
current value of the data object to be monitored is retrieved and stored in a
workflow-relevant data field (Temp1). After the expiration of a predefined time
interval, the (possibly changed) value of the monitored data object is stored in
a second data field (Temp2). The two stored values are compared and, if they
differ, the Out-Ac interface is enabled and the rule’s condition and action parts
are evaluated. Otherwise, the macro continues polling the monitored data object.
The delete and create events map analogously.

Temporal Events. Temporal events require different mapping techniques, mainly
based on their synchronicity features.

– Instant events are asynchronous with respect to the normal process flow.
Their implementation is based on the use of suitable Wait operations;

– Periodic events are asynchronous, thus mapping similarly to instant events;

– Interval events are synchronous events as their evaluation depends on work-
flow events. The event elapsed(interval 1 day) since taskStart(Pro-

duction), for instance, is bound to the anchor event start of task Produc-

tion. These events are mapped by branching the normal process flow accord-
ing to the anchor event and by connecting the event handling constructs to
the parallel control flow. After the expiration of the time interval, the actual
event occurs, and the respective ECA rule is evaluated.

External Events. External events are asynchronous. The implementation of the
appropriate detection mechanism strongly depends on the particular used WfMS.
The detection of external events requires a proper sub-process (Section 6.1),
which is in charge of waiting for the incoming event. After receiving the notifi-
cation of the occurrence of the external event, the sub-process terminates, thus
signalling the occurrence of the event. The respective macro for raising asyn-
chronous, external events is based on cyclic activations of this sub-process, and
is attached in parallel to the process graph after the start task. A more detailed
treatment of external events exceeds the scope of this paper.

7.2 Mapping Conditions

The mapping of a condition involves as many instances of the Evaluate sub-
process (introduced in Section 6.1) as predicates in the condition expression.
The single intermediate evaluations are stored as workflow-relevant data, while
a final condition primitive determines the overall evaluation.

Figure 13 exemplifies the described mapping of condition expressions: the
Set operation stores the predicate to be evaluated (a string constant) in the
data field Expr, which is then consumed as input by the Evaluate operation.
This operation parses the predicate and stores the result in a system-generated
data field (Sys). The actual result of the condition macro is computed by the
final condition primitive.



Condition

Set

“Expression”

In-Ac
Evaluate

Expr Val

Out-True

Out-False

Sys

Sys =
true?

yes

no

Fig. 13. XPDL macro element for expressing conditions

7.3 Mapping Actions

Action implementation must be provided by basic sub-processes prior to the
mapping process. In order to form proper action macroes and to connect such
sub-processes to the process graph, action sub-processes are wrapped by means
of an In-Ac interface and an Out-Ac interface. Possible parameters are then
specified by means of complex Chimera-Exception expressions, interpreted, and
made available to the execution environment by workflow-relevant data fields.

In this way, the actions described in Section 4.1 can be seamlessly integrated
into the enriched process definition. While the translation of exception triggers
from Chimera-Exception to XPDL only requires the definition of the interface of
the actions to be mapped, their execution on top of a particular WfMS requires
their implementation according to the WfMS’s extension mechanisms.

8 Compiling Chimera-Exception into XPDL

As a proof of concept, we developed a Java prototype of a Compiler for the
automatic mapping into XPDL of exceptions defined in the Chimera-Exception

language. An additional Optimizer module is in charge of reducing the enriched
process graph by eliminating useless interface nodes.

The prototype demonstrates both the feasibility of the envisioned automatic
translation of Chimera-Exception triggers into XPDL at the process definition
level, and that the enriched process definitions are effectively executable by real
workflow engines, if proper WfMS-specific sub-processes are provided.

8.1 XPDL Process Modelling and Rule Compilation

To validate the compilation process, the open-source, graphical workflow process
editor JaWE [18] has been adopted. JaWE enables the visual specification of
workflow processes and their storage in XPDL as native file format. The process
definition example of Figure 1 is now modelled in JaWE by the swim lanes
Sales Office and Production of Figure 14: white nodes represent routing nodes
(automatically performed), while the gray shaded nodes represent the actual
tasks to be executed by the resource/role associated to the respective swim lane.

Several trigger definitions have been compiled to test the compilation process:
as an example, we consider here the CustomerCancel trigger described in Section



4.1 (Figure 14). The triggering event is an asynchronous data event, occurring
after changes to the workflow-relevant data field CustomerCalledToCancel. If
a modification to this parameter occurs, the case is aborted by activating the
CompensateAndDecline task.

The enabling event modify(CustomerCalledToCancel) has been connected
in parallel to the primary process flow by branching the primary flow imme-
diately after the start node. According to Figure 12, the data event is imple-
mented by a polling mechanism, monitoring the value of the workflow-relevant
data field CustomerCalledToCancel and represented in figure by the tasks Get,
Wait and the first Cond task. The second Cond task maps the conditional pred-
icate OrderManagement(O), occurred(modify(CustomerCalledToCancel),O),
and O.CustomerCalledToCancel = ‘‘Yes’’, while the specified action start-

Task(‘‘CompensateAndDecline’’) is achieved by connecting one of the outgo-
ing transitions of the Route node to the respective task.

The evaluation of the execution of enriched process definitions has been tested
by means of the open-source Java workflow engine Shark [19], which is completely
based on XPDL as native process definition format. In order to execute enriched
process definitions, the basic sub-processes introduced throughout this paper
have been implemented as “Java applications” to be associated to the so-called
application tasks (performed by means of predefined applications). The per-
formed tests allow us to cover successfully both compilation and execution of
enriched process definitions.

9 Conclusions and Future Work

In this paper we considered a relevant aspect of modern workflow management
systems, i.e., exception handling. We leveraged the use of a high-level speci-
fication language for the definition of workflow exceptions, such as Chimera-

Exception, and proposed a fully automated translation technique for rule defini-
tions. According to our approach, rules are translated into XPDL, the standard
process definition language proposed by the Workflow Management Coalition,
which hence fosters portable process and exception handling specifications. As
a proof-of-concept, the implemented rule compiler prototype allowed us to test
all the stages of the compilation process. The main contribution of this paper is
that it keeps the definition of exceptions at a conceptual level, by assuring – at
the same time – portability.

As future research directions, we plan a formal analysis of the complexity
of the outlined mapping approach, which however we expect being linear since
there are no interdependencies between the mappings of two triggers. We are
also confident about the termination of enriched processes, assuming a correct
termination of the input processes and of the Chimera-Exception triggers to be
mapped.

References

1. The Workflow Management Coalition. http://www.wfmc.org (2005)



Fig. 14. Process model after compilation of the CustomerCancel trigger



2. Combi, C., Pozzi, G.: Architectures for a Temporal Workflow Management System.
In: SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing, New
York, NY, USA, ACM Press (2004) 659–666

3. Eder, J., Liebhart, W.: The Workflow Activity Model WAMO. In: CoopIS. (1995)
87–98

4. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Transactions on Database
Systems 24 (1999) 405–451

5. Mourão, H., Antunes, P.: Exception handling through a workflow. In Meersman,
R., Tari, Z., eds.: CoopIS/DOA/ODBASE (1). Volume 3290 of Lecture Notes in
Computer Science., Springer (2004) 37–54

6. Golani, M., Gal, A.: Flexible business process management using forward step-
ping and alternative paths. In van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F., eds.: Business Process Management. Volume 3649. (2005) 48–63

7. Reichert, M., Dadam, P.: Adeptflex-supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10 (1998) 93–129

8. Luo, Z., Sheth, A.P., Kochut, K., Arpinar, I.B.: Exception handling for conflict
resolution in cross-organizational workflows. Distributed and Parallel Databases
13 (2003) 271–306

9. Schuschel, H., Weske, M.: Triggering replanning in an integrated workflow plan-
ning and enactment system. In Gottlob, G., Benczúr, A.A., Demetrovics, J., eds.:
ADBIS. Volume 3255 of Lecture Notes in Computer Science., Springer (2004) 322–
335

10. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53 (2005) 129–162

11. Hagen, C., Alonso, G.: Flexible Exception Handling in the OPERA Process Sup-
port System. In: ICDCS. (1998) 526–533

12. Baan Company N.V. - COSA Soultions: COSA Reference Manual (1998)
13. McCarthy, D., Sarin, S.: Workflow and transactions in In-Concert. IEEE Data

Engineering, 16(2):5356 (1993)
14. Staffware Corporation: Staffware for Intranet based Workflow Automation.

http://www.staffware.com/home/whitepapers/data/globalwp.htm (1997)
15. (BPMI.org), B.P.M.I.: Business Process Modeling Notation - Version 1.0.

www.bpmi.org (2004)
16. Casati, F., Pozzi, G.: Modeling Exceptional Behaviors in Commercial Workflow

Management Systems. In: CoopIS. (1999) 127–138
17. Leban, B., McDonald, D.D., Forster, D.R.: A Representation for Collections

of Temporal Intervals. In: Proceedings of the Conference on AAA-I, (AAAI86,
Philadelphia, PA) (1986) 367–371

18. ObjectWeb Consortium: Enhydra JaWE (Java Workflow Editor).
http://jawe.objectweb.org/ (2005)

19. ObjectWeb Consortium: Enhydra Shark. http://shark.objectweb.org/ (2005)


