
1

XPDL Enabled Cross-Product
Exception Handling for WfMSs

Carlo Combi, University of Verona, Italy,
Florian Daniel, University of Trento, Italy, and

Giuseppe Pozzi, Politecnico di Milano, Italy

ABSTRACT
The effort invested by the Workflow Management Coalition in the interchangeabil-
ity of process definitions has led to the definition of the XPDL language, a com-
monly acknowledged XML format for process definition. While XPDL effectively
enables the cross-product portability of process definitions, the language has not
been designed to also capture undesired behaviors that may arise during process
execution, i.e. exceptions. Nonetheless, exceptions—especially those that are pre-
dictable at process definition time—do have semantics that are not negligible.
Our investigation of exception handling mechanisms in workflow management
products has shown that a commonly accepted approach does not exist, and
that, hence, a proposal for an exception-specific XPDL extension would probably
not succeed. In this chapter, we describe our resulting idea of leveraging the
products’ very own extension mechanisms to enable cross-product exception
definitions. The proposed approach operates at the conceptual level, formalizes
exceptions in a fully XPDL-compliant fashion, and abstracts from product-specific
details until process execution. Along with the description of our approach, we
also discuss our experience with its effective portability across a few XPDL-
compliant commercial and open-source workflow management products.

1 INTRODUCTION
Workflow management systems (WfMSs) enable the automated management of
work that is typically executed by multiple roles (comprising both human actors
and software applications) and whose flow is modeled according to one of the ex-
plicit process definition formalisms that have been developed over the last years.
“Explicit” means that a process model expresses what is allowed or admissible
during the execution of the actual work; other activities can simply not be enacted
by the involved actors. All the semantics of the workflow are captured and suita-
bly expressed in the process definition by means of basic modeling constructs
such as tasks, roles, splits, joins, conditions, and so on.
Unfortunately, in general it is not easy—if not impossible—to explicitly capture all
possible situations that may happen during the execution of a given process.
Specifically, Eder and Liebhart [EL 1995] distinguish between exceptions and
failures, which they further specialize into: expected exceptions (e.g., the impossi-
bility to complete a payment activity), unexpected exceptions (e.g., the need to
change the process definition during runtime), basic failures (e.g., a system
crash), and application failures (e.g., a null pointer error). In addition to the model
of the expected behavior of a WfMS, it is thus also necessary to specify how the
system should react to the previous problems.
As failures are however out of the control of the WfMS, and unexpected excep-
tions cannot be predicted at process definition time, in this chapter we shall focus

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

2

on expected exceptions1, which can be considered part of the semantics of the
overall process definition. Expected exceptions indeed deal with events that de-
pend on the actual process in execution such as constraint violations over data
managed by the process, or the start/end of a task or of a case, or a temporal
deadline (e.g., for the completion of a task within a given timestamp), or an exter-
nal event (e.g., a phone call from a customer to cancel the car reservation in a car
rental company).
In order to successfully capture, manage, and execute exceptions, several efforts
have been performed. We mention here WIDE [CCPP 1999] and other exception
handling units [HA 2000], which are however tightly bundled inside the WfMSs
and the process definition formalisms they have been developed for. As a conse-
quence, there is no portability of exception specifications among different work-
flow management (WfM) products. The only way to obtain a portable and cross-
product implementation of exception handling features is to map them onto the
activity graphs.
In this chapter, we describe our experience with mapping exception handling fea-
tures onto process or activity graphs. As our goal is to provide a portable defini-
tion of such exception handling features, we have opted for XPDL as process defi-
nition formalism [MNN 2005], also to assess its real support by current WfM
products. The enriched process models we obtain from this mapping process still
comply with the recommendations of XPDL and should successfully execute in
XPDL-compliant WfMSs, provided that they enable a suitable customization of
the system—a feature that is supported at different levels by all of today’s WfMSs.
We checked the portability of a normal process (one without embedded exception
handling constructs) as well as that of the respective enriched process on some
WfMSs declared to be XPDL-compliant. So far, we have considered Enhydra
Shark, Bonita, Ascentn Agile Point, OBE, and WfMOpen, and results are interest-
ing.

2 A REFERENCE EXAMPLE
Throughout this chapter, we shall make use of a reference example to better ex-
plain our approach. Consider Figure 1, which describes the OrderManagement
process of a company trading in books called RareBook with very limited editions
and accepting orders by its customers via telephone; payments can be done by
credit card only.
After receiving an order, the Sales Office immediately checks the credit status of
the customer's credit card. In case of overdraft, the order is declined. Otherwise,
the Sales Office proceeds and checks the stock for the requested books. If all the
products are available, the customer is notified of the immediate shipment, and
the Production department provides for shipment. If, instead, not all the requested
products are available, the Sales Office informs the user and asks for the approval
of a delayed shipment. To accelerate the overall process, the Production depart-
ment plans the production of the missing items in parallel, regardless of the
user's decision, produces them and, if no cancellation is received, ships the com-
plete order.2

1 For simplicity, in the following we shall use the term exception to refer to the specific case of
expected exceptions.
2 Due to space restrictions, in this chapter we cannot exemplify the whole exception mapping
procedure. For a more detailed discussion, the interested reader is referred to [CDP 2006].

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

3

Receive
OrderStart Decline

Order End

Check
Stock

Notify
Shipment

Plan
Production Production Ship and

Report End

Sa
le

s
O

ffi
ce

Pr
od

uc
tio

n
Enough Credit?

yes

no

Products available?

Notify Delay &
Ask4Approval

Products available?

yes

no
Customer
approves?

Compensate
and Decline End

yes

no

Figure 1 The OrderManagement process of the RareBook online book shop
[CDP 2006].
For a better readability, in this chapter we shall use BPMN modeling constructs to
express XPDL processes and activities, instead of providing unexpressive snippets
of XPDL code. Tasks are represented as boxes, whose names describe the per-
formed activity. Transitions are represented as directed arcs to connect process
nodes, which, for routing purposes, may have associated a condition over work-
flow-relevant, application, or system data. Each process definition has one start
and one end task, depicted by thin or thick circles, respectively. Gateways are
represented as diamonds; condition gateways also have an associated textual
condition, while AND gateways are diamonds that contain a + symbol.

3 DEFINING EXCEPTIONS
Expected exceptions in WfMSs deal with events that may occur during the en-
actment of a case. In order to successfully complete the execution of a case that
has been affected by an exception, optional conditions may be tested and, possi-
bly, some actions can be performed. Typical performed actions include the activa-
tion of a specific task or of a new case, the roll-back or compensation of the tasks
already completed for that case, the re-assignment of a task to a new actor, etc.
Expected exceptions are generally classified according to their triggering event, i.e.
to the event that raises the exception. As in [CCPP 1999], triggering events are
classified as:

• Workflow events: events such as the start/end of a task/case may trigger
an exception;

• Data events: the insertion, deletion, or update of a value of a workflow
variable may trigger an exception, e.g., to monitor whether constraints de-
fined over that workflow variable are violated or not;

• Temporal events: the occurrence of a specified timestamp, as well as the
expiration of a deadline (e.g., for the completion of a task/case) or the pe-
riodic occurrence of timestamps (e.g., to perform a complete backup of the
archives every Monday morning at 3:30 a.m.) may trigger an exception
[CP 2004];

• External events: the occurrence of events raised by external applications
(e.g., if the water level inside a basin raises above a specified maximum
level) may trigger an exception which requires an intervention by the
WfMS.

Properly dealing with such kinds of exceptions typically requires that the process
execution continues with a deviation from the normal flow of execution, allowing

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

4

the WfMS to respond to the exception. The semantics of expected exceptions are
not negligible when specifying a new process definition.
While very few WfMSs come with a proper exception management unit, several
efforts have been performed in order to define tools and languages for exception
handling. As a reference, in our approach we consider the Chimera-Exception
language [CCPP 1999], which, although quite complex, enables one to define ex-
ception handling triggers that are able to manage several types of events and of
actions. The language reflects the above classification of events and provides an
adequate set of process-specific actions to deal with typical exceptions in WfMSs.
Also, the language is characterized by an adequate level of abstraction, i.e., it is
completely product-independent and remains at a conceptual level, and is thus
particularly suited as basis for our cross-product exception handling approach.
Referring to the example of the RareBook agency of Section 2, we consider here
the following Chimera-Exception trigger (CustomerCancel), which is activated
whenever a customer calls in to cancel his/her book order, causing the abnormal
interruption of a respective case of the process OrderManagement:

define trigger CustomerCancel for OrderManagement
 events modify(Cancel)
 condition OrderManagement(O),
 occurred(modify(Cancel),O),
 O.Cancel="Yes"
 actions startTask("CompensateAndDecline")
end

The meaning of the trigger CustomerCancel is as follows. The trigger is defined for
the OrderManagement process only, which means that the trigger is a so-called
process-specific trigger whose validity is confined to that specific process. The
trigger reacts to a data event over the workflow-relevant data field Cancel, which
is a process variable that is set to “No” as long as no cancellation has occurred;
we assume that in the moment a users calls in to cancel an order, Cancel gets set
to “Yes”. The condition first defines an object O of type OrderManagement, which
is used to identify the specific instance of OrderManagement in which the event
has occurred. Then, the condition checks whether the new value of the Cancel
variable equals “Yes”, in which case the trigger enacts its action; otherwise, no
action is performed. The action consists in the enactment of the task Compen-
sateAndDecline, which can be seen in Figure 1 and causes the cancellation of the
running case.3 In this example, a task already existing in the normal process
specification is enacted; it could be the case that an ad-hoc task has to be en-
acted, to be performed either by the exception handler or by another agent.

4 MAPPING EXCEPTIONS TO XPDL
The mapping of triggers like the previous CustomerCancel trigger from Chimera-
Exception to XPDL occurs along two orthogonal dimensions, one that is process-
independent and one that is process-dependent:

• The support for the basic expression evaluation and expression composi-
tion functions, as well as the support for the enactment of Chimera-

3 The full syntax of the Chimera-Exception language is out of the scope of this chapter, but
the interested reader is invited to read [CCPP 1999].

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

5

Exception’s set of workflow actions, requires the provisioning of a set of
basic sub-processes that can be reused across multiple process defini-
tions. These sub-processes form a library of basic exception handling fea-
tures, whose internal implementation typically varies from product to
product. Sub-processes are process-independent.

• The actual mapping of the exception handling logic, instead, is process-
dependent, as it requires intimate knowledge of the process structure in
order to be able to correctly expand the original process graph with excep-
tion handling constructs according to the nature of the trigger to be
mapped. The expansion of the process graph uses and combines basic
sub-processes into macros and patterns in order to achieve an expressive
power that is equivalent to the one of Chimera-Exception.

Due to the very tight interactions between the basic exception management con-
structs (the sub-processes) and the workflow engine of the host WfMS in order to
suitably capture events and to enact actions, the development of the library of
basic sub-processes typically requires intimate knowledge of the host WfMS. The
knowledge of a process designer who is skilled in using the host WfMS however
largely suffices to perform this task.
The mapping of the exception handling constructs onto the actual process graph
enables one to define and manage expected exceptions even in WfMSs which do
not feature an own exception management unit. According to the characteristics
of the considered exception (i.e., its triggering event, its synchronicity or asyn-
chronicity with respect to the normal flow of work, the number of process models
affected by the exception—to mention few of them), several mapping techniques
are required [CDP 2006].
In general, mapping events and actions into the process definition leads to less
efficient and sometimes hardly readable schemata. To alleviate process designers
from the inherent complexity of enriching existing process definitions with excep-
tion handling constructs by hand, we have developed a suitable compiler, which
enables the designer to model the plain process as usual, to specify the exceptions
to be handled in form of Chimera-Exception triggers, and to automatically compile
the trigger definition into the enriched process definition. Process designers, thus,
do not have to deal with the complexity of the enriched process graph. The en-
riched process definition produced by the compiler is still runnable by the host
WfMS, provided that the necessary sub-processes have been customized.
Figure 2 depicts the logic of how to obtain the enriched process definition. The
compiler requires in input the plain process definition in XPDL and a text file con-
taining the Chimera-Exception rules to be compiled. Starting from the developed
XPDL macros, patterns, and sub-processes, the compiler then enriches the plain
process definition with exception handling constructs by adding a proper excep-
tion handling swim lane into the process definition. After the compilation, an
optimizer prunes auxiliary nodes from the enriched process, which are required
during the compilation process. Finally, the whole mapping process produces in
output the enriched XPDL process definition and a report of the compila-
tion/optimization process.

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

6

Compiler Optimizer

Chimera-Exception
Rule Definition

XPDL
Process Definition

XPDL
Macros, Patterns, Subprocesses

Report

Enriched XPDL
Process Definition

Automated exception mapping process

Figure 2 Compiling Chimera-Exception rules into enriched XPDL process
definitions.
Let us now consider the example exception defined in Section 3. The exception is
asynchronous with respect to the actual process flow since its time of occurrence
cannot be known a priori: in fact, there is no relationship between the state of the
running case and the timestamp at which the customer calls in to cancel the or-
der. The exception is also process-specific, meaning that it relates to all the in-
stances of the schema OrderManagement, only.4 The only way of enriching a
process model, enabling it to manage asynchronous exceptions, is that of starting
immediately at case start time an exception handler that periodically checks for
the raising of the exception. If the exception occurs, it can be captured at periodi-
cal time instants, which enables the WfMS to properly react. The mapping of such
an asynchronous exception is performed by means of an additional swim lane,
i.e., Exc. Handler, which contains the necessary exception handling logic. The re-
sult of the compilation of the trigger from Section 3 into the process definition of
Figure 1 is shown in Figure 3.

Receive
OrderStart Decline

Order End

Check
Stock

Notify
Shipment

Plan
Production Production Ship and

Report End

Sa
le

s
O

ffi
ce

Pr
od

uc
tio

n

Enough Credit?

yes

no

Products available?

Notify Delay &
Ask4Approval

Products available?

yes

no
Customer
approves?

Compensate
and Decline End

yes

no

Ex
c.

 H
an

dl
er

Get
+

Wait
+

Cancel <> OldCancel? Cancel = “yes”?

no

yes yes

no

Figure 3 The original process model (see Figure 1) enriched with exception
handling constructs. The compilation process automatically added the
Exc. Handler swim lane.

4 Other exceptions may also be cross-process, meaning that they may affect instances of dif-
ferent schemata (e.g., when an agent leaves, he/she may be involved in the executions of sev-
eral cases from different process models, and all these cases will have no executing agent).

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

7

Let us analyze in detail the contents of the Exc. Handler lane. In order to check
whether the data event of the exception has occurred, the Get sub-process reads
the workflow variable named Cancel and stores its value in the temporary work-
flow variable OldCancel. The sub-process Wait then inserts a temporal delay D,
i.e., the temporal interval that must expire between two subsequent readings of
the same workflow variable to check for modifications. The actual comparison of
the two values of the Cancel variable is performed by the OR split “Cancel <> Old-
Cancel?”, which compares the current value of Cancel with its previous value
stored in OldCancel. The outgoing arc that goes back to the Get sub-process is
executed if the two values are the same, meaning that no change has been de-
tected; instead, the other outgoing arc that goes to the next OR split is executed if
a change in the workflow variable has been detected. This concludes the event
detection logic for the mapped trigger. The final OR split in the Exc. Handler lane
represents the mapping of the condition part of the trigger. It checks whether the
new value of Cancel is “Yes”, in which case the Compensate and Decline task is
executed (the action of the trigger); otherwise, the event detection logic continues
polling the Cancel variable.
The so enriched process definition (from Figure 1 to Figure 3) is now capable of
monitoring the occurrence of the data event modify(Cancel), of checking the re-
spective condition, and of enacting the Compensate and Decline task as required
by the trigger in Section 3. It is worth noting that choosing an adequate polling
interval to monitor the occurrence of data events is a critical task: in fact, too high
a value of D introduces an average detection delay of D/2, which can be critical
for some real-time applications; too small a value of D, even if reducing the detec-
tion delay, introduces an additional workload into the host WfMS. Fixing a suit-
able polling interval is thus a trade-off between the two considerations; a mean-
ingful value can be configured before starting the compilation process.

5 EXECUTING PROCESSES ON XPDL-COMPLIANT WFMSS
In order to validate our exception mapping methodology, we tried to execute both
the plain and the enriched process definitions on some XPDL-compliant WfMSs.
We considered only systems that declare to be capable of directly executing XPDL
process definitions or, however, of importing XPDL process definitions.5 More pre-
cisely, the website of the Workflow Management Coalition6 lists several WfMSs
with the required characteristics. Some of these WfMSs are open source and
available for free, while some others are not. Among the first ones, we chose and
performed our tests on Enhydra Shark (version 2.0), WfMOpen (version 2.1), Bo-
nita (version 3.0), and OBE - Open Business Engine (version 1.0); among the lat-
ter ones, we chose Ascentn Agile Point Server (version 4.01), which has been
kindly provided to us by the vendor.
In order to perform the tests over the five different WfMSs, we needed five sepa-
rate installations that could not interfere with each other. This was achieved by
installing each WfMS on a separate virtual machine: we used several VMware vir-
tual machines, one running Windows 2000 for Enhydra Shark, for OBE, and for
WfMOpen, one running Windows XP for Bonita, and one running Windows 2003
Server for Ascentn Agile Point (these were strong installation requirements by the
considered WfMSs). As our goal was to test the overall approach and the portabil-

5 In this chapter, we always refer to XPDL version 1.0. For an overview of XPDL versions, the
interested reader could refer to [Shapiro 2006].
6 http://www.wfmc.org/standards/xpdl.htm

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

8

ity of plain and enriched process definitions, we did not take into account the per-
formance of the different systems; this also justifies the use of virtual machines to
run the systems.
The OrderManagement process model of the RareBook agency described in Sec-
tion 2 has been modeled with the open source workflow editor Enhydra JAWE,
which allows the graphical editing of process definitions and supports XPDL as
native file format. According to its developers, JAWE does not make use of any
proprietary XPDL extensions and, hence, provides a fully compliant implementa-
tion of XPDL.
Very few changes (ideally no changes) were expected when porting the plain proc-
ess from one XPDL-compliant WfMS to another XPDL-compliant WfMS. On the
other hand, the porting of the enriched process was expected to require more ef-
forts, also due to the additional product-specific modules (macros, sub-processes)
that are required. The following considerations do not represent a thorough scien-
tific investigation, but rather represent a straight-forward experience report that
highlights the problems and difficulties that we have encountered during our first
test phase.
5.1 Implementation of Basic Sub-processes
One could expect that sub-processes (like Get and Wait in the considered exam-
ple) are defined once for all as XPDL library. Unfortunately, as their internal exe-
cution logic typically requires a tight integration with the WfMS, i.e. they are
WfMS-dependent, it is not possible to provide a universal library of exception
handling sub-processes. Therefore, for each of the systems considered, we im-
plemented a minimum set of sub-processes, in order to support a few tests and,
in particular, the example described in this chapter. We were able to provide a
small library of exception handling sub-processes with consistent interfaces
across the libraries for each of the systems.
5.2 Execution Tests
As a first proof of validity of the proposed approach, we only used Enhydra Shark.
We loaded the plain process model into Enhydra Shark and successfully run it.
Next we specified the exception of Section 3 in a text file, compiled it into the en-
riched process model of Figure 3, and successfully run it again, leveraging the
Shark-specific library of sub-processes. To our satisfaction, executing both ver-
sions of the process did not require any noteworthy interventions in the respective
process definitions.
The next tests dealt with porting the plain process model from Enhydra Shark to
the other WfMSs. We successfully imported the process model into WfMOpen and
back. When we tried to import the respective process model into OBE and Bonita,
we experienced some difficulties with both the WfMSs in reading the XPDL file
designed with Enhydra JAWE. Thus, we had to adjust the XPDL file and to
slightly redesign the plain process in both OBE and Bonita: main changes con-
cerned the translation between basic data types (enumerative, string etc.), date
formats (month/day/year, day/month/year), roles of agents. Subsequently, we
also experienced difficulties when importing the plain process into Ascentn Agile
Point, and we redesigned the process for Ascentn Agile Point: these importing dif-
ficulties relate to mismatching tags in the file format. To complete the test of port-
ing the plain process model across the chosen WfMSs, we tried to port each prod-
uct-specific process model to all the other WfMSs, but again in some cases re-
adjusting and partial redesigning were still needed.

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

9

At this point, we had four XPDL files (Enhydra Shark and WfMOpen shared the
same file), describing the same process model of Figure 3 but in four different
XPDL implementations. According to the mapping methodology described in Sec-
tion 4 and starting from the four different definitions of the plain process model,
we were however able to obtain four enriched process definitions that could be
executed on the five systems. However, in this case, we had to adjust the output
of the compiler according to the specific XPDL dialect, just as we had to adjust the
plain process definition in the first place. Nonetheless, the actual mapping of the
exception definitions from Chimera-Exception to the single XPDL dialects of the
chosen products works, and the resulting enriched processes execute correctly.
Due to the described difficulties, we are now considering to provide the rule com-
piler with suitable drivers (i.e., language customizers) for each of the encountered
XPDL dialects.

6 DISCUSSION AND OUTLOOK
In this chapter we described our experience with the automatic enrichment of
existing process definitions with inline exception handling constructs. Exceptions
are specified as triggers in Chimera-Exception, an event-condition-action lan-
guage developed in the context of the WIDE project [CCPP 1999]; process defini-
tions are formalized in XPDL. A suitable compiler enables the automated transla-
tion of exception definitions from Chimera-Exception into XPDL, and WfMSs are
equipped with a common library of supporting sub-processes, which provide for
the necessary execution support for enriched process definitions and enable the
actual portability of the proposed approach.
The results achieved so far with this cross-product exception handling approach
can be summarized as follows:

• The mapping technique is robust when moving from an XPDL process
definition to its enriched version;

• It is possible to provide product-specific implementations of the basic sub-
processes that are at the basis of the execution of enriched processes (at
least for the five WfMSs considered in this chapter);

• Enriched processes execute correctly and still have a good performance in
terms of usage of system resources and execution (till now, this is only a
subjective evaluation).

As the previous section has shown, we could however not achieve the initially ex-
pected level of portability among different XPDL-compliant WfMSs. While XPDL,
on the one hand, was the enabling factor that led us to conceive the described
approach, on the other hand, it is also its main limiting factor. Indeed, our “naive”
portability tests (just save/export and load/import tests) for both the plain and
the enriched version of a process definition revealed the existence of different dia-
lects of XPDL in the tested WfMSs, which prevent even generic process definitions
from really being portable among the systems.
In order for XPDL to succeed on the market of WfMSs, it seems thus of utmost
importance that vendors fully comply with the language specification proposed by
the Workflow Management Coalition, and that they avoid as much as possible the
use of proprietary XPDL extensions. It is not necessary that products use XPDL
as native file format, but—although this might prevent the optimal use of a given
system’s features—we believe the provided import and export functions should
concentrate on XPDL-compliant constructs, only. If a process designer wants to
use XPDL, he/she will be aware of and accept the possible limitations, but
he/she will also be sure that process definitions effectively are portable.

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

10

In this chapter, we informally described the difficulties we encountered in testing
our exception handling approach. In our future work, instead, we shall try to bet-
ter understand the nature of these difficulties so as to formalize them in a more
detailed manner and to be able to propose concrete solutions. Also, we intend to
systematically evaluate the execution performance of plain and enriched proc-
esses in terms of workload, robustness, and speed.

7 ACKNOWLEDGEMENTS
This work has been partially funded by the Department of Computer Science,
University of Verona and by the Department of Electronics and Information,
Politecnico di Milano.

8. REFERENCES
[CCPP 1999] Casati, F., Ceri, S., Paraboschi, S., & Pozzi, G. (1999). Specification
and Implementation of Exceptions in Workflow Management Systems. ACM
Transactions on Database Systems, 24(3), 405-451.
[CDP 2006] Combi, C., Daniel, F., & Pozzi, G. (2006). A Portable Approach to Ex-
ception Handling in Workflow Management Systems. In R. Meersman & Z. Tari
(Eds.), OTM Conferences (1), LNCS 4275 (pp. 201-218). Montpellier, France:
Springer Verlag.
[CP 2004] Combi, C., & Pozzi, G. (2004). Architectures for a Temporal Workflow
Management System. In H. Haddad, A. Omicini, R. L. Wainwright, & L. M. Lie-
brock (Eds.), Proceedings of SAC’04 (pp. 659-666). New York: ACM Press.
[EL 1995] Eder, J., & Liebhart, W. (1995). The Workflow Activity Model WAMO. In
Proceedings of CoopIS’95 (pp. 87-98).
[HA 2000] Hagen, C., & Alonso, G. (2000). Exception Handling in Workflow Man-
agement Systems, IEEE Transactions on Software Engineering, 26(10), 943-958.
[MNN 2005] Mendling, J., Nuemann, G., & Nuttgens, M. (2005), A Comparison of
XML Interchange Formats for Business process Modelling, Workflow Handbook
2005, Edited by Layna Fischer, Future Strategies Inc., Lighthouse Point, Florida.
[Shapiro 2006] Shapiro, R. M. (2006) XPDL 2.0: Integrating Process Interchange
and BPMN, Workflow Handbook 2006, Edited by Layna Fischer, Future Strate-
gies Inc., Lighthouse Point, Florida.

XPDL ENABLED CROSS-PRODUCT EXCEPTION HANDLING

11

BPMN modeling, 3
Chimera-Exception, 4

Mapping into XPDL, 6
Trigger, 4

Cross-product portability, 1

Exception Handling, 1
Expected exceptions, 3
XPDL, 1
XPDL dialect, 9

