
Active Rules for Runtime Adaptivity

Management

Florian Daniel, Maristella Matera, Alessandro Morandi, Matteo Mortari, and
Giuseppe Pozzi

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio 34/5, 20133 Milano, Italy

{daniel,matera,morandi,mortari,pozzi}@elet.polimi.it

Abstract. The trend over the last years clearly shows that modern Web
development is evolving from traditional, HTML-based Web sites to full-
fledged, complex Web applications, also equipped with active and/or
adaptive application features. While this evolution unavoidably implies
higher development costs and times, such implications are contrasted
by the dynamics of the modern Web, which demands for even faster
application development and evolution cycles.

In this paper we address the above problem by focusing on the case of
adaptive Web applications. We illustrate an ECA rule-based approach,
intended to facilitate the management and evolution of adaptive appli-
cation features. For this purpose, we stress the importance of decoupling
the active logic (i.e. the adaptivity rules) from the execution of the actual
application by means of a decoupled rule engine that is able to capture
events and to autonomously enact adaptivity actions.

1 Introduction

Adaptability (the design-time adaptation of an application to user preferences
and/or device characteristics [1]) and adaptivity (the runtime adaptation of an
application to a user profile or a context model [1]) have been studied in the last
years by several authors in the field of Web engineering. Adaptability is intended
as the capability of the design to fit an application to particular needs prior to
the execution of the application. Adaptivity is intended as autonomous capabil-
ity of the application to react and change in response to specific events occurring
during the execution of the application, so as to better suit dynamically chang-
ing execution conditions. Recently, adaptivity has been extended to the case of
context-aware Web applications [2], where adaptivity is based on a dynamically
updated context model, upon which the adaptive application is built.

As is the nature of the Web engineering discipline, the previous approaches to
adaptability, context-awareness and adaptivity primarily focus on the definition
of design processes to achieve adaptation, thereby providing efficient methods
and tools for the design of such a class of applications. For instance, model-driven
methods [1, 2], object-oriented approaches [3], aspect-oriented approaches [4],

and rule-based paradigms [5, 6] have been proposed for the specification of adap-
tation features in the development of adaptive Web applications. The resulting
specifications facilitate the implementation of the adaptation requirements and
may also enhance code coherence and readability. Unfortunately, in most cases
during the implementation phase all the formalizations of adaptivity require-
ments are lost, and the adaptivity features become buried in the application
code. This aspect implies that changes and evolutions of adaptive behaviors af-
ter the deployment of the application are difficult, unless a new version of the
application is implemented and released.

Based on our experience in the model-driven design of adaptive/context-
aware Web applications [2, 7], we are convinced that the next step in this research
area is to support the dynamic management of adaptivity features: on one hand
this will require proper design time support (e.g. languages or models), on the
other hand this will require suitable runtime environments where adaptivity
specifications can be easily administered.

In [8] we already outlined a first conceptual framework for this approach. We
now focus on the evolution of that work, describing a rule-based language (ECA-
Web) for the specification of adaptive behaviors, orthogonally to the application
design, and its concrete implementation. The resulting framework provides ap-
plication designers with the ECA-Web language and application administrators
with the possibility to easily manage ECA-Web rules (inserting, dropping, and
modifying rules), even after the implementation and the deployment of the ap-
plication, i.e. at runtime. As envisioned above, by the described approach we
enable the decoupled management of adaptivity features at both design- and
run-time.

This paper is organized as follows. Section 2 discusses some related works
on adaptivity in the Web. Section 3 introduces the ECA-Web rule language for
the specification of adaptive behaviors for Web applications and, then, shows
how ECA-Web rules can be executed by a proper rule engine and integrated
with the execution environment of the adaptive Web application. Section 4 dis-
cusses the prototype of an adaptive Web application supported by ECA-Web
rules and shows the usage of the active rule language. Section 5 describes the
implementation of the overall system and reports on first experiences with the
rule-based adaptivity specification and the runtime management of adaptivity
rules. Finally, Section 6 concludes the paper and discusses future work.

2 Related Work

Conceptual modeling methods provide systematic approaches to design and de-
ploy Web applications. Several well-established design methods have been so
far extended to deal with Web application adaptivity. In [1] the authors extend
the Hera methodology with two kinds of adaptation: adaptability with respect
to the user device and adaptivity based on user profile data. Adaptation rules
(and the Hera schemas) are expressed in RDF(S) (Resource Description Frame-
work/RDF Schema), attached to slices and executed by the AHA engine [9].

The UWA Consortium proposes WUML [10] for conceptual hypertext design.
Adaptation requirements are expressed by means of OCL-based customization
rules, referring to UML class or package elements. In [11] the authors present
an extension of WSDM [12] to cover the specification of adaptive behaviors.
In particular, an event-based Adaptive Specification Language (ASL) is de-
fined, which allows designers to express adaptations on the structure and the
navigation of the Web site. Such adaptations consist in transformations of the
navigation model, which can be applied to nodes (deleting/adding nodes), in-
formation chunks (connecting/disconnecting chunks to/form a node), and links
(adding/deleting links). In [4] the authors explore Aspect-Oriented Programming
techniques to model adaptivity in the context of the UML-based Web engineering
method UWE. Recently, WebML [13] has been extended to cover adaptivity and
context-awareness [2]. New visual primitives cover the specification of adaptivity
rules to evaluate conditions and to trigger some actions for adapting page con-
tents, navigation, hypertext structure, and presentation. Also, the data model
has been enriched to represent some meta data supporting adaptivity.

The previous works benefit from the adoption of conceptual models, which
provide designers with powerful means to reason at a high-level of abstraction,
independently of implementation details. However, the resulting specifications
of adaptivity rules have the limit of being embedded inside the design mod-
els, thus raising problems in the maintenance and evolution of the adaptivity
requirements, once the application is released.

Recently, active rules, based on the ECA (Event-Condition-Action) paradigm,
have been proposed as a way to solve the previous problem. Initially exploited
especially in fields such as content evolution and reactive Web [14–16], ECA rules
have been recently adopted to support adaptivity issues in Web applications. In
particular, the specification of decoupled adaptivity rules provides a way to de-
sign adaptive behaviors along an orthogonal dimension. Among the most recent
and notable proposals, the work described in [5] enriches the OO-H model with
personalization rules for profile groups: rules are defined in PRML (Personaliza-
tion Rule Modeling Language) and are attached to links in the OO-H Navigation
Access Diagram. The use of a PRML rule engine is envisioned in [6], but its real
potential for adaptivity management also at runtime remains unexplored.

In line with the previous work, the approach we describe here proposes a rule-
based language adopting the ECA paradigm. We call the language ECA-Web,
emphasizing that it is able to express events and actions that may occur in a Web
environment. Although the proposed language allows one to reference elements
of a conceptual specification of an application1, it is a self-sufficient language
for the specification of adaptivity rules. The novelty of our work is however the
development of a decoupled environment for the execution and administration of
adaptivity rules, which allows the management of adaptivity features to be kept
totally independent of the application execution. This aspect introduces several
advantages in terms of maintainability and evolvability.

1 In this paper we shall briefly show how the language can be bound to WebML [13].

<rule name="...">

 <scope>

...

 </scope>

 <events>

...

 </events>

 <conditions>

...

 </conditions>

 <action>

...

 </action>

 <priority>

...

 </priority>

</rule>

Optional binding of the rule to hypertext elements. If no

scope is defined, the rule is considered of global scope

and thus applied to all hypertext pages.

Mandatory specification of the events that trigger the

rule (Web events, data events, temporal events and

external events).

Optional condition to check the status of session

variables or database content.

Mandatory action to be enacted to adapt the application

in response to the event that triggered the rule.

Optional priority to resolve conflicts among

concurrently actived rules over the same scope.

Fig. 1. Structure of ECA-Web rules.

3 Enabling Dynamic Adaptivity Management

In the following we introduce the design component (the ECA-Web language)
and the runtime component (the rule execution environment) that enable the
dynamic administration of adaptivity features.

3.1 ECA-Web

ECA-Web is an XML-based language for the specification of active rules, con-
ceived to manage adaptivity in Web applications. The syntax of the language
is inspired by Chimera-Exception, an active rule language for the specification
of expected exceptions in workflow management systems [17]. ECA-Web is an
evolution of the Chimera-Web language we already proposed in [8], and it is
equipped with a proper rule engine for rule evaluation and execution.

The general structure of an ECA-Web rule is summarized in Figure 1. A typ-
ical ECA-Web rule is composed of five parts: scope, events, conditions, action
and priority. The scope defines the binding of the rule with individual hypertext
elements (e.g. pages, links, contents inside pages). By means of events we spec-
ify how the rule is triggered in response to user navigations or changes in the
underlying context model. In the condition part it is possible to evaluate the
state of application data (e.g. database contents or session variables) to decide
whether the action is to be executed or not. The action specifies the adaptation
of the application in response to a triggered event and a true condition. The pri-

ority defines an execution order for rules concurrently activated over the same
scope; if not specified, a default priority value is assigned. More details on the
rule specification by means of ECA-Web are given in the next section, where
we discuss the architecture of the runtime environment for rule execution. An
example of ECA-Web rule will then be shown in Section 4.

Rule Engine

Message

Oriented
Middleware

Rule EngineRule EngineRule Evaluator Rule Registry

Data

Event
Manager

Data

Action
Enactor

D
B

M
S

External

Action
Enactor

External
Event

Manager

Temporal

Event
Manager

Web Server

Web

Web

Event
Manager

Web
Action

Enactor

 Web App.

Services

API

Rule Repository

Rule
Administration

Panel

Fig. 2. Functional architecture of the integrated execution environment for adaptive
Web applications.

3.2 The Integrated Runtime Architecture

The execution of ECA-Web rules demands for a proper runtime support. Figure 2
summarizes the functional architecture of the system, highlighting the two main
actors: the Rule Engine and the Web Server hosting the Web application. The
Rule Engine is equipped with a set of Event Managers to capture events, and a
set of Action Enactors to enable the execution of actions. The communications
among the single modules are achieved through asynchronous message exchanges
(Message-Oriented Middleware).

Event Managers. Each type of ECA-Web event is supported by a suitable
event manager (i.e., Web Event Manager, Data Event Manager, Temporal Event

Manager, and External Event Manager). As in [8], event managers and ECA-
Web provide support for the following event types:

– Data events refer to operations on the application’s data source, such as
create, modify, and delete. In adaptive Web applications, such events can
be monitored on user, customization, and context data to trigger adaptiv-
ity actions with respect to users and their context of use. Data events are

managed by the Data Event Manager, which runs on top of the application’s
data source.

– Web events refer to general browsing activities (e.g. the access to a page, the
submission of a form, the refresh of a page, the download of a resource), or
to events generated by the Web application itself (e.g. the start or end of an
operation, a login or logout of the user). Web events are risen in collaboration
with the Web application and captured by the Web Event Manager. Since
adaptivity actions are typically performed for each user individually, Web
events are also provided with a suitable user identifier (if any).

– External events can be configured by a dedicated plug-in mechanism in form
of a Web service that can be called by whatever application or resource from
the Web. An external event could be for example a notification of news fed
into the application via RSS. When an external event occurs, the name of the
triggering event and suitable parameters are forwarded to the rule engine.
External events are captured by means of the External Event Manager.

– Temporal events are subdivided into instant, periodic, and interval events.
Interval events are particularly powerful, since they allow the binding of a
time interval to another event (anchor event). For example, the expression
“five minutes after the access to page X” represents a temporal event that
is raised after the expiration of 5 minutes from the anchor event “access to
page X”. Temporal events are managed by the Temporal Event Manager,
based on interrupts and the system clock.

The managers for external and temporal events are general in nature and
easily reusable. The Data Event Manager is database-dependent2. The Web

Event Manager requires a tight integration with the Web application.

Action Enactors. Actions correspond to modifications to the Web application
or to executions of back-end operations. Typical adaptation actions are: adap-
tation of page contents, automatic navigation actions, adaptation/restructuring
of the hypertext structure, adaptation of presentation properties, automatic in-
vocation of operations or services. Adaptations are performed according to the
user’s profile or his/her context data.

While some actions can easily be implemented without any explicit support
from the Web application (e.g. the adaptation of page contents may just require
the setting of suitable page parameters when accessing the page), others may
require a tighter integration into the application’s runtime environment (e.g. the
restructuring of the hypertext organization). The level of application support
required for the implementation of the adaptivity actions thus heavily depends
on the actual adaptivity requirements. However, application-specific actions can
easily be integrated into the ECA-Web rule logic and do not require the extension
of the syntax of the rule language (an example of the use of actions is shown in
Figure 7).

2 In our current implementation we support PostgreSQL. Modules for other database
management systems are planned for future releases.

Rule Engine

Message
Oriented

Middleware

Rule EngineRule EngineRule Evaluator Rule Registry

7: Action

1: Event
2: Event 3: Get rule(s)

by event

4: Rule(s) by priority

5: Condition evaluation

6: Action

Fig. 3. The rule engine: internal rule execution logic.

As depicted in Figure 2, the execution of adaptivity actions is performed by
means of three action enactors: Web Action Enactor, External Action Enactor,
and Data Action Enactor. Web actions need to be provided by the application
developer in terms of Java classes; they are performed by the Web Action En-

actor, which is integrated into the application runtime environment, in order to
guarantee access to the application logic. External actions are enacted through
a dedicated Web service interface. Data actions are performed on the database
that hosts the application’s data source.

The enactor for external actions is general in nature and easily reusable,
the Data Action Enactor is database-dependent, the Web Action Enactor is
integrated with the Web application.

Rule Engine. In the architecture depicted in Figure 2, the Rule Engine is in
charge of identifying the ECA-Web rules that correspond to captured events,
of evaluating conditions, and of invoking action enactors – in case of conditions
evaluating to true.

In the rule engine, a scalable, multithreaded Rule Evaluator evaluates condi-
tions to determine whether the rule’s action is to be performed or not, depending
on the current state of the application. In ECA-Web, conditions consist of pred-
icates over context data, application data, global session variables, and/or page
parameters. For example, in the condition part of an ECA-Web rule it is possible
to specify parametric queries over the application’s data source, where parame-
ters can be filled with values coming from session variables or page parameters.

The rule engine also includes a Rule Registry for the management of running,
deployed ECA-Web rules. Deployed rules are loaded into the Rule Registry, a
look-up table for the efficient retrieval of running rules, starting from captured
events. The internal execution logic of a triggered rule is graphically summarized
in Figure 3.

3.3 ECA-Web Rule Management

While the Rule Registry contains only deployed rules for execution, the Rule

Repository offers support for the persistent storage of rules. For the management

Fig. 4. The Web interface for the Rule Administration Panel.

of both Rule Registry and Rule Repository, we provide a Rule Administration

Panel that allows designers to easily view, add, remove, activate, and deactivate
rules. Figure 4 shows a screenshot of the Rule Administration Panel.

3.4 Deploying ECA-Web Rules

Activating or deploying an ECA-Web rule is not a trivial task and, depending
on the rule specification, may require to set up a different number of modules.
During the deployment of an ECA-Web rule, the XML representation of the rule
is decomposed into its constituent parts, i.e. scope, events, conditions, action,
and priority, which are then individually analyzed to configure the system. The
scope is used to configure the Web Event Manager and the Web Action Enactor.
The events are interpreted to configure the respective event managers and to set
suitable triggers in the application’s data source. The conditions are transformed
into executable, parametric queries in the Rule Registry. The action specification
and the rule’s priority are as well fed into the Rule Registry. Each active rule in
the system is thus represented by an instance in the Rule Registry, (possibly) by
a set of data triggers in the database, and by a set of configurations of the event
managers and the action enactors.

The registry allows the concurrent access by multiple Rule Evaluators. Pri-
orities are taken into account in the action enactor modules, which select the
action to be performed for the page under computation (the scope) from the
queue of possible actions, based on rule priorities.

During the deployment of an ECA-Web rule, conflict resolution and ter-
mination analyses will be performed in line with the methods conceived and
implemented for the Chimera-Exception language [17].

3.5 Enacting Adaptivity

External and data actions can be executed immediately upon reception of the
respective instruction from the rule engine. The enaction of Web actions, which
are characterized by adaptations visible on the user’s browser, is possible only
when a “request for adaptation” (a page request) comes from the browser. In
fact, only in presence of an explicit page request, the Web application is actually
in execution and, thus, capable to apply adaptations. This is due to the lack of
suitable push mechanisms in the standard HTTP protocol.

In order to provide the application with active/reactive behaviors, in our
previous works we therefore studied two possible solutions: (i) periodically re-

freshing the adaptive page currently viewed by the user [2], and (ii) periodically
monitoring the execution context in the background (e.g. by means of suitable
Rich Internet Application – RIA – technologies) and refreshing the adaptive page
only in the case adaptivity actions are to be performed [7, 8]. Both mechanisms
are compatible with the new rule-based architecture and enable the application
to apply possible adaptivity actions that have been forwarded to the Web Action

Enactor by the Rule Engine.

4 Case Study

In the context of the Italian research project MAIS3 we have developed a context-
aware Web application, called PoliTour, supplying information about buildings
and roads within our university campus at Politecnico di Milano. The application
is accessed through a PDA equipped with a GPS receiver for location sensing.
User positioning is based on geographical longitude and latitude. As the user
moves around the campus, the application publishes location-aware data, pro-
viding details about roads and buildings. The required adaptivity consists of (i)
adapting page contents according to the user’s position, and (ii) alerting the
user of possible low connectivity conditions, based on the RSSI (Received Signal
Strength Indicator) value of the wireless Internet connection. The alert consists
in changing the background color of the displayed page.

The application has been designed with the WebML model, a visual notation
for specifying the content, composition, and navigation features of hypertext
applications [13]. In this paper we use the WebML notation for two distinct
purposes: (i) to easily and intuitively describe the reference application, and
(ii) to better highlight how the active rules introduced in the next section may
take advantage from a formally defined, conceptual application model for the
definition of expressive adaptivity rules. The approach we propose in this paper,

3 http://www.mais-project.it

Position

Longitude
Latitude

Connectivity

Level
MinRSSI
MaxRSSI

Area

MinLongitude
MaxLongitude
MinLatitude
MaxLatitude

Context Model sub-schema

User

UserName
Password
EMail

0:1

0:1

1:N

1:N Road

Name
Description

Building

Name
Description
Image

Classroom

Name
Description

0:N

1:1

0:1 0:1

1:11:1

Fig. 5. ER data schema of the PoliTour application.

however, is not tightly coupled to WebML and can be used in the context of any
modeling methodology upon suitable adaptation.

It is worth noting that the approach based on ECA-Web described in this
paper is not to be considered an alternative solution to the conceptual design ap-
proaches so far proposed in the literature for Web application modeling. Rather,
we believe that the best expressiveness and a good level of abstraction for the
illustrated adaptivity specification language will be achieved by complementing

the current modeling and design methods (such as WebML, Hera, OO-H or
OOHDM). In fact, in this paper we hint at the specification of ECA-Web rules
on top of WebML (both data and hypertext models), just like SQL triggers are
defined on top of relational data models. This consideration is in line with the
proposal by Garrigós et. al [6], who show how to apply their PRML rule language
to several different conceptual Web application models.

The conceptual model of the application serves as terminological and struc-
tural reference model for the specification of adaptivity rules and, thus, allows
application developers to keep the same level of abstraction and concepts already
used for the design of the main application. In terms of WebML, for example,
this could mean to restrict the scope of individual rules to specific hypertext
elements like content units, pages, or areas, or to relate events to specific links or
units. The same holds for actions, which could for example be applied to single
units or even attributes.

4.1 Application Design with WebML

Figure 5 depicts a simplified version of the data schema underlying the PoliTour
application, expressed in the Entity-Relationship (ER) notation. Five entities
compose the context model, which is required in addition to the user identity to
achieve the context-aware features of the application. The entities Connectivity
and Position are directly connected to the entity User, as they represent con-
text data which are individual for each user of the system. Position contains
the latest GPS coordinates for each user, Connectivity contains a set of dis-
crete connectivity levels that can be associated to users, based on their current
RSSI. GPS coordinates and RSSI are sensed at the client side and periodically

PoliTour

Buildings

Building

BuildingData

Classroom

Classroom

ClassroomData

ClassroomsIndex

Classroom
[Building2Classroom]

BuildingsIndex

Building

Roads

Road

RoadDataNearby Buildings

Building
[Road2Building]

RoadsIndex

Road L

L

H

Fig. 6. Simplified hypertext model of the PoliTour application. H stands for Home page;
L stands for Landmark page.

communicated to the application server in the background [7]. The entities Area,
Building, and Road provide a logical abstraction of raw position data: build-
ings and roads are mapped onto a set of geographical areas inside the university
campus, which enables the association of a user with the building or road he/she
is located in, based on the GPS position. The entity Classroom is located out-
side the context model, as the application is not able to react to that kind of
granularity, and the respective data is considered additional application content.

Figure 6 depicts the WebML-based hypertext schema of the PoliTour ap-
plication defined on top of the ER schema shown in Figure 5. The application
hypertext is composed of three pages: Buildings, Roads, and Classroom. Page
Buildings shows a list of buildings (BuildingsIndex unit) the user can select
from. By choosing one of the buildings, the respective details (BuildingData
unit) and the list of classrooms (ClassroomsIndex unit) of the building is shown.
If interested in, the user can select one of the building’s classrooms and navigate
to the Classroom page. Similarly, page Roads shows a list of roads for selection
by the user. The details of selected roads are shown by the RoadData unit po-
sitioned in the middle of the page. The identifier of the selected road is further
propagated to the NearbyBuildings unit, which shows the buildings adjacent
to the road and allows the user to navigate to the Buildings page. The two
pages Buildings and Roads are further tagged as landmark pages, meaning
that they can be accessed through a global navigation menu. Page Buildings is
also tagged as the home page of the application.

<rule name="showBuilding">

 <scope>

 <page>/politour/building.jsp</page>

 </scope>

 <events>

 <event>

 <class>bellerofonte.events.DataEvent</class>

 <params>

 <param name="type">modify</param>

 <param name="table">Position</param>

 <param name="attr">latitude</param>

 </params>

 </event>

 ...

 </events>

 <conditions>

 <object>

 <name>P</name>

 <type>Position</type>

 <requirements>

 <eq><value>user_id</value><value>Rule.currentUser</value></eq>

 </requirements>

 </object>

 <object>

 <name>A</name>

 <type>Area</type>

 <requirements>

 <lt><value>MinLatitude</value><value>P.Latitude</value></lt>

 <gt><value>MaxLatitude</value><value>P.Latitude</value></gt>

 <lt><value>MinLongitude</value><value>P.Longitude</value></lt>

 <gt><value>MaxLongitude</value><value>P.Longitude</value></gt>

 </requirements>

 </object>

 <notnull>

 <value>A.building_oid</value>

 </notnull>

 </conditions>

 <action>

 <class>bellerofonte.actions.Showpage</class>

 <params>

 <param name="redirectURI">building.jsp?id=<value>building_oid</value></param>

 </params>

 </action>

</rule>

Binding of the rule to the Building page

The rule may be triggered by two data events,

i.e. the modification of the current user’s latitude

or longitude. For presentation purposes, we only

show the event related to the latitude parameter.

The specification of the rule’s

condition requires the definition of two

data objects for the construction of the

database query: the first one (P)

extracts the current user’s position by

means of the Rule.currentUser

environment variable; the second one

(A) extracts the area associated to the

user’s current position. Finally, the

<notnull> condition allows us to check

the presence of a building in the

identified area.

The adaptation of the page

contents requires the invocation

of the Showpage action with

suitable parameters computed

at runtime.

Fig. 7. The ECA-Web rule for checking the user’s current position and updating page
contents.

4.2 Defining an ECA-Web Rule

The full specification of the application’s adaptivity requires several different
ECA-Web rules to manage the adaptation of the contents in the pages Buildings
and Roads, and to alert the user of low connectivity conditions. Figure 7 shows
the ECA-Web rules that adapts the content of the page Buildings to the posi-
tion of the user inside the university campus.

The scope of the rule binds the rule to the Buildings page. The triggering
part of the rule consists of two data events, one monitoring modifications to the
user’s longitude parameter, one monitoring the user’s latitude parameter.
In the condition part of the rule we check whether there is a suitable building
associated to the user’s current position (<notnull> condition), in which case
we enact the Showpage adaptivity action with new page parameters, suitably
computed at runtime; otherwise, no action is performed. The condition evalua-

tion requires the extraction from the data source of two data items (<object>),
namely the position of the current user and the area in which the user is lo-
cated. The selection condition is enclosed within the <requirements> tag. In
the action part of the rule we link the bellerofonte.actions.Showpage4 Java
class, which contains the necessary logic for the content adaptation action. The
variable building oid has been computed in the condition part of the rule and
is here used to construct the URL query to be attached to the automatic page
request that will cause the re-computation of the page and, thus, the adaptation
of the shown content.

It is worth noting that the scope of the previous rule is limited to one specific
hypertext page. There might be situations requiring a larger scope. For example,
the rule for alerting users about low connectivity is characterized by a scope that
spans all the application’s pages; in terms of WebML, binding an ECA-Web rule
to all pages means to set the scope of the rule to the site view, i.e. a model
element (see site view PoliTour in Figure 6). The scope of the rule is specified
as follows:

<scope>

<siteview>PoliTour</siteview>

</scope>

As for the dynamic management of adaptivity rules, we could for example
be interested in testing the two adaptivity features (location-aware contents and
the low connectivity alert) independently. We would thus first only deploy the
rule(s) necessary to update the contents of the Buildings and Roads pages and
test their functionality without also enabling the alert. Then we could disable
this set of rules and enable the rule for the alert and test it. If both tests are
successful, we finally could enable both adaptivity features in parallel and test
their concurrent execution.

5 Implementation

The proposed solution has been developed with scalability and efficiency in mind.
The Web application and the rule engine are completely decoupled, and all com-
munications are based on asynchronous message exchanges based on JMS (Java
Message Service). The different modules of the proposed system can easily be
distributed over several server machines. The overhead introduced into the Web
application is reduced to a minimum and only consists of (i) forwarding Web
events and (ii) executing adaptivity actions. These two activities in fact require
access to the application logic. In fact, depending on the required adaptivity
support, event mangers and action enactors may require different levels of cus-
tomization by the Web application developer. The customization consists in the
implementation of the application-specific events and of the actions that are to
be supported by the adaptive application.

4 Bellerofonte is the current code name of the rule engine project.

To perform our first experiments with ECA-Web and the rule engine, we have
adapted the PoliTour application, which we already extensively tested when de-
veloping our model-driven approach to the design of context-aware Web appli-
cations [7]. As for now, our experiments with a limited number of rules have
yielded promising results. Experimentations with larger numbers of active rules,
different adaptive Web applications, and several users in parallel are planned.

Also, to really be able to take full advantage of the flexibility provided by
the decoupled adaptivity rule management, a set of suitable adaptivity actions
needs to be implemented. Our current implementation provides support for data
actions and a limited set of Web actions (namely, ShowPage for adapting page
contents, and ChangeStyle for adapting presentation style properties). Data ac-
tions are currently applied only to entities and attributes that are directly related
to the user for which the action is being executed. Also, condition evaluation is
automatically confined to those context entities and attributes that are related
to the user for which the rule is being evaluated. We are already working on
extending condition evaluation to any application data, coming from the data
source as well as from page and session parameters.

In the context of WebML, the provision of a set of predefined adaptivity
actions will lead to a library of adaptivity actions, possibly integrated into the
WebML runtime environment. In the case of general Web applications, the rule
engine can be used in the same fashion and with the same flexibility, provided
that implementations of the required adaptivity actions are supplied.

6 Conclusions

We believe that the decoupled runtime management of adaptivity features rep-
resents the next step in the area of adaptive Web applications. In this paper
we have therefore shown how to empower design methods for adaptivity with
the flexibility provided by a decoupled environment for the execution and the
administration of adaptivity rules. The development of Web applications in gen-
eral is more and more based on fast and incremental deployments with multiple
development cycles. The same consideration also holds for adaptive Web appli-
cations and their adaptivity requirements. Our approach allows us to abstract
the adaptive behaviors, to extract them from the main application logic, and to
provide a decoupled management support, finally enhancing the maintainability
and evolvability of the overall application.

In our future work we shall focus on the extension of the ECA-Web language
to fully take advantage of the concepts and notations that can be extracted
from conceptual Web application models (e.g. from WebML models). We shall
also investigate termination, complexity, and confluence issues, trying to apply
Chimera-Exception’s Termination Analysis Machine [17] to ECA-Web. Exten-
sive experimentations are planned to further prove the advantages deriving from
the decoupled approach.

References

1. Frasincar, F., Houben, G.J.: Hypermedia Presentation Adaptation on the Semantic
Web. In: Proceedings of AH’02, Málaga, Spain, Springer (2002) 133–142

2. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven Development of
Context-Aware Web Applications. ACM TOIT 7 (2007)

3. Schwabe, D., Guimaraes, R., Rossi, G.: Cohesive Design of Personalized Web
Applications. IEEE Internet Computing 6 (2002) 34–43

4. Baumeister, H., Knapp, A., Koch, N., Zang, G.: Modeling Adaptivity with Aspects.
In Lowe, D., Gaedke, M., eds.: Proceedings of ICWE’05, Sydney, Australia. Volume
3579 of LNCS, Springer-Verlag Berlin Heidelberg (2005) 406–416

5. Garrigós, I., Casteleyn, S., Gómez, J.: A Structured Approach to Personalize Web-
sites Using the OO-H Personalization Framework. In: Web Technologies Research
and Development - APWeb 2005. Volume 3399/2005 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg (2005) 695–706

6. Garrigós, I., Gómez, J., Barna, P., Houben, G.J.: A Reusable Personalization
Model in Web Application Design. In: Proceedings of WISM’05, Sydney, Australia,
University of Wollongong, School of IT and Computer Science (2005) 40–49

7. Ceri, S., Daniel, F., Facca, F.M., Matera, M.: Model-Driven Engineering of Active
Context-Awareness. To appear in the World Wide Web Journal, Springer (2007)

8. Daniel, F., Matera, M., Pozzi, G.: Combining Conceptual Modeling and Active
Rules for the Design of Adaptive Web Applications. In: Workshop Proceedings of
ICWE’06, New York, NY, USA, ACM Press (2006) 10

9. De Bra, P., Aerts, A., Berden, B., de Lange, B., Rousseau, B., Santic, T., Smits,
D., Stash, N.: AHA! The Adaptive Hypermedia Architecture. In: Proceedings of
HYPERTEXT’03, (2003) 81–84

10. Kappel, G., Pröll, B., Retschitzegger, W., Schwinger, W.: Modelling Ubiquitous
Web Applications - The WUML Approach. In: Revised Papers from the HUMACS,
DASWIS, ECOMO, and DAMA on ER 2001 Workshops, London, UK, Springer-
Verlag (2002) 183–197

11. Casteleyn, S., De Troyer, O., Brockmans, S.: Design time support for adaptive
behavior in Web sites. In: Proceedings of SAC’03, New York, NY, USA, ACM
Press (2003) 1222–1228

12. Troyer, O.D., Leune, C.J.: WSDM: A user centered design method for Web sites.
Computer Networks 30 (1998) 85–94

13. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications. Morgan Kauffmann (2002)

14. Alferes, J.J., Amador, R., May, W.: A general language for evolution and reactivity
in the semantic web. In: Principles and Practice of Semantic Web Reasoning.
Volume 3703 of LNCS, Springer Verlag (2005) 101–115

15. Bonifati, A., Braga, D., Campi, A., Ceri, S.: Active XQuery. In: Proceedings of
ICDE?02, San Jose, California. (2002)

16. Bailey, J., Poulovassilis, A., Wood, P.T.: An Event-Condition-Action Language for
XML. In: Proceedings of WWW?02, Hawaii. (2002) 486–495

17. Casati, F., Ceri, S., Paraboschi, S., Pozzi, G.: Specification and implementation of
exceptions in workflow management systems. ACM TODS 24 (1999) 405–451

