
Context-Aware Access to Heterogeneous
Resources through on-the-fly Mashups?

Florian Daniel, Maristella Matera, Elisa Quintarelli, Letizia Tanca, and
Vittorio Zaccaria

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria
{florian.daniel,maristella.matera,elisa.quintarelli,letizia.tanca,

vittorio.zaccaria}@polimi.it

Abstract. Current scenarios for app development are characterized by
resources so rich that often overwhelm the final users, especially in mobile
app usage situations. It is therefore important to define design methods
that enable dynamic filtering of the pertinent resources and appropriate
tailoring of the retrieved content. This paper presents a design frame-
work based on the specification of the possible contexts deemed relevant
to a given application domain and on their mapping onto an integrated
schema of the resources underlying the app. The context and the inte-
grated schema enable the instantiation at runtime of templates of app
pages in function of the context characterizing the user’s current situa-
tion of use.

Keywords: Context-aware data access, service selection, mashups, CA-
MUS

1 Introduction

In the last decades, the pervasive introduction of ICT technologies in our society
has changed the way people access information. Traditional data management
systems have left the place to sophisticated data integration systems that com-
bine and expose rich information extracted from all kinds of sources and make
it available through different media devices. Also, users have changed their at-
titudes and behavior and are now “digital” and “social”, independently of their
current usage situation and device. Yet, this flexibility does not come at a low
price, as finding information that is most suitable to the users’ current context
may require a significant time and effort, especially if the used software does not
leverage on the users’ context [15].

As highlighted in [13], in order to facilitate the development of software (for
any kind of device) that is able to take into account the user’s context, it is
important to define design methods that natively support the dynamic selection
and filtering of pertinent resources and the consequent tailoring of retrieved

? This research is supported by the IT2Rail project (EU H2020 program, grant agree-
ment no: 636078) and the Italian project SHELL (CTN01 00128 111357)

2 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

data. Treating the dimensions characterizing the context of use as first-class
design artifacts can enable context-awareness [15] in the data access layer and
can guide the definition of context-aware queries over available heterogeneous
resources.

To respond to the need for a development method with native support for
context-awareness, this paper presents a design framework for the fast devel-
opment of apps that revolves around (i) the explicit specification of the context
dimensions deemed relevant in a given application domain and (ii) their mapping
onto an integrated schema of the available resources. The scenarios we support
have all the ingredients of data mashups or service compositions. However, dif-
ferently from conventional mashup approaches, our mashups do not produce
stand-alone applications, but serve as small, on-the-fly data integrations to be
embedded into generic applications that require the fetching of data from het-
erogeneous resources. These “mini mashups” are formulated as context-agnostic
queries, automatically turned into context-aware queries by the framework.

Running Example. To illustrate our method, we make use of a tourism scenario
where an app personalizes the provided contents on the basis of the traveler
contexts (e.g., current location and time, possible disabilities, user’s preferences
about topics and means of transportation). The app gathers contents about
restaurants, hotels and itineraries from different resources, i.e., Web APIs and
datasets that may be public or made available by the service provider who offers
the app. In the scenario, local, proprietary data are, for instance, user profiles,
buying histories, or similar core assets of the application to be developed. We
in particular assume that data about affiliated hotels and discounts are stored
in a local database table (Hotel). As for remote sources, we assume the app
leverages on two external services for the calculation of itineraries (ItinSvc1
and ItinSvc2) and on one service to search for restaurants (ResSvc). As there
may be multiple providers offering similar services, a service selection at runtime
may be needed – again, taking into account the user’s context.

Paper structure. We next introduce the concepts and artifacts of the proposed
method; then, in Section 3, we go into the details of the Resource Schema, the
Context Dimension Tree, and context-agnostic and -aware queries. Next we show
how to interpret and execute queries and discuss an implementation in GraphQL
(Section 4). Before closing we discuss related works.

2 Approach

We model context dimensions using the Context Dimension Model (CDM) [3],
a specific abstract representation that, on the side of the model of the non-
contextual features, provides an intuitive way to visually depict context informa-
tion and the conceptual relationships that exist among the properties of context
in a given scenario. The approach is in line with the idea of using two separate
feature models for contextual and non-contextual requirements discussed in [13].
We propose the use of the CDM in the development of context-aware applications

Modeling Context-Aware Access to Heterogeneous Resources 3

D1

D3

D2

R1

R3

R2

S1
S3

S2

Service registry
(descriptors)Data schema

Resource schema

Local
database External

web services

CDT instance

Mapping

App views

Query

Query
rewritingContext

Dimension
Tree (CDT)

1 2

3

4

5

7
6

Fig. 1. Overview of approach to the development of context-aware, mobile apps starting
from internal data sources, external services and a Context Dimension Tree.

to achieve two goals: (i) the concise and human- and machine-readable represen-
tation of all context dimensions and properties relevant to a given development
scenario and (ii) the simplification of the development of context-aware applica-
tion features. The approach turns the specification of all the possible contexts
of the considered scenario into a first-class development artifact that not only
serves a documentation purpose but also an operational one. The context di-
mensions themselves can be aggregated into categories: information on the user
(knowledge of habits, emotional state, physiological conditions), user’s social
environment (co-location of others, social interaction, current tasks), physical
environment (location, time, and physical conditions like noise, light, pressure,
air quality). The dimensions in the latter category can be automatically derived
by means of appropriate sensors, while the previous ones may require direct user
input or suitable default settings.

Figure 1 illustrates the resulting method and development steps. The process
starts from the identification and description of the available resources, which
can be both local data sources ¬, for example relational data bases, or third-
party Web services represented by their service descriptors ­. An integrated
schema of the available data is then defined, so as to present the developer with
one abstract model of the data only. We call this schema the resource schema ®,
and we express it as a relational model. The resource schema is generally defined
manually, but it could be generated automatically depending on the regularity
of the schema of the selected resources. The resource schema is accompanied by

4 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

a CDT (defined in the next section) that captures all the execution contexts the
application may run in ¯. Each node of the CDT is mapped to the resource
schema (e.g., by means of views expressed in relational algebra), in order to
support automatic query rewriting at runtime.

The next step is the design of the queries that will feed the pages of the final
application, e.g., the pages in a mobile app that allow the user to access and
interact with the content °. The resource schema focuses on the integration of
data, independently of their use, and is thus context-agnostic. It is the CDT
that defines which of the elements in the resource schema are related to context
in the given application domain.The queries expressed over the resource schema
are thus context-agnostic too. Neglecting context properties in this phase allows
the developer to focus on the core functionality of the application, deferring
adaptation concerns. The queries are typically written manually; without loss of
generality, we express them in relational algebra.

At runtime, the CDT can be instantiated with concrete values coming from
the context sensors (sensing devices, user inputs, external sources) ±. That is, the
runtime environment of the application automatically updates the tree with con-
text information to characterize the usage scenario the user is currently involved
in. The availability of a CDT instance enables the derivation of context-aware
queries from the context-agnostic queries, by suitably enriching them with con-
text information ². This step can be performed fully automatically, e.g., based
on conventional, view-based query rewriting techniques [11].

The simplification of the development process proposed for context-aware
applications therefore consists in (i) the use of a resource schema that hides
technological details and data provenance issues and (ii) the automatic rewrit-
ing of context-agnostic queries defined on the resource schema into context-aware
queries. Both features alleviate the developer from tasks that are typically te-
dious and time consuming. In the following sections we describe the core ingre-
dients of the method. We will also show how the conceptual approach can be
naturally mapped into state-of-the-art implementations making use of GraphQL.

3 Resource Schema and Context-Aware Queries

The initial activities in the development process are the selection of the resources
of interest, which can be both local and remote data sources, and their techni-
cal description, specifying the details that are needed to access them. For local
data sources such details refer to (i) the endpoint of the data source (e.g., its
IP address), (ii) the port though which the source can be accessed, and (iii)
the username and password identifying the user that represents the applica-
tion. To programmatically access external Web services (e.g., SOAP/WSDL or
RESTful services), it is necessary to specify: (i) the service endpoints (one or
more URIs), (ii) the operations offered by the service, (iii) the respective input
parameters and output data schemas and serializations (e.g., JSON or XML),
and (iv) possible authentication details (e.g., usernames/passwords or developer
keys). Data sources may differ in the communication protocols they use (plain

Modeling Context-Aware Access to Heterogeneous Resources 5

HTTP vs. SQL connectors), their implementation technologies (as long as they
expose an HTTP or SQL interface), the data formats and schemas they use (as
long as data can be correctly extracted). All these properties are specified in the
respective registry entries.

For the sake of brevity, we do not further detail all technicalities here: they
represent state-of-the-art development practice. What is relevant in our frame-
work is the specification of the access patterns that can be used to access the
services, as most services support different mandatory or optional input param-
eters to access data [5]. The specification of access patterns will be illustrated in
Section 3.2.

3.1 Resource Schema and Context-Agnostic Queries

Once the different resources are registered in the system, it is possible to derive
the resource schema of the available data so as to present the developer with a
unique schema of the data. The schema aims to represent the data provided by
the resources and their relationships in a way that accommodates the require-
ments posed by the specific application domain. For example, we can think of
the tables introduced in our running example as the result of a modeling activity
that produces a data schema representing all the resources selected for the given
application domain.

Considering the resources identified for our running example, a possible re-
source schema could be the following one, where Restaurant represents the
data accessible through the service ResSvc, Hotel represents the data stored
in the local database HotelTab, and Itinerary represents the itineraries com-
puted by the two services ItinSvc1 and ItinSvc2:

Restaurant(name, address, phone, type, cuisine type, playground)

Hotel(name, address, category, childcare)

Itinerary(from, to, type, directions, price)

The identification of the previous relations depends on opportunistic choices
in the app design. For example, the attribute Itinerary.directions is not fur-
ther specified, as it is not necessary to further split and query direction descrip-
tions. directions could however contain a map image, a list of instructions,
e.g., about how to go from a hotel to a restaurant, or similar. The resource
schema also makes only use of logical addresses (city, street, number), instead
of physical GPS coordinates.

In addition to these application-specific design choices, the resource schema
keeps track of the provenance of each attribute in the defined relations. This is
achieved using an additional table: Source(id, attribute, registry entry) that
tracks the necessary, minimal meta-data: for each attribute in the resource
schema, it contains a link to the registry entry that may provide data for the
attribute. For the attribute Itinerary.directions the table will thus contain
two entries, i.e., ItinSvc1 and ItinSvc2. These meta-data will be used only at
query execution time and are not accessible to the developer, who instead is now

6 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

able to write her context-agnostic queries. For example, the following query

Q1 = Πname,address,
phone,type,
directions

σcousine type=$V ALRestaurant onaddress=to Intinerary

is used to instantiate the page of the application that, at interaction time, allows
the user to choose a type of cuisine: the user choice will replace the parameter
$V AL, the from attribute for the calculation of itineraries will be taken from the
context. The app thus shows the restaurants matching the cuisine choice along
with the itineraries to reach them. In Section 3.4, we show how to inject context
into Q1 to obtain its context-aware version.

3.2 Resource Mapping

Given the above resource schema, each access pattern to a resource can now be
expressed as a view over it. This equips the pure technical registry entry, that
tells how to interact with the service, with a semantical mapping of the service to
the resource schema that enables the context-aware service selection at runtime.
For instance, the chosen restaurant search service can be expressed as follows:

ResSvc ≡ Π name,address,phone,
type,cuisine,playground

σ address=$optional∧
type=$optional∧

playground=$optional∧
cuisine type=$optional

Restaurant

In bold we highlight two keywords that are needed to express a service’s
access pattern: the values $mandatory and $optional tell, respectively, if an
attribute is a mandatory or optional input of the service. Both keywords are
automatically replaced at runtime by their respective values. Without proper
values for mandatory inputs, the service cannot be invoked; optional inputs may
be used to restrict the output data produced by the service.

In addition to mandatory and optional inputs, it is also possible to specify
constant values for some input parameters. Doing so binds the view representing
the access pattern to the given value, expressing that the service is able to provide
only data that complies with this restriction. If we take, for instance, two services
that provide itinerary information (e.g., ItinSvc1 about a city’s local transport
network and ItinSvc2 about a national railway network), we may obtain the
following two access patterns:

ItinSvc1 ≡ Π from,to,type,
itinerary,price

σfrom=$mandatory∧
to=$mandatory
∧type=$optional

Itinerary

ItinSvc2 ≡ Π from,to,type,
itinerary,price

σfrom=$mandatory∧to=$mandatory
∧type=“train”

Itinerary

The second access pattern explicitly binds the attribute type to the value
"train" as ItinSvc2 is able to provide only data about train connections, while
ItinSvc1 may provide data about all among trains, undergrounds, busses and
trams within its geographical area of competence (for simplicity, we do not rep-
resent this limitation here).

Modeling Context-Aware Access to Heterogeneous Resources 7

user
type

interest_topic
current
position

young
adult

adultfamily
with

children

hotel restaurant

r_type

pizzeria pub
cinema theater

cafe

show

s_type

concert

interest_zone

bus car

transportation

train
zonecur_pos

time

time_val

disability

d_type

user
type interest_topic current

position

family
with

children

restaurant

r_type

pub

bus

transportation

cur_pos
Milan

Viale Romagna
(a)

(b)

c_type

c_value

Fig. 2. The CDT of our example (a) and a context instance (b)

Analogously, the HotelTab table of the local database can be expressed
as follows (observe that, for consistency with the mapping of Web services, all
attributes are optional as relations do not have access patterns):

HotelTab ≡ Π name,address,
category,childcare

σ name=$optional∧address=$optional
category=$optional∧childcare=$optional

Hotel

3.3 Context-Aware Queries

The Context Dimension Model [3] allows one to represent Context Dimension
Trees (CDTs). An example of CDT for the touristic scenario of the running ex-
ample is shown in Figure 2. Dimension nodes, depicted in black, represent the
different perspectives describing context (e.g., user type and transportation),
while concepts, depicted as white nodes, are the admissible values of each dimen-
sion (e.g., the concepts adult, young adult and family with children are
values for the user type dimension). Attributes, represented by double circles,
are parameters whose values are dynamically derived from the environment or
provided by the users themselves at execution time, and used to replace a high
number of concepts when it is impractical to list them all: e.g., the current

position dimension has as child the attribute curr pos.
A context instance is a subtree of a CDT (also represented as a set of

<dimension=value> pairs) where the parameter nodes are replaced with con-
crete values. Figure 2(b) shows graphically the instance C = {user type =

family with children, r type = pub, current position = Milan Viale Ro-

magna, transportation = bus}: a family with children, currently located in
Viale Romagna in Milan, moves around by bus and prefers to eat at pubs.

3.4 Query Rewriting

Following an approach similar to [3], we propose that the designer associates
each context element (i.e., <dimension=value>) of the CDT with one or more

8 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

Context Element Relational Algebra Expressions

user type = family with

children

σplayground=“yes′′Restaurant

σchildcare=“yes′′Hotel

r type= pub σtype=“pub′′Restaurant

current position = Milan Viale σfrom=“Milan V iale Romagna′′∧to=$V alueItinerary
Romagna σaddress=“Milan V iale Romagna′′Restaurant

σaddress=“Milan V iale Romagna′′Hotel

transportation = bus σtype=“bus′′Itinerary
Table 1. Relational Algebra Expressions associated with the context instance C.

Πname,address,phone,directions

onaddress=to

σP1

restaurant

σP2

itinerary

Fig. 3. Query Q2 where P1 :
cuisineType = “indian” ∧ r type = “pub” ∧
playground = “yes” ∧ address =
“Milan V iale Romagna” and P2 : type = “bus” ∧
from = “Milan V iale Romagna”.

relations of the resource schema, filtered on the basis of the value of the context
element itself. For instance, Table 1 shows the expressions associated with the
context elements in C.

Suppose now that at run time, while in context C, the app prompts the user
with the context-agnostic query Q1 from Section 3.1, where restaurants can be
selected on the basis of a cuisine type chosen by the user. Q1 will be expanded
with the user’s choice and automatically rewritten using the context-aware ex-
pressions in Table 1. The result is the context-aware query Q2 represented in
Figure 3 as a standard syntax tree for relational algebra.

Note how the agnostic query is extended by adding conditions related to the
context dimensions (e.g., the user’s current position or the type of user) to the se-
lection and join operations: in Table 1, the expression σfrom=“Milan V iale Romagna”

∧to=$V alueItinerary, associated with the context element current position

= Milan Viale Romagna, contains a parameter referring to the destination of
the itinerary, that takes now the value specified by the join condition of the
agnostic query Q1.

4 Query Interpretation and Execution

In this section we describe the synthesis of a query execution plan from the
context-aware query and the consequent selection of the related data and ser-
vices; in the last subsection we then give an account of the real execution flow
of our framework, as it has been made concrete in a research prototype [8].

Modeling Context-Aware Access to Heterogeneous Resources 9

4.1 Query Interpretation and Service Selection

Conceptually, the generation of the query execution plan proceeds as follows:

1. We produce a tree-like representation of the relational algebra query that is
extended with an explicit representation of the corresponding predicates.

2. We map a service to one or more query primitives in the original tree by
exploiting the structure of their access pattern represented as a tile pattern1.

3. We visit the mapped tree to produce a schedule of web services invocations
and database assesses.

For example, let us consider query Q2 of Figure 3. To see how this query
can be mapped to an actual query execution plan involving service requests, we
consider the services described in Section 3.2. Every service exposes a potential
set of filtering predicates to be used when accessing it. To capture this informa-
tion, the tile pattern covers not only the abstract relational algebra operation
associated with the service, but also the syntactic structure of valid predicates.
Here and in the rest of this section we extend with a double-line arrow the rep-
resentation of the associated logical predicate. For example, Figure 4(a) shows
the subtree pattern in the original query the ItinSvc1 service can answer to
(section 3.2). The pattern specifies that such a service can be selected when part
of the original query aims to select itineraries where:

– the type attribute is optional (as represented by the parentheses),
– the from attribute is mandatory,
– the to attribute is mandatory.

Figure 4(b) shows, similarly, the pattern associated with ResSvc. ItinSvc2
pattern is not shown, as its restriction "type=train" is not compatible with the
query’s request for a bus ("type=bus").

We now can expand query Q2 by exposing the logical structure of its pred-
icates. We then note that the only registered access patterns that allow valid
matches are ResSvc and ItinSvc1 because ItinSvc2 cannot pattern match.
Figure 5 shows the result of the match operation; since we deal with a logically
correlated sub-query, we mark with a small circle each tile pattern leaf that cor-
responds to an attribute involved in a join condition appearing above it in the
tree.

After having identified the services by pattern matching, we schedule the
service invocation by traversing the tree in post-order and executing joins with
a nested join strategy. In particular, we use the convention that the left relation
is always the outer relation and exploit the commutativity of the join operator
to reorder the nodes in the tree and optimize the query execution. In particular,
we order nodes from left to right by ascending number of correlated attributes.

1 A tile pattern is a tree template with one or more wildcards that can match any
subtree of the original query. Note that, in this view, data coming from lower nodes
is an “input” to a service, while the root of the node is the “output” of the service.

10 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

σ

∧

(type)

*

from

*

to

*

itinerary

(a)

σ

∧

(cuisineType)

*

(type)

*

(playground)

*

(address)

*

restaurant

(b)

Fig. 4. Itinerary service tile (ItinSvc1) and restaurant service tile (ResSvc).

Πname,address,phone,directions

onaddress=to

σ
ResSvc

∧

cuisineType

indian

type

pub

playground

yes

address

Milan
Viale

Romagna

restaurant

σ
ItinSvc1

∧

type

bus

from

Milan
Viale

Romagna

to

◦

itinerary

Fig. 5. Example context
aware query where predi-
cates have been expanded
and services have been
verified to match (see an-
notation).

In this case, ResSvc is invoked first (using as parameters the values of the leafs
that allowed the match), while ItinSvc1 is invoked for each tuple returned by
ResSvc by using the “address” attribute value as the “to” parameter value.

More refined methods to enlarge the space of solutions considered for tile
pattern matching can be also adopted [5]. For example, to address the case
when multiple valid services can serve a specific query, we already experimented
techniques (i) to invoke them all and then fuse their outputs and also (ii) to
apply some ranking strategy, for example based on service quality criteria, and
then select the best service [6, 8].

4.2 Prototype implementation

As a concrete implementation of the conceptual approach discussed in the pre-
vious sections, we developed a prototype based on node.js. The prototype imple-
ments a GraphQL server-side runtime [1] that supports the execution of queries
over a GraphQL schema. The schema consists of simple type declarations and
describes the data to be exposed to the front-end applications, independently of
any specific database, storage engine or service access logic. This feature natively
supports the implementation of our (virtual) resource schema inside a GraphQL
API and the proxying of incoming queries to the respective resources.

The architecture of the prototype is shown in Figure 6. To describe its main
functions, let us consider a mobile app whose task is to render the example
query Q1 as defined in Section 3.1. The process for query execution starts with

Modeling Context-Aware Access to Heterogeneous Resources 11

Mobile
app,
client

GraphQL
endpoint

Context manager

Query manager

Response aggregator

Service
adapters

DB
adapters

Web services

Databases

GraphQL query

JSON result

Fig. 6. Functional architecture of the prototype implementation.

the mobile app sending a GraphQL query with both the query parameters and
the context data. Then the following actions are taken:

– A Context Manager, given an instance of the CDT and possible user inputs,
decides if/which user inputs overwrite which context parameter.

– A Query Manager selects and invokes the corresponding data sources ac-
cording to the techniques presented above (leveraging on suitable service/DB
adapters for the communication with the sources).

– A Response Aggregator composes the integrated result set into a JSON struc-
ture and sends it back to the mobile app.

Given the internal logic of the GraphQL API and the nature of the CDT, no
complex, structural query rewriting is needed: it suffices to ship the set of context
properties as parameters along with the original query from the client to the API.
Depending on the presence or not of context properties in the CDT, the API
can then internally apply suitable selection conditions on retrieved results. As
we show next, this means that the effect of adding context essentially translates
into enriched selection conditions.

To exemplify the internal logic of the API, let’s consider the GraphQL schema
in Figure 7. Restaurant and Itinerary are the two relations of the resource
schema, CamusContext is the CDT structure (limited to the properties of the
example) and restaurant is the type of query supported by the API. Note
how the attribute reachThrough of Restaurant supports the calculation of the
join of Q2. Also note how this join must be specified at schema level (and then
supported by the internal API implementation), as the schema describes the
structure of the output data, rather than that of the underlying data.

Figure 8 now shows the GraphQL query corresponding to Q2 as sent from
the client to the API. The query asks for restaurants, provides the selection
conditions between parentheses, and then lists the properties (projection) it
wants to extract about the restaurants. The presence of the reachThrough prop-
erty among these properties corresponds to the join to be calculated between
Restaurant and Itinerary. Instead of flatting out the list of attributes, the
query keeps all context properties grouped as one cdt element (for separation
of concerns); conceptually, they all correspond to possible selection conditions.

In response to this query, the GraphQL API enacts the resolver illustrated
in Figure 9. First, the existence of possible user inputs that would overwrite

12 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

type Restaurant {
 name: String
 address: String
 phone: String
 type: String
 cuisine_type: String
 playground: Boolean
 reachThrough: [Itinerary]
}

type Itinerary {
 from: String
 to: String
 type: String
 directions: String
 price: Float
}

 input CamusContext {
 userType: String
 rType: String
 currentPosition: String
 transportation: String
 }

 type Query {

 restaurant (cuisine_type: String,
 from: String,
 cdt: CamusContext!):
 [Restaurant]
 }

Fig. 7. Resource schema of the example scenario in GraphQL schema language.

{
 restaurant (cuisine_type : "indian",
 cdt: {
 userType: "family with children",
 rType: "Pub",
 currentPosition: "Milan Viale Romagna",

 transportation: "bus"
 })
 {
 name
 address
 phone
 reachThrough {
 type
 directions
} } }

Fig. 8. Example GraphQL query (Q2) to retrieve restaurants and respective itineraries.

context properties is checked (in the example, if an explicit from information is
provided, this would overwrite the context’s currentPosition property). Then,
the Query Manager is invoked with the entities to be retrieved (ordered list), the
selection conditions, and the context of the query. Internally, the Query Manager
proceeds as described in the previous section in order to produce the set of
requested restaurants (including the respective itineraries) as output. Finally,
for each retrieved restaurant, the resolver leverages on a so-called data class
(Restaurant), which implements GraphQL’s projection logic.

5 Comparison with other Work

Different works on mobile app design describe ad-hoc solutions for the develop-
ment of context-aware applications [16] in which it is difficult to identify reusable
abstractions. In [9] the authors follow a more systematic approach, showing how
context-aware mobile apps can be built by mashing-up components managing the
app logic with reusable context components dedicated to capturing context events
and activating related operations in the app. The approach does not provide
abstractions for context modeling: the designer is in charge of configuring the
context components (which basically manage user location and time) by means

Modeling Context-Aware Access to Heterogeneous Resources 13

var root = {

 restaurant: function ({cuisine_type, from, cdt}) {

 if (from) cdt.currentPosition = from; // simplified Context Manager

 var restaurants = QueryManager.get({ entities: ["restaurants", "itineraries"],
 cuisine_type: cuisine_type,
 context: cdt });

 return restaurants.map (function(restaurant) { // simplified Response Aggregator
 return new Restaurant(restaurant, cdt);
 });
 }}

Fig. 9. Example implementation of the GraphQL resolver answering Q2.

of parameter settings. However, the work shows how to achieve context-aware
applications by means of a lightweight integration of heterogeneous and reusable
components. Our approach also exploits mashup techniques. Our context-aware
queries can in fact be considered “mini data mashups” integrating on the fly
selected data sources. The goal, however, is to promote the adoption of a con-
ceptual layer (i.e., the combined use of the resource schema and the context
model), which enables app developers to reason at a high level of abstraction.
The adopted conceptual models then drive the automatic selection of services
and their dynamic, context-aware querying at runtime.

Some other approaches offer systematic methodologies and design environ-
ments.MoWA [4] introduce augmentation, which consists in adding some scripts
on top of context-agnostic pages so that at runtime context can be gathered
and processed to trigger page adaptations. In line with our approach, MoWA
promotes separation of concerns and gives context a first-class role; however, it
forces the designer to add a number of scripts for each page to be adapted dy-
namically at runtime. The advantage of our approach is that context-awareness
is achieved at the only cost of defining, during the initial design phases, an
adequate conceptual model capturing the most salient context dimensions.

Further works focus on the retrieval of content from heterogeneous services.
MyService [12] provides expert designers with the possibility to select pre-defined
context-based rules on top of a service directory. Based on the chosen rules,
proper services are selected at runtime depending on the gathered context, and
the code of the final app invoking these services is dynamically generated. This
work is in line with our idea to filter services at runtime on the basis of the
identified context. However the adopted notion of context is limited to the user
location, while CDM is generic enough to cover several other dimensions that,
in each given scenario, might characterize the contexts of use. Moreover, in our
approach the designers are not required to care about which services have to
be invoked at runtime; the system selects those services that best match the
identified context instance.

Some other works are characterized by the adoption of context models to
guide the access to heterogeneous resources. In [7], the authors use CDM to
model the possible contexts and build a platform serving the execution of a

14 F. Daniel, M. Matera, E. Quintarelli, L. Tanca and V. Zaccaria

context-aware tourism app. The app flexibly collects non-structured data from
varying heterogeneous sources, and provides contextual recommendations to the
user. This work shows the feasibility of adopting CDM to drive the context-
aware selection of services to be invoked at runtime. In addition to this, in this
paper we clarify how to select services in an automatic manner and how to build
related context-aware queries on top of the selected data sources.

In [2], the authors then present a Model-Driven Engineering (MDE) approach
where context meta-models and model-to-code transformations guide the auto-
matic generation of code for the final context-aware apps. The proposed tech-
niques for model-to-code transformations are interesting and are also in line with
the goal of our research. However, once meta-models are in place, context mod-
eling for the generation of a specific app requires the designer to define rules
(i.e., OCL expressions) specifying the context-aware behaviors to be shown at
runtime. Our approach, instead, does not need additional specifications on top
of the context model; strategies for service and content filtering are shaped up
at runtime, depending on the way the captured context guides the rewriting of
context-agnostic queries.

From an application perspective, the proposed method focuses on the context-
aware filtering of data integrated from multiple sources. It does not provide for
personalized recommendations of data items, a problem that is typically ad-
dressed in scenarios similar to our tourism example [10]. Recommending suitable
items, once contextual data are fetched, is an orthogonal design issue that we
already addressed in our previous work [14].

6 Conclusions and Future Work

The contribution of this paper is a principled definition of the design method
underlying CAMUS (Context-Aware Mobile mashUpS) [8], a research project
that aims at the conception of high-level abstractions for efficient data and ser-
vice integration in context-aware mobile applications. The method is general in
nature and can be applied in the development of any kind of information system
that requires on-the-fly, context-aware data access capabilities (e.g., the method
can be used to provide context-aware access to external resources if it is wrapped
by a suitable API called from within an application, or it can be used to pro-
vide context-aware access to internal data sources in parallel to existing data
access channels). The paper specifically focuses on the data preparation and re-
trieval tasks and shows how to enable the automatic rewriting of context-agnostic
queries into context-aware queries by explicitly modeling what is considered con-
text in a given application scenario. The method also provides the conceptual and
technological foundation for principled context management, effectively assisting
the work of the developer. The prototype implementation shows how GraphQL
naturally lends itself as candidate technology for the seamless integration of the
(virtual) resource schema with concrete data access logics.

We preliminarily measured the performance of service selection and invoca-
tion; results are encouraging and time log-normally distributed [8]. Next, we will

Modeling Context-Aware Access to Heterogeneous Resources 15

generalize our prototype implementation, parameterize it, and devise suitable
transformation logics able to transform the resource schema (already expressed
in GraphQL schema language), the CDT and the set of context-agnostic queries
into full-fledged GraphQL APIs. We also would like to look into contextual data
display, context-driven discovery of services from large repositories, and visual
design environments for modeling context and designing resource schemas.

References

1. GraphQL. Draft RFC Specification, Facebook, https://facebook.github.io/

graphql, 2015.
2. A. Achilleos, K. Yang, and N. Georgalas. Context modelling and a context-aware

framework for pervasive service creation: A model-driven approach. Pervasive and
Mobile Computing, 6(2):281–296, 2010.

3. C. Bolchini, E. Quintarelli, and L. Tanca. Carve: Context-aware automatic view
definition over relational databases. Information Systems, 38(1):45–67, 2013.

4. G. A. Bosetti, S. Firmenich, S. E. Gordillo, and G. Rossi. An approach for building
mobile web applications through web augmentation. J. Web Eng., 16(1&2):75–102,
2017.

5. D. Braga, S. Ceri, F. Daniel, and D. Martinenghi. Optimization of multi-domain
queries on the web. PVLDB, 1(1):562–573, 2008.

6. C. Cappiello, M. Matera, and M. Picozzi. A UI-Centric Approach for the End-User
Development of Multi-device Mashups. TWEB, 9(3):11, 2015.

7. M. Casillo, F. Colace, M. D. Santo, S. Lemma, and M. Lombardi. A context-aware
mobile solution for assisting tourists in a smart environment. In HICSS 2017. AIS
Electronic Library (AISeL), 2017.

8. V. Cassani, S. Gianelli, M. Matera, R. Medana, E. Quintarelli, L. Tanca, and
V. Zaccaria. On the role of context in the design of mobile mashups. In RMC
2016, pages 108–128. Springer, 2016.

9. F. Daniel and M. Matera. Mashing up context-aware web applications: A
component-based development approach. In WISE 2008, volume 5175 of LNCS,
pages 250–263. Springer, 2008.

10. O. Daramola, M. Adigun, and C. Ayo. Building an ontology-based framework for
tourism recommendation services. Information and communication technologies in
tourism 2009, pages 135–147, 2009.

11. A. Y. Halevy. Answering queries using views: A survey. VLDB J., 10(4):270–294,
2001.

12. E. Lee and H.-J. Joo. Developing lightweight context-aware service mashup appli-
cations. In ICACT 2013, pages 1060–1064, Jan 2013.

13. K. Mens, R. Capilla, H. Hartmann, and T. Kropf. Modeling and managing context-
aware systems variability. IEEE Software, 34(6):58–63, 2017.

14. A. Miele, E. Quintarelli, E. Rabosio, and L. Tanca. Adapt: Automatic data person-
alization based on contextual preferences. In IEEE 30th International Conference
on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
pages 1234–1237, 2014.

15. D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the develop-
ment of context-enabled applications. In CHI 1999, pages 434–441, 1999.

16. R. Schaller. Mobile tourist guides: Bridging the gap between automation and
users retaining control of their itineraries. In Proceedings of the 5th Information
Interaction in Context Symposium, IIiX ’14, pages 320–323, 2014.

