
 

 

DEPARTMENT/COLUMN: Spotlight  

A Service-Oriented 
Perspective on Blockchain 
Smart Contracts 

Smart contracts turn blockchains into distributed 

computing platforms. This article studies whether 

smart contracts as implemented by state-of-the-art 
blockchain technology may serve as component 

technology for a computing paradigm like service-

oriented computing (SOC) in the blockchain, in order 
to foster reuse and increase cost-effectiveness. 

A blockchain is a shared, distributed ledger, that is, a log of transactions that provides for persis-
tency and verifiability of transactions [1]. A transaction is a cryptographically signed instruction 
constructed by a user of the blockchain [2], for example, the transfer of cryptocurrency from one 
account to another. Transactions are grouped into blocks, linked and secured using cryptographic 
hashes. A consensus protocol enables the nodes of the blockchain network to create trust in the 
state of the log and makes blockchains inherently resistant to tampering [3]. Thanks to these 
properties, blockchain technology is able to eliminate the need for a middleman from the man-
agement of transactions, such as a bank in the transfer of money. 

Next to logging transactions, blockchain platforms support the execution of pieces of code, so-
called smart contracts [4, 5], able to perform computations inside the blockchain. For example, a 
smart contract may be used to automatically release a given amount of cryptocurrency upon the 
satisfaction of a condition agreed on by two partners. If we put multiple smart contracts (and 
partners) into communication, we turn the blockchain into a proper distributed computing plat-
form [6]. This makes the technology appealing to application scenarios that ask for code execu-
tion that is reliable, verifiable and transactional.  

For example, Xu et al. [7] propose the use of smart contracts as software connectors for reliable, 
decentralized data sharing, while Weber et al. [8] propose the integration of multiple smart con-
tracts for distributed business process execution. The first example aims to support data providers 
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in publishing data sets and data consumers in finding and selecting data sets; using cryptocur-
rency, data providers are automatically paid according to the value of the provided data, estab-
lishing an open, blockchain-based marketplace for data. The second example generates smart 
contracts starting from a BPMN choreography diagram and puts them into direct communication; 
the idea is to enable the execution of business processes even among potentially untrusted part-
ners. The common ingredients of both examples are smart contracts and verifiable transactions. 

Developing applications that integrate multiple smart contracts is however not easy, and today’s 
predominant ad-hoc development practice won’t be able to scale and be sustainable in the long 
term. In fact, Atzei et al. [9] show that already today even simple smart contracts are often af-
fected by a variety of security vulnerabilities. Nikolić et al. [10] show that several of the smart 
contracts deployed on Ethereum either “lock funds indefinitely, leak them carelessly to arbitrary 
users, or can be killed by anyone.” Singh and Chopra [11] go beyond implementation aspects and 
discuss existing socio-technical limitations of smart contracts, such as lack of control, lack of un-
derstanding and lack of social meaning. 

We argue that future blockchain applications ask for abstractions, methods, and instruments that 
help developers to cope with complexity, such as those proposed by Service-Oriented Computing 
(SOC). In fact, the characteristics of the described data sharing scenario directly map to those of 
SOC (service provider, service consumer, service broker), yet smart contracts still lack equiva-
lent support for description, discovery and the specification of non-functional properties. Simi-
larly, the business process scenario resembles very much that of service-based business pro-
cesses, yet the smart contracts generated in the scenario are tailored to specific tasks and partner 
interactions and are not directly applicable in processes with different partners and/or choreogra-
phy needs. That is, while they present significant opportunities for reuse, they do not yet explore 
them. 

In the following, we thus look at smart contracts from a SOC perspective and study their suitabil-
ity as elementary pieces for a blockchain-based, distributed computing paradigm. The assump-
tion is that principled reuse not only helps to lower complexity but also increases correctness by 
design. 

BLOCKCHAIN AND SMART CONTRACTS 
Next to Bitcoin, several alternative platforms have emerged over the last few years. Besides the 
type of cryptocurrency adopted as incentive mechanism, these platforms distinguish themselves 
by few key properties. 

The access policy tells who can participate in the blockchain network. Public blockchains allow 
anyone to join and to access the information stored in the blockchain via the Internet; private 
blockchains are restricted to private networks and selected nodes only.  

The validation policy tells who among the nodes can participate in consensus creation and deploy 
smart contracts. Permissionless blockchains allow every node to perform both; permissioned 
blockchains limit these capabilities to special nodes only, e.g., qualified through direct invitation.  

The consensus protocol specifies how trust is created among participants: Proof of work (e.g., 
adopted by Bitcoin) requires nodes, so-called miners, to invest significant hashing power to cre-
ate trust. Proof of stake (Cardano) requires nodes to prove ownership of sufficient cryptocurrency 
to establish trust. Byzantine Fault Tolerance uses replication to establish trust in the state of the 
network, even if faced with failing network nodes. Variants are redundant BFT (Hyperledger 
Indy) and practical BFT (Quorum), which aim at increased redundancy and speed, respectively. 
Other notable consensus protocols are proof of elapsed time (Hyperledger Sawtooth), proof of 
importance (NEM), proof of state (Universa Blockchain Protocol), Raft-based consensus 
(Quorum), stream-processing ordering services (Hyperledger Fabric), and Tempo (Radix DLT).  

The choice of the consensus protocol affects the transaction processing time (time till a transac-
tion is added to a block) and the transaction rate (number of transactions processed per second). 
These properties and the access and validation policies determine a blockchain’s ability to sup-
port different distributed computing scenarios. 
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As for the implementation of smart contracts, each platform typically supports one or more pro-
gramming languages. Some support general-purpose languages like C, C++, C#, F#, Go, Java, 
JavaScript, Kotlin, Objective-C, PHP, Python, Rust, Visual Basic .Net. Others propose platform-
specific languages like Bitcoin Script or Ethereum Solidity. The former are Turing complete, the 
latter not necessarily (e.g., Bitcoin Script is not).  

In Table 1, we summarize these characteristics for four platforms: Bitcoin (bitcoin.org), the first 
blockchain platform; Ethereum (ethereum.org), the platform that first introduced Turing-com-
plete smart contracts; Hyperledger Fabric (hyperledger.org/projects/fabric), a private, permis-
sioned platform hosted by the Linux Foundation and supported by more than 200 industry lead-
ers; and Corda (corda.net), a private, permissioned platform by a consortium of more than 200 
financial institutions and technology firms with a focus on interoperability. These platforms rep-
resent an opportunistic selection (far from exhaustive) based on our own knowledge and the goal 
of communicating some of the diversity that characterizes current blockchain technology. 

 

 

Table 1. Core characteristics of four example blockchain platforms 

SERVICE ORIENTATION 
Service orientation is commonly associated with the binomial SOAP/WSDL or the REST archi-
tectural style. Smart contracts use neither of these, so we fall back to the generic definition by 
Alonso et al. [12] who define services as “components that can be integrated into more complex 
distributed applications.” In order to compare different web service technologies, Lagares Lemos 
et al. [13] distinguish services by their type, interaction style, interaction protocol, data format, 
and descriptor. We discuss these characteristics next for smart contracts, in order to enable iden-
tifying analogies and differences between the proposed service-oriented interpretation of smart 
contracts and traditional web service technologies. We specifically focus on Ethereum as such is 
currently the most used blockchain platform for smart contract development. 

Contract type 
Components encapsulate data to be fetched and visualized or integrated and/or application logic 
to be interacted with. What the component delivers is a function of the type of the component. 
For smart contracts we can distinguish the following contract types: 

* https://cryptoslate.com/ethereums-proof-of-stake-protocol-in-review/ 

Bitcoin Ethereum Hyperledger Fabric Corda

Cryptocurrency Bitcoin (BTC) Ethereum (ETH) No built-in currency No built-in currency

Access policy Public Public Private Private

Validation policy Permissionless Permissionless Permissioned Permissioned

Consensus protocol Proof of work Proof of work (proof of 
stake under review*)

Voting-based algorithm 
(Apache Kafka)

Validity consensus, 
Uniqueness 
consensus

Transaction processing 
time (average) ~ 10 minutes ~ 15 seconds Almost instantaneous Almost instantaneous

Max transaction rate ~ 7 TPS ~ 20 TPS 3,500+ TPS ~ 170 TPS

Smart contract language

Bitcoin Script, high-level 
languages (BALZaC, BitML) 
compilable to Bitcoin native 
transactions

Solidity, Serpent, low-
level Lisp-like language 
(LLL), Mutan

Go
JVM programming 
languages like Kotlin, 
Java

Turing completeness No Yes Yes Yes

Bitcoin Ethereum Hyperledger Fabric Corda

Contract 
type

Contracts, oracles Contracts, libraries, data 
contracts, oracles

Contracts (chaincode), data 
contracts

Contracts, libraries, oracles

Interaction 
style

Pull interactions Pull and push interactions, 
business protocols

Pull and push interactions Pull and push interactions, 
business protocols

Interaction 
protocol

Transactions Transactions, events, message 
calls, delegate calls

Transactions, calls (limited to 
contracts on same node and 
channel), events — exposes 
REST APIs toward these

Transactions, inter-node 
messages (so-called flows), 
scheduled invocations of 
contracts

Data format
Binary payloads in 
transactions

Binary payloads in transactions 
and events, Solidity data types 
in message/delegate calls

Binary or JSON formatted 
key-value pairs

Any type of the contract 
language, zip attachments 
referenced using hashes

Description
No contract 
description

Contract metadata (JSON) to 
be published on a public 
storage platform (e.g., Swarm)

Chaincode metadata with 
interfaces, endpoints, and 
interaction schemas

No contract description

Ethereum Bitcoin Hyperledger 
Fabric

Corda

S 
M 
A 
R 
T 

Access policy Public Public Private Private

Consensus protocol Proof of Work (Proof of 
Stake in "Serenity" 
release, TBA)

Proof of Work Voting-based 
algorithm 
(Apache 
Kafka)

Validity 
consensus; 
Uniqueness 
consensus.
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• Generic contracts implement application logic, e.g., for deposit management, that can 
be invoked by blockchain clients or by other contracts; in general, this type of contract is 
stateful in that it maintains application state across interactions. 

• Libraries implement one or more functions, e.g., a math library, that are meant for reuse 
by other contracts; libraries do not store internal variables and are stateless. 

• Data contracts provide data storage services inside the blockchain, e.g., a client refer-
ences manager, that are meant for use by other contracts; by design, they are stateful. 

• Oracles deliver data services from the outside of the blockchain to the inside of the 
blockchain, e.g., currency conversation rates. Contracts cannot make calls outside the 
blockchain, as outside dependencies may prevent verifiability (conversion rates change 
over time). If data from the outside is needed, it can be pushed by clients to oracles us-
ing transactions; these then allow other contracts to query for the data. 

Interaction style 
Integrating a component into a composite application usually does not only involve a one-shot 
query or call. It may be necessary to interact with the component multiple times and to establish 
some form of conversation with it. For smart contracts we have: 

• Pull interactions enable a client or contract to initiate an interaction and to invoke a con-
tract that otherwise would be passive; for instance, a client may invoke a contract to 
withdraw a deposit. 

• Push interactions enable the contract to become active and to initiate an interaction with 
clients or other contracts; for instance, a contract may invoke a data contract to obtain a 
list of accounts to send cryptocurrency to. 

• Business-protocol-based interactions support patterns that may involve multiple interac-
tions and multiple clients or contracts; the protocol specifies the order of interactions 
and the roles of the involved parties. 

As running smart contracts costs money, contracts are activated only in response to explicit invo-
cations. A contract or a group of interacting contracts is thus always triggered by a client transac-
tion, and independent, active behaviors are typically not supported. 

Interaction protocol 
This tells how a component implements its interactions. Conventional web services use message-
oriented protocols like SOAP or HTTP, while all major programming languages also support 
RPC-like interactions (Remote Procedure Calls). Ethereum uses a message-based protocol sup-
porting the following interaction features: 

• Transactions are used by blockchain clients (the users of the blockchain) to create new 
contracts or to invoke existing contracts; once validated, which consumes cryptocur-
rency, transactions are added to the blockchain and remain publicly accessible. 

• Events enable a contract to push information to the outside world in response to a trans-
action invoking the contract; when the transaction is added to the blockchain, also the 
event becomes publicly accessible. 

• Calls (so-called message calls) are used by contracts to interact with each other in a 
fashion that uses different state spaces for each contract for isolation; calls are executed 
locally to each blockchain node and do not consume cryptocurrency. 
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• Delegate calls are used by contracts to invoke libraries in a fashion where functions are 
executed in one, the caller’s, state space; delegate calls too are node-local and do not 
consume cryptocurrency. 

If an interaction originates from a blockchain client, it uses JSON-RPC or is enacted using the 
command line; if it originates from a smart contract, the message is exchanged via RPC. Trans-
actions contain a set of predefined parameters: the number of transactions sent by the sender, the 
amount of cryptocurrency the sender is willing to pay for consumed resources (so-called gas), 
the maximum consumable amount of gas, the address of the recipient, the amount of cryptocur-
rency to be transferred, possible signatures of the sender, and either the code of the contract to be 
created or input data to be processed. Events contain, among others, one or more topics that al-
low clients to search for and subscribe to events and a data field. Calls contain the sender and re-
ceiver addresses, a possible value and data; calls may return a value. 

Data format 
The data format determines how exchanged data is formatted. Message-oriented interaction pro-
tocols typically support self-describing document formats like XML and JSON; RPC-oriented 
protocols enable the exchange of native data structures, such as Java or JavaScript objects, using 
an internal, binary format hidden to developers.  

Data in Ethereum transactions and events is encoded using the Application Binary Interface 
(ABI), which specifies how functions are called and data are formatted. Clients either serialize 
data in a binary format on their own, e.g., when using the command line or by using a suitable 
library function, e.g., the function toPayload of the library web3.js. Values are encoded in se-
quential order and according to their data types and are not self-describing. In order to allow the 
receiver to identify which function is called, the sequence of values is preceded by 4 bytes of a 
Keccak-256 hash of the respective function signature. This allows everybody to parse the binary 
formatted data.  

Data in message/delegate calls between contracts is exchanged by passing variables, masking the 
underlying ABI formatting. 

Description 
The final aspect of components is component description, which enables discovery and selection. 
For web services, description languages like WSDL and WADL and semantics-oriented lan-
guages like OWL-S, WSDL-S, and WSMO are used to describe service endpoints, operations 
and data formats. 

The construct that gets closest to a description of Ethereum smart contracts is the so-called “ABI 
in JSON” interface description produced by the Solidity compiler during compilation, as exem-
plified by the following lines of code:  

 
[{ 
  "type": "function", 
  "inputs": [{"name": "username", "type": "string"},  
             {"name": "password", "type": "string"}], 
  "name": "create_user", 
  "outputs": [{"name": "success", "type": "bool"}] 
}, { 
  "type": "event", 
  "inputs": [{"name": "username", "type": "string", "indexed": true}, 
             {"name": "count", "type": "uint256", "indexed": false}], 
  "name": "user_created" 
}] 
 

The description specifies one function (create_user) and one event (user_created), along 
with their inputs and outputs. The inputs of the event are their publicly accessible arguments 
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stored in the blockchain; indexed arguments are searchable. What this description does not in-
clude is the name of the contract, its address, the network/chain ID if the contract is deployed on 
a test network, and non-functional properties (e.g., the cost of invoking the function). These are 
essential for search and discovery. Also, Ethereum does not come with a registry for smart con-
tracts, although contract metadata (containing the ABI in JSON description) can be stored in 
Swarm, a redundant and decentralized store of Ethereum’s public record. 

STATE OF TECHNOLOGY 
In Table 2, we summarize how these SOA characteristics are manifest (or not) in the four plat-
forms we introduced earlier. 

As expected, Bitcoin is the most limited platform in terms of features supported when it comes to 
smart contracts. In fact, it was born as support for its homonymous cryptocurrency and less to 
support generic computations. Ethereum, on the other hand, is the most complete platform, with 
Hyperledger Fabric and Corda providing comparable features.  

In terms of contract types, all platforms support oracles, except Hyperledger Fabric for which so-
called “gateway services” are still under discussion (as of June 2018). Reusable code libraries are 
supported only by Ethereum and Corda. It is important to note that contracts generally encapsu-
late application logic; data contracts are typically very limited in their storage capacity, as storing 
data on the blockchain may incur significant costs.  

All platforms except Bitcoin support pull and push interactions; Bitcoin features only client-orig-
inated pull transactions. Looking at the interaction protocols, Ethereum, Hyperledger Fabric and 
Corda support transactions, calls between contracts, and events; Bitcoin has only transactions.  

Payload data is binary formatted in Bitcoin and Ethereum transactions and events, while 
Ethereum message/delegate calls pass native Solidity data structures. Hyperledger Fabric struc-
tures data as key-value pairs in binary and/or JSON format. Corda, in addition to generic Ko-
tlin/Java data objects, also supports transactions with generic attachments; attachments are 
zipped and hash referenced.  

As for the description of smart contracts for search and reuse, support is very limited. Only 
Ethereum and Hyperledger Fabric provide basic metadata describing a contract’s interface (oper-
ations and arguments), but we are far from a common description format let alone a registry for 
the discovery of contracts.  

 

 

Table 2. The SOC perspective on selected smart contract technologies 

Bitcoin Ethereum Hyperledger Fabric Corda

Cryptocurrency Bitcoin (BTC) Ethereum (ETH) No built-in currency No built-in currency

Access policy Public Public Private Private

Validation policy Permissionless Permissionless Permissioned Permissioned

Consensus protocol Proof of Work
Proof of Work (Proof of 
Stake in "Serenity" release, 
TBA)

Voting-based 
algorithm (Apache 
Kafka)

Validity consensus, 
Uniqueness 
consensus

Transaction confirmation 
time (average)

6*BlockProductionTime  
~ 60 minutes

12*BlockProductionTime  
~ 3 minutes Latency < 1 second “Instantaneous”

Max transaction rate ~ 7 TPS ~ 13-15 TPS 3,500+ TPS ~ 170 TPS

Smart contract language

Bitcoin Script, high-level 
languages (BALZaC, BitML) 
compilable to Bitcoin native 
transactions

Solidity, Serpent, low-level 
Lisp-like language (LLL), 
Mutan

Go (producing so-
called chaincode)

JVM programming 
languages like Kotlin, 
Java

Turing completeness No Yes Yes Yes

Bitcoin Ethereum Hyperledger Fabric Corda

Contract 
type

Contracts, oracles Contracts, libraries, data 
contracts, oracles

Contracts (chaincode), data 
contracts

Contracts, libraries, oracles

Interaction 
style

Pull interactions Pull and push interactions, 
business protocols

Pull and push interactions Pull and push interactions, 
business protocols

Interaction 
protocol

Transactions Transactions, events, message 
calls, delegate calls

Transactions, calls (limited to 
contracts on same node and 
channel), events — exposes 
REST APIs toward these

Transactions, inter-node 
messages (so-called flows), 
scheduled invocations of 
contracts

Data format
Binary payloads in 
transactions

Binary payloads in transactions 
and events, Solidity data types 
in message/delegate calls

Binary or JSON formatted 
key-value pairs

Any type of the contract 
language, zip attachments 
referenced using hashes

Description
No contract 
description

Contract metadata (JSON) to 
be published on a public 
storage platform (e.g., Swarm)

Chaincode metadata with 
interfaces, endpoints, and 
interaction schemas

No contract description

Ethereum Bitcoin Hyperledger 
Fabric

Corda

S 
M 
A 
R 
T 

Access policy Public Public Private Private

Consensus protocol Proof of Work (Proof of 
Stake in "Serenity" 
release, TBA)

Proof of Work Voting-based 
algorithm 
(Apache 
Kafka)

Validity 
consensus; 
Uniqueness 
consensus.
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DISCUSSION AND OUTLOOK 
By now, there is a general consensus that the impact of blockchain will go far beyond cryptocur-
rencies, possibly with disruptive effects on distributed application development [14]. The key 
enabler for this impact are smart contracts able to support a new kind of distributed computing 
[6]. While the number and types of platforms for smart contracts are constantly growing — this 
article studies four of them, dozens of others have emerged — the resulting technological land-
scape is getting increasingly intricate and heterogeneous.  

Yet, this article shows that from an application point of view the conceptual underpinnings of 
this new landscape are more integrated than one would expect and that smart contracts, to some 
extent, may indeed be interpreted as elementary pieces, that is, services, of a blockchain-based, 
service-oriented computing paradigm. The article however also shows that we are still far from a 
smart contract model that sees interoperability and reusability as beneficial features, as instead 
we are used to in the context of service-oriented computing.  

In order to enable service orientation in blockchain and to unleash the full power of smart con-
tracts, several challenges need to be faced, among which we mention: 

• Search, discovery and reuse: It is striking that so little attention has been paid so far to 
enable developers to reuse already deployed contracts, especially if we consider that de-
ploying a new contract is typically more cost-intensive then just invoking an already de-
ployed one. Suitable abstract descriptors and searchable registries are badly needed. 

• Cost awareness: Smart contracts natively incorporate the concept of resource consump-
tion and cost of invocations. It is crucial that smart contracts be able to properly com-
municate and negotiate these kinds of service levels, enabling a natural pay-per-invoca-
tion model. 

• Performance: Libraries and data contracts are executed locally inside each node and 
have thus negligible response times; oracles and generic contracts, which may require 
transaction processing, may lead to higher, unpredictable response times. The challenge 
is improving performance in terms of transaction rates and processing times. 

• Interoperability and standardization: Today, platforms concentrate on own technologies 
as distinguishing feature, which is understandable. This, however, slows down integra-
tion, which eventually will nevertheless be needed. The challenge is agreeing on shared 
interaction styles and protocols as well as data formats and, of course, authentication 
and certification mechanisms. A particular challenge is cross-blockchain integration. 

• Composition: Finally, in order to be able to exploit the full power of smart contracts 
(and to collectively save resources and money) it is necessary to conceive and imple-
ment composition solutions able to abstract away from technicalities and to provide de-
velopers with instruments and infrastructures that enhance productivity effectively. 

In short, what we envision is an evolution from today’s technology silos to an abstract, reuse-
oriented contract ecosystem able to preserve the guarantees proper of blockchain technology. 
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