
Turning Web Applications into Mashup
Components: Issues, Models, and Solutions

Florian Daniel1 and Maristella Matera2

1 University of Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it
2 Politecnico di Milano - DEI

Via Ponzio 34/5, 20133 Milano, Italy
matera@elet.polimi.it

Abstract. Sometimes it looks like development for Web 2.0 is com-
pletely detached from the “traditional” world of web engineering. It is
true that Web 2.0 introduced new and powerful instruments such as tags,
micro formats, RESTful services, and light-weight programming models,
which ease web development. However, it is also true that they didn’t
really substitute conventional practices such as component-based devel-
opment and conceptual modeling.
Traditional web engineering is still needed, especially when it comes to
developing components for mashups, i.e., components such as web ser-
vices or UI components that are meant to be combined, possibly by web
users who are not skilled programmers. We argue that mashup compo-
nents do not substantially differ from common web applications and that,
hence, they might benefit from traditional web engineering methods and
instruments. As a bridge toward Web 2.0, in this paper we show how,
thanks to the adoption of suitable models and abstractions, generic web
applications can comfortably be turned into mashup components.

1 Introduction

Skilled web users who develop own applications online, so-called mashup ap-
plications, are a reality of today’s Web. Mashups are simple web applications
(most of the times even consisting of only one page) that result from the inte-
gration of content, presentation, and application functionality stemming from
disparate web sources [1], i.e., mashups result from the integration of compo-
nents available on the Web. Typically, a mashup application creates new value
out of the components it integrates, in that it combines them in a novel manner
thereby providing functionality that was not there before. For example, the hous-
ingmaps.com application allows one to view the location of housing offers from
the Craigslist in Google Maps, a truly value-adding feature for people searching
an accommodation in a place they are not yet familiar with.

While the value-adding combination of components is important for the suc-
cess of a mashup application, it is also true that a mashup application can only

be as good as its constituent parts, the components. That is, without high-quality
components (e.g., UI components or web services) even the best idea won’t suc-
ceed: users easily get annoyed by low-quality contents, weak usability, or, simply,
useless applications.

In order to ease the task of developing mashups, a variety of mashup tools
such as Yahoo Pipes [2], Google Mashup Editor [3], Intel Mash Maker [4, 5],
Microsoft Popfly [6] or IBM QEDWiki (now part of IBM Mashup Center [7]) have
emerged, and they indeed facilitate the mashing up of components via simple,
graphical or textual user interfaces, sets of predefined components, abstractions
of technicalities, and similar. Some of these tools (e.g., Popfly) also provide
the user with support for the creation of own components to be added into
the spectrum of predefined components. Newly created components are then
immediately available in the development environment, and users can mash them
up just like any other component of the platform.

If we however have a look at programmableweb.com, one of the most renowned
web sites of the mashup community, we can easily see (in the APIs section)
that the most popular components (APIs) are for instance Google Maps, Flickr,
YouTube, and the like. All names that guarantee best web engineering solutions
and high-quality content. User-made components do not even show up in the
main statistics, very likely due to the fact that most of them are rather toy
components or, however, components of low quality or utility.

We argue that successful components are among the most important ingredi-
ents in the development of mashups (besides a well-designed composition logic,
an aspect that we do not discuss in this paper). The development of components
should therefore follow sound principles and techniques, like the ones already
in use in web application engineering. In this paper, we show how generic web
applications, developed with any traditional practice and technology, can be
wrapped, componentized, and made available for the composition of mashups
(in form of so-called UI components [8]). The conceived solution especially tar-
gets mashup tools or platforms that provide mashup composers with mashup-
specific abstractions and development and runtime environments. We developed
the ideas of this paper in the context of mashArt, a platform for the hosted de-
velopment, execution, and analysis of lightweight compositions on the Web (our
evolution of [8]), but the ideas proposed are simple and generic enough to be
used straightforwardly in other mashup environments too.

1.1 Reference development scenario

Besides concerns such as IT security and privacy preservation, IT support for
compliance with generic laws, regulations, best practices or the like is more and
more attracting industry investments. In particular, business monitoring applica-
tions and violation root-cause analyses are gaining momentum. In this context, a
company’s compliance expert wants to mash up a business compliance manage-
ment (BCM) application that allows him to correlate company-internal policies
(representing rules and regulations the company is subject to) with business pro-
cess execution and compliance analysis data and, in case of violations, to easily

WebML
data model

WebML
hypertext model

Web
application

Wrap with mashArt
component model

UI component

Visually mash up
components

Other UI components
or services

Implement as
AJAX application

Mashup
application

WebML
data model

WebML hypertext
model

Web
application

Wrap and transform into
mashArt component

UI component

Mash up components
and execute

Other UI components
or services

Generate WebML
application

mashArt
application

mashArt annotation

Design WebML application
+ mashArt annotation

UI

Policy Browser
application

(web application)

develops

Policy
component
(UI component)

Visual editor or
manual composition

(mashup tool)
The Web

BCM application
(mashup)

IT specialist
(component developer)

Compliance expert
(mashup composer)

componentizes

publishes

discovers

mashes up uses

Compliance expert
(mashup user)

Services

Fig. 1. Mashup scenario: developing, componentizing, and mashing up a component

identify the root cause of the problem (e.g., a business process). In order to
populate the enterprise mashup system with the necessary components, the IT
specialist wants to develop the necessary components for the mashup platform.

The overall scenario is depicted in Figure 1, where we focus on the develop-
ment of the Policy component that will allow the compliance expert to browse
the company-internal policies. The IT specialist (component developer) develops
the Policy Browser application (web application) with his preferred development
tool and following his choice of methodology. Then he componentizes the ap-
plication (UI component) and publishes it on the Web (or only internally to
the company). The compliance expert (in the role of mashup composer) then
discovers the components he is interested in, mashes them up (with a mashup
tool), and runs the BCM application (in the role of mashup user).1

1.2 Research challenges and contributions

In this paper, we focus on the component developer in the above scenario and
specifically aim at assisting him in the development of the web application, its
componentization for mashups, and its publication. In this context, this paper
provides the following contributions, which are also the main research challenges
in developing reusable components for the Web:

– We define a UI component model and a description language that abstract
from implementation details and capture those features that characterize
mashup components that come with an own UI (unlike web services or
RSS/Atom feeds).

– We provide a simple micro format [9] for annotating generic, HTML-based
web applications with instructions on how to componentize the application
according to our UI component model.

– We provide for the componentization of applications by means of a generally
applicable wrapping logic, based on the interpretation of descriptors and
annotations.

1 We here assume that the compliance expert acts as both mashup composer and
mashup user, though in general these are conceptually distinct roles.

– We show how componentized applications can be used as constituent el-
ements in generic compositions together with components, such as SOAP
and RESTful services, RSS/Atom feeds, and other UI components.

We next introduce the design principles that we think should drive the devel-
opment of mashup components (Section 2), and propose our component model
for mashup components (Section 3). In Section 4, we discuss how to componen-
tize web applications and introduce our component description language and
our micro format for component annotation. In the same section, we show how
annotated applications can be wrapped in practice and also provide some com-
ponent design guidelines. Finally, in Section 5 we discuss related works, and in
Section 6 we conclude the paper.

2 Mashup components: development principles

From the development of our own mashup platform [8], we learned some prin-
ciples that good mashups and mashup components should follow in order to
succeed. Here we summarize the most important ones:

– Developers, not users: Developing good components is as tricky as develop-
ing good applications. Therefore, we stress the importance that component
developers be skilled web programmers, while users may assume the roles of
both mashup composer and mashup user (see Figure 1).

– Complexity inside components: Components may provide complex features,
but they should not expose that complexity to the composer or the user.
The interfaces the composers (APIs) and the users (UIs) need to deal with
should be as appropriate and simple as possible. The internal complexity of
components is up to the component developer.

– Design for integration: A component typically runs in an integrated fashion
in choreography with other components. Components that come with their
own UI (in this paper we concentrate on this kind of components) should
therefore be able to run inside a DIV, SPAN, or IFRAME HTML element
without impacting other components or the mashup application (e.g., due
to code collision problems).

– Stand-alone usability : A component’s executability and benefit should not
depend on whether the component is integrated into a mashup application or
not. Components should be executable even without any mashup platform
available. This increases the return on investment of the component and also
facilitates development (e.g., a component can be partly tested even without
being mashed up).

– Standard technologies: In order to guarantee maximum compatibility and
interoperability, a component should not rely on proprietary technologies.
Especially for the development of components, we advocate the use of stan-
dard technologies (mashup tools, on the other hand, may also use proprietary
technologies, as they typically do not aim at re-usability).

User
interface

Event

Operation

mashArt
component

0..N

0..N

0..N

Name

Name
Reference

0..N

output

mandatory input

Name
Binding
URL

Type0..N

0..N

optional input
0..N

0..N
mandatory input

constant input

optional input
0..NConstructor

0..N
constant input

Parameter
Name
Type
Value

<?xml version=“1.0” encoding=“utf-8” ?>
<mdl version=“0.1“>

<component name=“Policy” binding=“component/UI”
stateful=”yes” url=“http://mashart.org/
registry/234/PolicyBrowser/”>

<event name=“PolicySelected”>
<output name=“policy” type=“xsd:string” />

</event>

<operation name=“ShowPolicy” ref=“showPolicy”>
<input name=“policy” type=“xsd:string”></input>

</operation>
<operation name=“ShowProcess” ref=“showProcess”>
<input name=“proc” type=“xsd:string”></input>

</operation>

<constructor>
<input name=“NumVisible” type=“xsd:integer”>5</input>
<input name=“StartPolicy” type=“xsd:string” optional=”yes”></input>

</constructor>

</component>
</mdl>

(a) UML class diagram of the UI component model. (b) MDL descriptor of the Policy component.

1

1

Fig. 2. The mashArt UI component model with an example of component descriptor

– Abstract interface descriptions: Similarly to WSDL for web services, com-
ponent interfaces and their features should be described abstractly and hide
their internal details from the composer and the user. Internally, components
may then be implemented via multiple technologies and protocols.

We regard these principles as particularly important for the development of
mashup components. The solutions proposed in the next sections aim at putting
them into practice.

3 A model for mashup components

Mashups are typically characterized by the integration of a variety of differ-
ent components available on the Web. Among the most prominent component
technologies we find, for example, SOAP/WSDL and RESTful web services,
RSS/Atom feeds, and XML data sources. Most of these components rely on stan-
dard languages, technologies, or communication protocols. Yet, when it comes to
more complex UI components, i.e., mashup components that are standalone ap-
plications with their own data, application, and presentation layer, no commonly
accepted standard has emerged so far. We believe that a common high-level
model for UI components might boost the spreading of mashup applications.
Next we therefore present a component model that adequately captures the nec-
essary features.

In Figure 2(a) we show the UML class diagram of our mashArt model for UI
components. The main elements of the model are the user interface, events, and
operations. The three elements allow us to explain our idea of UI component:

– User interface/state: The user interface (UI) of the component is the com-
ponent’s graphical front-end that is rendered to the user. In this paper, we
focus on components with standard HTML interfaces rendered in a browser,
though technologies like Flash or Java Swing could be used as well. The

UI enables the user’s interaction with the component. In response to the
user’s actions, the component may change its state (e.g., by navigating to
another page of the application). For instance, our Policy component could
provide the user with the details of a given policy upon selection of the policy
from a list. The UI shown to the user can be interpreted as the state of the
interaction (e.g., before selection vs. after selection).

– Events: By interacting with the component, the user provides inputs that
are interpreted by the component. User actions are commonly based on low-
level events, such as mouse clicks, mouse moves, key strokes, and similar,
that depend on the input device used to interact with the UI (e.g., the mouse
or the keyboard). For the purpose of integration, however, UI components
should abstract from such low-level events and publish only “meaningful”
events to other components, i.e., events that provide information about the
semantics of the interaction (we call them component events). Each time a
user action, based on one or more low-level events, significantly changes the
state of a component, a respective component event should be generated. In
the case of the Policy component, the selection of a policy from the list should,
for example, launch a component event (e.g., PolicySelected) informing other
components about which policy has been selected.

– Operations: Not only the user should be able to change the internal state
of a component. If a mashup comprises multiple components, these must
typically be synchronized upon a user interaction with one of them, e.g., to
align displayed content. Synchronization of components is one of the main
features that characterize mashup applications (differently from traditional
portals, which aggregate multiple portlets without however providing for
their synchronization). Via operations, a UI component allows external ac-
tors (e.g., other components) to trigger state changes. That is, operations
allow the mashup application to propagate a user interaction from one com-
ponent to other components by mapping events to operations, thus providing
for the synchronization of component states. One particular operation, the
constructor, is in charge of setting up the component at startup.

The synchronization of components is event-based. Events generate outputs
(parameters), operations consume them. We propose to use parameters that are
simple name-value pairs, in line with the structure of the query string in standard
URLs. At the UI layer, synchronization does not require the transportation of
large amounts of data from one component to another (this is typically handled
by web services at the application or data layer). Component events with simple
synchronization information (e.g., the name or the identifier of a policy) suffice
to align the state of components that are able to understand the meaning of the
event and its parameters. Custom data types might also be specified.

4 Componentizing web applications

The above component model proposes the idea of “web application in the small”,
and abstracts the features of common web applications into the concepts of

AreaPolicy detailsAreaGoals

Rules

Rule
[Policy2Rule]

Policies

Policy
[Goal2Policy]

H

Goals

Goal Goal

Goal details

A

AreaProcessesByPolicy

Processes

Process
[Policy2Process]

Policy

Selected policy

Policy
OID
Name
Description

Process
OID
Name
Description

Rule
OID
Name
Expression

Goal
OID
Goal

1:N

1:1

1:N
1:1

1:N

0:N

(a) ER schema of
the Policy browser

(b) WebML hypertext schema of the Policy browser. The gray
annotation represents the logic of the Policy component to be developed.

AreaPoliciesByProcess

Policies

Policy
[Process2Policy]

Process
[Process.OID=OID] implied

[Process.Name=proc] implied

Process

OID

OID OID OID

ShowPolicy(policy)

ShowProcess(proc)

PolicySelected(policy)

PolicySelected(policy)

OID

Policy
[Policy.OID=OID] implied
[Policy.Name=policy] implied

Policy details

OID OID

OID

OID

Fig. 3. WebML model of the Policy application to be componentized

state, events, and operations. In this section, we show how this abstraction can
be leveraged to componentize a web application in a way that reconciles the
application’s standalone operation and it’s use as mashup component. In par-
ticular, we propose three ingredients: (i) an abstract component descriptor in
the mashArt Description Language (MDL), (ii) a micro format (the mashArt
Event Annotation - MEA) for the annotation of the application with event in-
formation, and (iii) a generic wrapper structure able to support the runtime
componentization of the application according to (i) and (ii).

We show the different concepts at work in the componentization of the Policy
Browser application, which consists of a set of HTML pages. To easily describe
the structure and logic of the application and to effectively highlight the concepts
and constructs necessary for its componentization, in this paper we show the
model of the application expressed according to the WebML notation [10] .

Figure 3(a) illustrates the WebML data schema that specifies the organiza-
tion of the contents published by the Policy Browser application. Each policy
consists of one or more rules and can be related to one or more business pro-
cesses. Policies are classified according to the compliance goals regarding given
legislations, laws, best practices, and similar.

Figure 3(b) shows the structure of the hypertext interface that allows one to
browse the policies; the gray annotations represent the componentization logic,
which we explain later. The schema specifies the pages that compose the appli-
cation (the containers), the content units that publish content extracted from
the application data source (the boxes inside the containers), and the links that
enable both the user navigation (the arrows) and the transport of parameters
(the labels) needed for the computation of units and pages.

The navigation starts from the home page Goals (identified by the H label),
where the user sees a list of goals (Goals unit) and, for each selected goal (Goal

details), a list of related policies (Policies unit). For each policy in the list, the
user can navigate to the page Policy details, which shows the data of the selected
policy (Policy details unit) and all the policy rules associated with it (Rules unit).
The user can also follow a link leading to the page ProcessesByPolicy, which shows
a short description of the selected policy (Selected policy) plus a summary of all
the processes (Processes) related with that policy. The selection of a process
leads the user to the page PoliciesByProcess, which shows the process details
(Process unit) and the description of all the policies (Policies unit) related with
that process. By selecting a policy, the user then reaches the Policy details page.

Such WebML hypertext schema describes the structure of the web application
as it is perceived by the human users of the application. Componentizing this
application instead means providing a programming interface (API), which can
be used by a mashup application to programmatically interact with it.

4.1 The mashArt Description Language (MDL)

In order to instantiate the component model described in Section 3, we use MDL,
an abstract and technology-agnostic description language for UI components,
which is similar to WSDL for web services. Given an application that we want
to componentize, MDL allows us to define a new component, to describe which
are the events and operations that characterize the component, and to define
data types and the constructor. There is no explicit language construct for the
state of the component, which therefore is handled internally by the component
in terms of the UI it manages. However, MDL allows us to describe state changes
in the form of events and operations. MDL is an extension of UISDL [8].

The gray annotations of the schema in Figure 3(b) highlight the events and
operations of the Policy component we would like to derive form the Policy
Browser application. We suppose that the selection of a policy from the Policies
unit in the Goals page corresponds to the event PolicySelected that carries the
parameter policy (i.e., the name of a policy). This event will be used to synchro-
nize the state of other components in the final BCM mashup (e.g., the process
browser), so that all components show related data. The two links departing
from the Policies index unit are both sources for this event: their navigation by
a user implies the selection of a policy and, hence, launches the event.

Our Policy component also exposes two operations. The operation ShowPro-
cess sets the name of the process to be shown to the value of the parameter proc.
The effect of this operation is the computation and rendering of the page Policies-
ByProcess with data about the selected process and its related policies. As repre-
sented in Figure 3(b), this corresponds to a navigation to the page PoliciesByPro-
cess, with the name of the process defined by the value of the proc parameter.
When the operation ShowProcess is enacted, the “implied” (optional) selector2

“Process.Name=proc” replaces the other implied selector “Process.OID=OID”,

2 In WebML, each unit inside a page is characterized by an entity of the data schema
plus a selector. The selector is a parameterized condition identifying the entity in-
stances to be displayed. Each unit also has a default selector that works with OIDs.

which is instead based on the process OID transported by the user-navigated
link entering the page. The operation ShowPolicy sets the name of the policy to
be shown. Similarly to the previous operation, it enacts the computation and
rendering of the page Policy details with the data about the policy identified by
the policy parameter.

Figure 2(b) shows the MDL descriptor capturing this component logic. The
XML snipped defines a UI component (binding attribute) named Policy, which
is stateful and can be accessed via the URL in the url attribute. We do not need
any custom data types. The descriptor specifies the event PolicySelected with its
parameter policy and the two operations ShowProcess and ShowPolicy. Finally,
the constructor specifies two parameters that allow the mashup composer to set
up the number of policies visible at the same time and the start policy.

The descriptor in Figure 2(b) fully specifies the external behavior of our
component. Of particular importance to the integration of a component is the
ref attribute of operations: it tells us how to invoke operations. From the spec-
ification in Figure 2(b), we know that the operation ShowProcess is invoked
via the following URL: http://mashart.org/registry/234/PolicyBrowser/
ShowProcess?proc=name. With the descriptor only, we are however not yet able
to derive how to intercept low-level events and how to translate them into compo-
nent events. As described in the next section, for this purpose we have introduced
a novel technique, the mashArt Event Annotation, for annotating the HTML of
the application pages.

4.2 The mashArt Event Annotation (MEA)

Operations are triggered from the outside when needed, events must be instead
raised in response to internal state changes. The generation of component events
is tightly coupled with user interactions, that is, with the actions performed by
the user during the component execution. A runtime mapping of low-level UI
events onto component events is needed, in order to filter out those low-level
events that raise component events, while discarding other low-level events.

We specify this mapping in the mashArt Event Annotation (MEA) micro
format, which allows us to associate component events with low-level events by
means of three simple annotations that can be added to HTML elements in form
of attributes. Candidate HTML elements are all those elements that are able to
generate low-level JavaScript (JS) events, such as click, mouse down, etc.). Table
1 summarizes the purpose of the three attributes, and gives examples about how
they can be used to specify the PolicySelected event introduced above.

The event name attribute, if specified and nonempty, gives a name to the
component event that can be raised by the HTML element carrying the attribute.
There might be multiple HTML elements raising the same event, i.e., an event
with the same name (e.g., the policy might be selected by navigating a catalog
of policies or by selecting it from a list of “Recently violated policies”). It is the
responsibility of the developer to assure that a same event is used with the same
meaning throughout the whole application.

Table 1. Annotation elements of the mashArt Event Annotation (MEA) micro format

Attribute Purpose and description

event name Defines a component event and binds it to an HTML element. For
instance, the markup
Privacy Policy specifies an HTML link that, if navigated, may
raise the PolicySelected event.

event binding Binds a component event to a JavaScript event. For example, we can ex-
plicitly bind the PolicySelected event to a click as follows: <A href=”...”
event name=”PolicySelected” event binding=”onClick”> Privacy Policy
. Events are identified through the name of their JavaScript event
handlers (e.g., onClick for a click). Multiple bindings can be specified
by separating the respective JS event handlers with commas.

event par Specifies event parameters. A single event parameter is specified
as follows: <A href=”...” event name=”PolicySelected” event binding
=”onClick” event par=”policy=PrivacyPolicy”> Privacy Policy .
Multiple parameter can be specified by separating them with & sym-
bols.

The event binding attribute allows the developer annotating the application
to specify which JS event actually triggers the component event. That is, the
event binding attribute specifies a binding of component events to native JS
events. If no binding is specified for a given component event, the JS click event
is used as default binding. This decision stems from the fact that in most cases
we can associate events (and operations) with teh selection of hypertext links
by means of mouse clicks.

Events may carry parameters that publish details about the specific event
instance that is being raised. For example, our PolicySelected event will typically
carry the name (or any other useful parameter) of the selected policy. If multiple
parameters are required, this can be easily specified inside the event par attribute
using the standard URL parameter convention: paramter1=value1¶meter2=
value2.... If an event can be raised by multiple HTML elements, it is the respon-
sibility of the developer to guarantee that each event consistently carries the
same parameters.

The generation of component events that do not derive from user interac-
tions, and instead are based on some component-internal logic (e.g., a timer or
asynchronous AJAX events), can be set up via hidden HTML elements. It is
enough to annotate the element as described above, and, when the component
event needs to be fired, to simulate the necessary low-level JS event on the hidden
element.

It is important to note that the values for event parameters can be generated
dynamically by the application to be componentized the same way it generates
on-the-fly hyperlinks. It suffices to fill the value of the event par attribute. The
values of event name and event binding typically do not change during runtime,
though this might be done as well.

opt

User HTML element Wrapper Execution framework

instantiate wrapper
(DIV id, MDL)

render element

Interact with element
launch JS event

get event name and binding

[event name not null and binding = JS event]

launch component event

get event parameters

event name and binding

event parameters

apply component CSS to DIV

alt

[else]

[source element = hyperlink and JS event = click]

get source element of event

load HTML into DIV

load new HTML into DIV

get href

href

In
te

rp
re

ta
tio

n
of

 lo
w

-le
ve

l e
ve

nt
s

in
to

 c
om

po
ne

nt
 e

ve
nt

s
St

ar
tu

p

Fig. 4. Sequence diagram illustrating the wrapping logic for annotated applications

4.3 The runtime componentization logic

Once we have the MDL descriptor of the application and the application is an-
notated accordingly, we are ready to componentize, i.e., wrap, the application.
The result of this process is typically a JavaScript object/function (other tech-
nologies, such as Flash or JavaFX, could be used as well) that provides program-
matic access to the application, i.e., an API. The API renders the component’s
UI, generates events, enacts operations, and allows for the “instantiation” of the
component inside an HTML DIV, SPAN, or IFRAME element (in the following we
focus on DIVs only). Given the MDL descriptor and suitable event annotations,
the wrapping logic is simple and generic, as illustrated in Figure 4.

We distinguish between a startup phase and an event interpretation phase.
During startup, the execution framework (either the mashup application or any
mashup platform) instantiates the wrapper by passing the identifier of the HTML
DIV element that will host the UI of the component along with the MDL de-
scriptor of the component. The wrapper loads the application into the DIV and
applies the component’s CSS rules.

The interpretation of events is triggered by the user or by the internal logic
of the component by generating a low-level JS event. Upon interception of such
an event, the wrapper identifies the source element of the event and tries to
access the event name and event binding attributes possibly annotated for the
source element. If an event name can be retrieved and the binding of the event
corresponds to the low-level event that has been raised, the wrapper gets the
possible event parameters and launches the component event to the framework;

The original Policy browser
application run as
standalone application

The mashup application
integrating the Policy

browser as component

The mashArt editor

Fig. 5. The componentized Policy Browser application running in the BCM mashup

otherwise, no action is performed. In order to support navigations, if a hyperlink
element has been clicked, the wrapper loads the destination page into the DIV.

As discussed above, for the enactment of operations (state changes) the wrap-
per interprets the operations as application URLs that can be invoked. Therefore,
if an operation needs to be executed, the wrapper simply packs the possible in-
put parameters into the query string of the operation and performs the HTTP
request. The response of the operation is rendered inside the DIV element.

The implementation of the outlined wrapper logic in JavaScript implies an-
swering some technical questions. We here list the most important issues, along
with the solutions we have adopted: In order to enable users to browse an ap-
plication inside a DIV element, we intercept all JS events and check for page
loading events. If such events occur, we take over control, load the new page
via AJAX, and render it in the DIV. In order to intercept events, we set generic
event handlers for the events we are looking for in the DIV. From a captured
event we can derive the source element and its possible annotation. In order to
load a page from a remote web server (JavaScript’s sandbox mechanism does not
allow direct access), we run a proxy servlet on our own server, which accesses
the remote page on behalf of the wrapper, a common practice in AJAX applica-
tions. In order to handle CSS files when instantiating a component, we load the
component’s CSS file and associate its formatting instructions to the DIV that
hosts the component. In order to avoid the collision of JavaScript code among
components, the wrapper, and the mashup application, we pack each component
into an own object and instantiate it inside an isolated scope.

Figure 5 shows at the left hand side the Policy Browser application running
in a browser. After componentization of the application for our mashArt plat-
form, at the right hand side the figure shows the final result: the BCM mashup,
which uses the Policy component to synchronize other two components displaying
compliance violations and affected process models.

4.4 Component development guidelines

The above approach shows how to componentize a web application starting from
its HTML markup. In order for an application to support an easy and effective
componentization, it is good that application developers follow a few rules of

thumb when developing applications: The layout of the application should sup-
port graceful transformations, e.g., by discarding fixed-size tables or by providing
for the dynamic arrangement of layout elements (floating). The use of frames is
prohibited, if the developer aims at wide use of the final component. CSS style
rules should focus on the main characteristics of the application’s appearance
and foresee the cascaded integration of the component’s rules with the ones of
the mashup application. For instance, absolute positioning of elements is depre-
cated, and background colors, border colors, and similar should be inherited from
the component’s container. Finally, JavaScript code (e.g., for dynamic HTML
features) should be designed with integration in mind. For example, if HTML
elements are to be accessed, it is good to access them via their identifiers and
not via their element type, as, once integrated into a mashup application, other
elements of the same type will be used by other components as well.

Actually, these guidelines apply the same way to the development of generic
web applications. However, in the case of applications that are componentized,
their violation might even stronger degrade the usability of the final component.

5 Related works

The current scenario in the development of mashup environments is mainly char-
acterized by two main challenges [11]: (i) the definition of mechanisms to solve
composition issues, such as the interoperability of heterogeneous components or
their dynamic configuration and composition, and (ii) the provision of easy-to-
use composition environments. All the most emergent mashup environments [2,
3, 7, 6, 5] have proposed solutions in this direction. However, very often they as-
sume the existence of ready-to-use components, thus neglecting the ensemble of
issues related to the development of quality components.

Some works concentrate on the provision of domain-specific, ready-to-use
mashup components (see for example [12]) allowing developers to extend their
applications with otherwise complicated or costly services. Some other works
go in the direction of enabling the configuration of visualization widgets inside
very specific programming environments (see for example [13]). The resulting
contributions address the needs of very specific domains. In general, as can be
observed in the most widely used mashup tools, there is a lack of support for the
(easy) creation of components; more specifically, the componentization of web
applications, as proposed in this paper, is largely uncovered.

Very few environments provide facilities for the creation of mashup com-
ponents. For example, Microsoft Popfly [6] includes the so-called Popfly block
creator, an environment for the definition of components (blocks in the Popfly
terminology). Besides describing the block logic (properties and exposed oper-
ations) in an XML-based format, the creation of a new block requires writing
ad hoc JavaScript code implementing the component logic. This could prevent
developers (especially those not acquainted with JavaScript) to build own blocks.

Based on a different paradigm, Intel MashMaker [4, 5] also offers support
for component creation. Users are enabled to personalize arbitrary web sites, by

adding on the fly widgets that provide visualizations of data extracted from other
web sites. The approach is based on the concept of extractors, which, based on
XPath expressions formulated by developers, enable the extraction of structured
data from a web page, from RDF data, or from the HTML code. Once extractors
have been defined or selected from a shared repository (extractors can be shared
among multiple users), MashMaker is able to suggest several ways in which data
can be integrated in the currently visited page, for example in the form of linked
data (a preview of the source page is shown if a link to that page is included
in the current page), or by using visualization widgets (simple text, images,
dynamic maps, etc.). Visualization widgets can be selected from a shared server-
side repository; alternatively users can create their own widgets, by defining
web pages in (X)HTML and JavaScript. Each widget is then described through
an XML-based configuration file that specifies information about the widget,
including links to the HTML files providing for the widget’s visualization.

With respect to the Popfly solution, MashMaker proposes a more intuitive
paradigm (from the users’ perspective) for the creation of components. However,
both environments ask the developer to become familiar with their proprietary
environments and languages. Also, the adopted description languages are based
on models that work well only within their mashup platform. The solution pro-
posed in this paper tries to overcome these shortcomings.

6 Conclusion

In this paper, we have shown that the development of mashup components does
not mandatorily require mashup- or platform-specific implementations or com-
plex, low-level concepts web developers are not familiar with. In some cases, it
suffices to equip an HTML web application with an abstract component descrip-
tor (MDL) and a set of event annotations (MEA), in order to allow everyone to
wrap the application and use it as a component. The combined use of MDL and
MEA allows one to derive a proper API toward a full-fledged application, unlike
other approaches that rather focus on the extraction of data (e.g., MashMaker).

The wrapper logic described in this paper is very general and can be easily
implemented for a variety of mashup tools and platforms. In order to wrap an
unlimited number of applications, it is enough to implement the wrapper once.
Annotated applications can then be reused by multiple mashups, a feature that
adds value to the original applications. The benefit for component developers is
that they can use their preferred IDEs, web development tools, or programming
languages and only need to abstractly describe and annotate their applications.
The described technique intrinsically helps them to respect our principles for
good mashup components.

A point to be highlighted is that conceptual modeling methods can easily
be extended to allow component developers to annotate the conceptual models
instead of the HTML code of an application. MEA annotations and MDL de-
scriptors can then be generated from the models, along with the actual code of
the application. This elevates the componentization concerns to a higher level of

abstraction – the one provided by the adopted conceptual model – and further
speeds up component development. For instance, our first experiments show that
generating MDL and MEA from WebML schemas is feasible.

It is important to note that the proposed approach also works if no annotation
or description is provided at all. We can still wrap the application and integrate it
into a composite application, without however supporting events and operations.
Ad hoc events and operations can be managed by the mashup developer by
extending the generic wrapper with additional code adding the necessary logic
to the wrapped application from the outside.

As a next step, on the one hand we plan to develop an environment for the
creation of mashup components as described in this paper, so as to guide the
developer (or the skilled web user) in the description and annotation of existing
web applications. On the other hand, we need to investigate further how to
enable data passing of complex data structures (e.g., an XML file) and how to
solve interoperability problems that might arise when integrating UI components
with web services. We are however confident that the ideas introduced in this
paper will accommodate the necessary extensions.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding UI Integration: A
survey of problems, technologies. Internet Computing 12 (2008) 44–52

2. Yahoo!: Pipes. http://pipes.yahoo.com/pipes/ (2009)
3. Google: Google Mashup Editor. http://code.google.com/intl/it/gme/ (2009)
4. Ennals, R., Garofalakis, M.N.: MashMaker: Mashups for the Masses. In Chan,

C.Y., Ooi, B.C., Zhou, A., eds.: SIGMOD Conference, ACM (2007) 1116–1118
5. Intel: MahMaker. http://mashmaker.intel.com/web/ (2009)
6. Microsoft: Popfly. http://www.popfly.com/ (2009)
7. IBM: Mashup Center. http://www-01.ibm.com/software/info/mashup-center/

(2009)
8. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-

work for Rapid Integration of Presentation Components. In: Proc. of WWW’07,
ACM Press (2007) 923 – 932

9. Microformats.org: Microformats. http://microformats.org/about/ (2009)
10. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: De-

signing Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA (2002)

11. Makela, E., Viljanen, K., Alm, O., Tuominen, J., Valkeapaa, O., Kauppinen, T.,
Kurki, J., Sinkkila, R., Kansala, T., Lindroos, R., Suominen, O., Ruotsalo, T.,
Hyvonen, E.: Enabling the Semantic Web with Ready-to-Use Mash-Up Compo-
nents. In: Proc. of “First Industrial Results of Semantic Technologies”. (2007)

12. Benslimane, D., Dustdar, S., Sheth, A.: Services Mashups: The New Generation
of Web Applications. IEEE Internet Computing 12 (2008) 13–15

13. Tummarello, G., Morbidoni, C., Nucci, M., Panzarino, O.: Brainlets: ”instant”
Semantic Web applications. In: Proc. of the 2nd Workshop on Scripting for the
Semantic Web. (2006)

