
Live, Personal Data Integration
through UI-Oriented Computing

Florian Daniel

University of Trento
Via Sommarive 9, I-38123, Povo (TN), Italy

daniel@disi.unitn.it

Abstract. This paper proposes a new perspective on the problem of
data integration on the Web: the one of the Surface Web. It introduces
the concept of UI-oriented computing as a computing paradigm whose
core ingredient are the user interfaces that build up the Surface Web, and
shows how a sensible mapping of data integration tasks to user interface
elements and user interactions is able to cope with data integration sce-
narios that so far have only be conceived for the Deep Web with its APIs
and Web services. The described approach provides a novel conceptual
and technological framework for practices, such as the integration of
data APIs/services and the extraction of content from Web pages, that
are common practice but still not adequately supported. The approach
targets both programmers and users alike and comes as an extensible,
open-source browser extension.

Keywords: Data integration, UI-oriented computing, mashups

1 Introduction

Data integration is the problem of “combining data residing at different sources,
and providing the user with a unified view of these data” [12]. The traditional fo-
cus of data integration has been on databases, most notably relational databases,
and on the problem of (re)writing queries over integrated views. With the ad-
vent of the World Wide Web, which as a matter of fact is a worldwide database,
the focus has shifted toward the Web and data whose formats range from well
structured (e.g., relational databases) to semi-structured (e.g., XML data) to
unstructured (e.g., data inside Web pages) [3].

The most notable technologies today to publish and access these kinds of
data over the Web are SOAP/WSDL Web services [1], RESTful Web services
[10], RSS/Atom feeds, or static XML/JSON/CSV resources. Alternatively, data
may be rendered in and scraped from HTML Web pages, for example, using
tools like Dapper (http://open.dapper.net) or similar that publish extracted
content again via any of the previous technologies.

All these technologies (except the Web pages) are oriented toward program-
mers, and understanding the underlying abstractions and usage conventions re-
quires significant software development expertise. This makes data integration a

2 F. Daniel

prerogative of skilled programmers, turns it into a complex and time-consuming
task (even for small integration scenarios), and prevents less skilled users from
getting the best value out of the data available on the Web.

Namoun et al. [13] studied the domain of end-user development (EUD) with
a specific focus on the Web and Web services. Their findings clearly show that
people without programming skills simply don’t know what services or data
formats are and that they lack the necessary understanding of how software
is developed. What they know is how to operate user interfaces (UIs). These
findings confirm our own experience with the development of mashups, mashup
tools, and EUD, where we tried to simplify the use of services, data sources, UI
widgets, and similar: insisting on abstracting APIs or services that were invented
for programmers does not mitigate enough the identified conceptual gap.

However, these findings also inspire a new perspective on the problem of in-
tegration on the Web, that of the Surface Web, and a novel computing paradigm
that we call UI-oriented computing (UIC). The underlying observation is that on
the Web almost everything that can be done via APIs, Web services and similar
(the Deep Web) can also be done via the UIs of the respective Web applications.
For instance, we are all accustomed to book our trips to conferences, including
train tickets, hotel reservations, flight tickets and car rentals, without having
to issue Web service calls ourselves and, hence, abandon the Surface Web. All
functionalities we need are available through the UIs of the applications.

The research question UIC poses is thus if and, if yes, which of the con-
ventional Web engineering tasks can be achieved if we start from the UIs of
applications, instead of from their APIs or services. In our prior work [7], we al-
ready investigated how to turn UIs into programmable artifacts and introduced
the idea of interactive APIs (iAPIs), that is, APIs users can interact with via
suitable UIs. In this paper, we focus on the case of data integration following
the UIC paradigm and show that the benefits that can be achieved are not only
for users but also for programmers. Concretely, this paper makes the following
contributions to the state of the art:

– A conceptual model for UI-oriented data integration;
– A microformat for HTML able to turn UIs into interactive APIs;
– The implementation of a runtime middleware for UI-oriented computing

applications;
– The implementation of design time support for UI-oriented computing for

both programmers (a UIC JavaScript library) and common users (an inter-
active, visual editor); and

– A case study of UI-oriented data integration in practice, demonstrating the
philosophy and viability of the approach.

Next, we describe the scenario we have in mind, we identify its requirements
and outline how we approach the design of a UI-oriented computing paradigm for
the specific instance of data integration. We introduce the microformat for iAPIs,
their runtime and design time support, and apply the UI-oriented computing
paradigm to the example scenario. Then we compare the proposed paradigm
with the state of the art and discuss benefits, limitations and future work.

Personal Data Integration through UI-Oriented Computing 3

2 Scenario and approach

Let’s imagine we would like to integrate the publications by two different authors
into one list of publications, for example, to assemble a research group’s publica-
tions starting from the individual group members’ personal websites. Both source
lists of publications are published via regular HTML Web pages and rendered as
tables, itemized or numbered lists, or paragraphs. In order to group publications
into topics, we would also like to filter publications based on given keywords
(e.g., “iAPI”) and eliminate possible duplicates if the two authors published a
paper together. Eventually, we would like to be able to embed the integrated
list of publications into the group’s website in a permanent, yet dynamically
updated fashion. That is, we do not want to extract and statically store the list
of publications, but we would like the integrated list to dynamically fetch and
integrate data on the fly each time we access the group’s website.

Implementing the described scenario by starting from the UIs of the source
pages is not possible with the current state of the art: integrating data on the
Web still means either writing code to extract content from Web pages (which we
want to prevent) or writing code to interact with Web services or APIs (which
we do not have). UIs are still only interfaces toward applications and do not
provide users with fine-grained access to backend APIs or services.

2.1 Assumptions

The assumptions to approach the scenario from a UI perspective are that (i) all
data we are interested in are rendered inside common Web pages (at least part
thereof), (ii) pages are encoded in HTML and rendered inside a Web browser,
(iii) the developers integrating data are either programmers or users, and (iv)
we do not want to directly manipulate any API or Web service of the Deep Web.

2.2 Requirements

The core requirements for a data integration paradigm based on UIs and UI
interactions only can thus be summarized as follows:

– Infrastructure requirements
1. UI elements, such as tables, lists, paragraphs and similar, must be turned

into artifacts that can be programmed to enable data reuse.
2. A suitable runtime environment is needed to execute programs.
3. A UI-oriented computing middleware is needed to manage network com-

munications among UI elements distributed over different applications.
– User requirements

4. UI constructs and usage conventions are needed to enable the user to ex-
press data integration operations, such as data access, formatting, unions
and similar via UI elements.

5. Since users are not able to modify the source of pages, a persistent storage
of UI-oriented data integration logics for repeated execution is needed.

4 F. Daniel

– Programmer requirements
6. Programmers must be enabled to programmatically integrate data start-

ing from the abstractions of requirement 1.
7. Programmers that have full access to the source of their Web pages may

want to embed their integration logic directly into their pages.

2.3 Approach

In line with the UI orientation pushed forward in this paper, the approach to
satisfy these requirements proposes a new kind of “abstraction”: no abstrac-
tion. The intuition is to turn UI elements into interactive artifacts that, besides
their primary purpose in the page (e.g., rendering data), also serve to access
a set of operations that can be performed on the artifacts (e.g., reusing data).
Operations can be enacted either interactively, for example, by pointing and
clicking elements, choosing options, dragging and dropping them, and similar –
all interaction modalities that are native to UIs – or programmatically.

A first version of the necessary technology we have already introduced in [7],
i.e., interactive APIs (requirement R1); we refine them in this paper and equip
them with the necessary runtime support. iAPIs come as a binomial of a micro-
format for the annotation of HTML elements with data structures and operations
and a UIC engine able to interpret the annotations and to run UI-oriented data
integrations (R2). The engine is implemented as a browser extension. A dedi-
cated iAPI editor injects into the page graphical controls that allow the user to
specify data integration logics interactively (R4). The UIC engine maps them to
a set of iAPI-specific JavaScript functions implementing the respective runtime
support. The library of JavaScript functions can also be programmed directly
by programmers (R6), without the need for interacting with UI elements. To
users, the UI elements act as proxies toward the features of the library. A UI-
oriented computing middleware (R3) complements the library; both are part
of the browser plug-in. It takes care of setting up communications among inte-
grated applications (e.g., to load data dynamically from third-party pages) and
of storing interactively defined integration logics in the browser’s local storage
(R5). Programmers with access to the source code of a page can inject their
JavaScript code directly into it (R7).

3 Publishing data

In principle, each type of content accessible via the Surface Web can be ex-
tracted and reused as is for the development of new, composite applications. In
practice, there are however several limitations to this approach, which makes
content extraction not robust if not properly supported by the providers of the
data. For instance, HTML has been invented to describe documents with con-
tent, layout and styles and less for the description of data. As a consequence,
data structures are not always clearly identifiable from the HTML markup of
a page, for example, because inconsistent markup elements are used for similar

Personal Data Integration through UI-Oriented Computing 5

data structures. That is, HTML markup may be ambiguous when it comes to
understanding data structures. Next, the layout and style of applications typ-
ically evolve over time, e.g., to stick to changing tastes of their users. Some
modifications do not affect the structure of the HTML markup and, hence, do
not affect possible data extraction logics; other modifications however alter the
HTML markup and extraction methods may fail to adapt. Finally, big datasets
may be published either inside one page using the vertical extension of the page
or they may be paginated, that is, split over multiple pages interlinked by data
navigation controls. Data spread over multiple pages is again hard to extract.

A UI-oriented approach to publishing data must take these issues into account
and devise a technique that allows the provider of the data to describe and
advertise available data sources and the consumer to rely on a robust interface
toward them, so as to be able to build dependable software on top of it. The
solution we propose in this paper is equipping the HTML markup of pages with
suitable annotations that (i) identify interactive APIs inside Web pages, (i) guide
the access to data, and (ii) act as a contract between provider and consumer.

3.1 Identifying data sources

Data on the Web are structured into Web pages and rendered by the browser us-
ing a variety of different visualization elements in function of the data structures
to be rendered: tables, itemized or enumerated lists, paragraphs, div elements,
or similar can all be seen as proxies toward the data they render. Which exact
elements inside a page in fact do provide access to reusable data can be identified
by suitably annotating them. For instance, the following code fragment identifies
a table as an iAPI (h-iapi) that provides access to data that can be extracted
from the page, specifically a dataset of publications (e-data:Publications):

<table id="1" class="h-iapi e-data:Publications"> ... </table>

The annotation follows the conventions of the microformats 2 proposal (http:
//microformats.org/wiki/microformats2). The convention is based on CSS
class names and makes use of prefixes to facilitate the implementation of parsers.
Specifically, the prefixes used in the proposed iAPI microformat are (Table 1
summarizes the instructions used in this paper and introduced in the following):
h-* for the root classname that identifies the microformat, e-* for elements to
be parsed as HTML, p-* for text properties, and u-* for URLs.

The previous annotation of the table did not provide any link to external
resources. This means the data published through the iAPI can be extracted
from the HTML markup. If the provider of the data in addition wants to link
the table with an external data source, such as an RSS feed, a JSON file, or a
RESTful or SOAP/WSDL Web service, this can be done by adding a u-json,
u-rss or u-xml instruction as shown in the following code lines:

<table id="1" class="h−iapi e−data:Publications u-json:http://source">
... </table>

6 F. Daniel

Instruction Description

h-iapi Qualifies the annotated HTML element as iAPI
e-data:label Qualifies the iAPI as data source; label is a human-readable description
e-item:label Identifies data items inside a feed of data; label names items
p-attr:label Structures data items into attributes; label names attributes
h-card Identifies the h-card microformat (http://microformats.org/wiki/h-card)
u-json:url Identifies a JSON data source; url specifies the URL of the source
u-rss:url Identifies an RSS data source; url specifies the URL of the source
u-xml:url Identifies an XML data source; url specifies the URL of the source
e-item:label:key Identifies data items inside an external data source; label gives a name to data

items; key tells how to identify the item in the data source
p-attr:label:key Structures data items into attributes; label gives names to data attributes; key

tells how to identify the attribute in the data source

Table 1. Summary of the microformat instructions to annotate data source iAPIs

If no external link is provided, data is mandatorily extracted from the HTML
markup. If an external link is provided, data can either be extracted from the
markup or fetched from the linked resource. The external resource is particularly
helpful when data are paginated, and it would not be possible to extract the
complete dataset from one page. In this case, the external resource can provide
direct access to the full dataset with one single query.

3.2 Describing data structures

The structure of rendered data is typically not evident on the Web. Some HTML
elements are self-evident, such as tables, which have attributes (columns) and
items (rows), while others are less able to express structural information, such
as lists, paragraphs, div elements or plain text. Supporting the reuse of data
therefore means equipping standard HTML elements with additional semantics
that express the necessary structural information. Again, this can be achieved
with sensible annotations of the HTML markup.

There are two ways to annotate iAPIs, in order to describe data structures: If
data already comply with any of the microformats proposed by microformats.

org, such as h-adr for addresses or h-card for business cards, the respective
microformat can be used. If instead a custom data structure is needed, it is
possible to annotate the iAPI with iAPI-specific instructions.

A data iAPI based on a microformat is annotated as shown in the following
for the case of an h-card:

<div id="1" class="h−iapi e−data:Contact h-card">
Florian Daniel
University of Trento

</div>

The instruction h-iapi qualifies the div as iAPI, e-data:Contact tells that
the data published by the iAPI is a contact, while the instruction h-card is
the standard annotation of the h-card microformat, which proposes a set of
pre-defined instructions, e.g., p-name and p-org, to identify the name and the
organization of the contact, respectively.

A data iAPI that uses a custom data format can be described as follows:

Personal Data Integration through UI-Oriented Computing 7

<table id="1" class="h−iapi e−data:Publications">
<tr class="e-item:Publication">

<td class="p-attr:Authors">F. Daniel and A. Furlan</td>
<td class="p-attr:Title">The Interactive API (iAPI)</td>
<td class="p-attr:Event">ComposableWeb 2013</td>

</tr>
... </table>

The annotation of the root node of the iAPI is as before. The instruc-
tion e-item:label marks up data items of type label (Publication), while
p-attr:label structures items into attributes of type label (Author, Title,
Event).

If the data iAPI provides access to an external data source, it is generally
not possible to derive the structure of the external data from the structure of
the HTML elements inside the iAPI. In fact, it is not only necessary to describe
the structure of the data, but also to specify how to identify the structure inside
the external data source. The following code provides an example of how to
annotated a JSON resource:

<table id="1" class="h−iapi e−data:Publications u−json:http://source
e-item:Publication:pubs
p-attr:Author:auth
p-attr:Tile:title
p-attr:Event:event">
... </table>

The instructions e-item:label:key and p-attr:label:key define data items
and their attributes (Publication and Author, Title, Event) and how to identify
them inside the data source using a key that can be looked up (pubs, auth, title,
event). If no keys are defined for the data items, per default a flat structure of
the data source is assumed: an array of structured items. That is, each first-level
entry of the data source (be it JSON, RSS or XML) is interpreted as a data
item, and the second-level entries are interpreted as attributes.

It is important to note that the described approach to annotate data fo-
cuses on two aspects of the data: structure (the nesting of elements) and mean-
ing (the human-readable labels). For simplicity, the proposed microformat does
not yet feature data types, such as date, integer, string, or similar. This has
as a consequence that all data fields are interpreted as strings. The micor-
format does not provide for machine-readable semantics either, e.g., using Se-
mantic Web standards like RDF (http://www.w3.org/RDF/) or RDFa (http:
//www.w3.org/TR/xhtml-rdfa-primer/). The current target are humans.

4 Integrating data

Expressing a data integration logic is usually achieved by coding the logic in some
programming language equipped with constructs that enable fetching data, stor-
ing them in variables, modifying data structures, and so on. Starting from UIs,
the constructs we have are, however, UI elements like tables or lists (identified

8 F. Daniel

by the iAPI annotations), user interactions like clicking, selecting, dragging and
dropping, and input forms that can be used to ask for user inputs needed to
configure the integration logic. In this section, we show how we use these UI
constructs to enable an interactive, visual data integration paradigm. Then, we
explain the functions of the underlying code library that (i) enables program-
mers to code UI-oriented data integrations and (ii) serves as target language to
map the UI-oriented data integration logic into an executable format.

4.1 Interactive, visual data integration

Following a UI-oriented perspective, we do not want to deal with technical as-
pects (the how); instead, we want to concentrate our focus on what we want
to achieve. For instance, given a source page with a dataset x that we want to
reuse and a target page that contains an empty table y, the problem is rather
how to specify interactively that we want to “reuse the data of table/list x in
the source page inside table y of the target page.” That is, we want to express
the data integration logic declaratively, without having to specify how this logic
is executed.

In this respect, it is important to note that there does not exist one single
correct mapping of data integration operations to UI constructs. Specifying that
one wants to reuse a given dataset found inside a Web page can be done by filling
a form with the necessary details, drawing a table and linking it to the dataset,
copying and pasting the table from the source page to the target page, etc. All
of these modalities may be suitable metaphors. Which one is best (if any) is an
HCI question that is out of the scope of this paper.

Accessing data. The first step toward the integration of different data sources
is accessing and loading data. Given the types of data iAPIs described earlier,
accessing data means either extracting data from the markup of annotated Web
pages or fetching data from a JSON, RSS or XML resource. Loading the data
then means visualizing them somehow inside a new page (the target page) – note
that in a UI-oriented paradigm the “memory” is the UI space, in that what is
not visible is not available for interaction and manipulation.

The mapping of the data access operation we propose in this paper is illus-
trated in Figure 1(a): a drag and drop user interaction of the identified dataset
from the source page to the target page, more specifically from a source iAPI to
a target iAPI. Dragging and dropping is a commonly used technique in modern
software systems to copy or move objects or content. The assumption is that
iAPIs inside a page are made visible to users via the graphical controls that
allow the users to interact with the iAPIs.

Selecting, projecting, ordering data. Once data are loaded into the target
page, these can be manipulated by the user. The basic operations in this respect
are selection and projection, the former specifying which characteristics data
items should satisfy in order for them to be included, the latter specifying which
attributes of the items should be included.

Personal Data Integration through UI-Oriented Computing 9

Source page 2

Publications
Get data

Target page

...ConfTitle Author

Target page

Apply filter conditions

Source page 1

Publications
Get data

Target page

Integrated publications

Publications

Drag and drop interaction

Table with source data to
be reused (source iAPI)

Empty table (target iAPI)
where to integrate data

...ConfTitle Author

Integrated publications Publications
Hide column:
 o Ttitle
 o Author
 o Conf
 o ...
Filter data

Column hiding/
showing option and
data filter option

Injected, graphical controls

Integrated table
with loaded data

Form for definition
of filter conditions

Input

Apply Cancel

 Op. Col.

Author Title Conf ...

Interactive controls
to chose between
ascending/
descending order

Integrated publications

Publications

Target table that already
contains data

Integrated publications

Integrate data

Apply Cancel

1

2
Pop-up window with
form to specify data
integration logics

(a) Data access through dragging and dropping (b) Selection and projection of data via injected
graphical controls

(c) Ordering data via interactive controls
inside the target table

(d) Joining/merging data by dropping new data on top of
existing data and choosing a data integration operation

Looks like there is already data in the
table. What would you like to to?

Merge data (with duplicates)
Merge data (without duplicates)
Join data based on column
Replace old data

Fig. 1. Basic data integration operations mapped to UI elements and user interactions.

One way of mapping these operations to UI constructs is illustrated in Figure
1(b): a pop-up window and an input form for the specification of filter conditions
(selection) and checkboxes for hiding/showing attributes (projection). Both fea-
tures are accessible via the graphical controls injected into the iAPI rendering
the data fetched from the source page.

The order of data (typically ascending vs. descending vs. no order) can also be
specified via suitable graphical controls. The typical solution to express the order
of data in a table today is adding order icons to the heading of the table, such as
illustrated in Figure 1(c). The order of data rendered using other visualizations,
such as lists or simple paragraphs, can be specified by injecting similar icons
when highlighted or via suitable entries in the respective iAPI’s context menu.

Joining and merging data. Finally, the key to integration is bringing together
different data sources. This means either joining or merging data (union), the
latter with or without keeping possible duplicates in the integrated dataset.

10 F. Daniel

Mapping these two operations into UI concepts asks for a whole process of
user interactions, not only for a single one. For instance, Figure 1(d) illustrates
the interpretation implemented in this paper: given a target page with an iAPI
that already contains data fetched from one data source, dragging and dropping
another data source on it allows the user to integrate the datasets of the two
sources. Upon dropping the second source on the first, a pop-up window asks
the user, given that there are already data rendered in the target iAPI, which
operation he wants to perform among merging data with/without duplicates,
joining data on a given attribute (column), or replacing the former data with
the new one.

4.2 Programmatic data integration

The previous UI-oriented data integration operations leverage on a library of pre-
defined, UI-oriented programming abstractions for their internal implementation.
The abstractions come in the form of a dedicated JavaScript module called iapi

and consist in a set of functions that provide programmatic access to UI-oriented
abstractions. The choice of JavaScript comes with two key benefits: (i) it makes
the data processing logic instantly executable inside the browser without re-
quiring any additional runtime support, and (ii) it provides programmers with
powerful programming abstractions based on standard Web technologies that
can easily be integrated into existing Web development projects.

The library internally adopts a canonical data format for all data loaded from
remote and processed inside the target page. The canonical format represents
all data as objects that store either key-value pairs or arrays of key-value pairs.
Each value can again be a key-value pair or an array of key-value pairs, and so
on. The keys serve as identifiers of data items or attributes, the values are the
actual data.

The functions of the library for UI-oriented data integration are (we discuss
the details of how to visualize data in the next section):

– iapi.fetchData(URL,id,callback(result)): loads data from iAPI id in
page URL; callback(result) names the callback function to be called once
the fetched data (result) are available for use.

– iapi.filter(data,filters,callback(result)): filters items in data (data
object in canonical format) according to the conditions expressed in filters

in terms of common comparators, e.g., =, <, >, etc.
– iapi.hide(data,options,callback(result)): hides the attributes of data

specified in options.
– iapi.order(data,attribute,logic,callback(result)): orders the items

in data according to logic (“asc” or “desc”) applied to attribute. If no
order is specified, data are rendered in the order they are loaded.

– iapi.unionAll(data1,data2,callback(result)): computes the union of
data1 and data2 and keeps possible duplicates in the result set.

– iapi.unionWithout(data1,data2,callback(result)): computes the union
of data1 and data2 without keeping duplicates in the result set.

Personal Data Integration through UI-Oriented Computing 11

– iapi.join(data1,data2,attr1,attr2,condition,callback(result)):
joins data1 and data2 based on the join condition condition (syntactically
similar to filter conditions) applied to attributes attr1 and attr2.

All functions are asynchronous and make use of callback functions, so as not
to block the regular processing of the host page while data are integrated.

5 Visualizing data

Target page

...ConfTitle Author

Integrated publications Publications
Format:
 o Table
 o List
 o Numb. list
 o ...

Available data formatting options

Fig. 2. Formatting data interac-
tively by choosing templates.

Also for the formatting and rendering of data
we distinguish the two paradigms illustrated
before: interactive, visual vs. programmatic.

Interactive, visual data visualization.
From a UI perspective, the problem is the
same as before for the data integration oper-
ations, that is, a mapping of data formatting
operations to UI constructs is needed. Figure 2
illustrates the solution proposed in this paper:
the user simply selects the preferred visualiza-
tion format from a list of formats. For simplic-
ity, the list of available formats is pre-defined
in the visual editing mode, and new formats
are added programmatically. The iAPI adapts
its appearance on the fly.

Programmatic data visualization. The rendering of data visualizations can
be achieved via dedicated HTML templates that, given a data object in canonical
format, expand the template with the given data values. The design of templates
is again based on the use of suitable annotations that specify the structural
properties of the template as well as the iAPI annotations to be added to the data
iAPI to be rendered. The following markup, for example, specifies a template
for a table:

<table id="tbl" class="h-iapitemp h−iapi e−data:Publications">
<tr> <td>Title</td> <td>Author</td> <td>Conf</td> </tr>
<tr class="e-itemtemp e−item:Publication">

<td class="e-attrtemp p−attr:Title"></td>
<td class="e-attrtemp p−attr:Author"></td>
<td class="e-attrtemp p−attr:Conf"></td>

</tr>
</table>

The template fixes the header of the table (Title, Author and Conf) as well
as the three td elements that will host the actual data values. The instruc-
tion h-iapitemp makes the table a template. The instructions e-itemtemp and
e-attrtemp identify the markup to be repeated for data items and attributes.
The attributes to be rendered are specified by the p-attr:label instruction
that specifies the respective key inside the canonical data object to be rendered.

12 F. Daniel

The Web

i

Browser window

UIC engine
(background script)

UIC engine
(content script)

Target page P2

<ul
class=
"iapi">
…

<table class="iapi">
…
</table>

Browser extension logo

Graphical iAPI controls

iAPI annotation

iAPI annotations

HTML
augmenter

Loader

HTML 5
messages

loads resources

injects content

Event
handlers

interprets annotations

HTML
augmenter

iapi
JS library

Local
storage

Extension
lifecyle

manager

Annotation parsers

iAPI parser

RSS parserh-card parser
JSON parser

injects controls

manages data

HTML
templ.
HTML
templ.
HTML
templ.

Storage manager

Chrome
messages

manages
icon

RSS

XML

iAPI editor
(injected script)

iAPI parser

react to user interactions

uses

JS
augmenter

injects JavaScript code

Fig. 3. Architecture of the UI-oriented computing environment as browser extension.

Given such a template, the programmatic visualization of a data object
is achieved using the JavaScript instruction $(selector).renderData(data,

template). The function is a plug-in of jQuery (http://jquery.com), which
is particularly powerful for the manipulation of DOM elements. The selector

identifies the iAPI in which data are to be rendered; data and template (the
HTML identifier) are the data object and template to be used. If no template is
specified, a default visualization format is chosen, e.g., a table for bi-dimensional
data or a list for uni-dimensional data (an array).

6 UI-oriented computing infrastructure

In line with the UI orientation of the former sections, so far we did not concen-
trate on how to actually turn the described concepts into a running application.
In fact, neglecting these aspects is the very idea of UI-oriented computing and the
driver underlying the idea. However, enabling the introduced data integration
paradigm requires the availability of a suitable UI-oriented computing infras-
tructure. The description of this infrastructure is the purpose of this section.

Figure 3 shows the internal architecture of the current prototype, which
comes as a Google Chrome browser extension. The extension provides the browser

Personal Data Integration through UI-Oriented Computing 13

with support for iAPIs and UI-oriented computing. The infrastructure comes
with two core elements: a UIC engine for the execution of UI-oriented data inte-
gration logics and an iAPI editor for visual, interactive development. The UIC
engine is split into two parts: The background script provides core middleware
services, such as extension management (via its icon and pop-up menu), remote
resource access, data parsing, and local storage management. The content script
implements the iapi JavaScript library for programmatic UIC (the implemen-
tation is based on http://toddmotto.com/mastering-the-module-pattern),
injects JavaScript code into the page under development, and provides for the
rendering of data (using the jQuery plug-in). Content and background script
communicate via Chrome system messages. The separation into the two scripts
is imposed by Chrome’s protection logic: only the background script has access
to system features like local storage or extension management, while the content
script is able to access and modify the DOM of the page shown in the browser.
The iAPI editor comes as JavaScript code that is injected into the Web page
under development. It parses the annotations of the iAPIs inside the page, aug-
ments them accordingly with graphical controls, and injects the event handlers
necessary to intercept user interactions that can be turned into JavaScript data
integration logics (in turn, injected into the page by the content script). Editor
and content script communicate via standard HTML 5 messages.

One of the key features of the editor is the abilityto pre-render templates for
data visualization. In fact, there are two types of templates, depending on their
flexibility: static templates and dynamic templates. The former are templates
whose structure is known at design time of the template, e.g., if the programmer
wants to implement a data visualization for data whose structure is known (we
discussed this case in the previous section). The latter are templates whose
structure is only partially known at design time, since the structure of the data
to be rendered is only known at rendering time of the data. This is the case
of the visual, interactive development in which the structure of the data to
be rendered is only known when actually interacting with a data iAPI. Static
templates, instead, suit development scenarios in which the programmer embeds
a purposefully tailored template in an own Web page.

The following markup implements, for example, the dynamic table template
that could be used to generate the static template of the previous section:

<table id="tbl" class="h-iapitemp h−iapi e−data:[label]">
<tr> <td class="e-attrtemp>[label]</td> </tr>
<tr class="e-itemtemp e−item:[label]">

<td class="e-attrtemp p−attr:[label]"></td>
</tr>

</table>

The [label] strings are replaced by the iAPI editor at runtime with keys
inside the canonical data object to be rendered; which key is used is determined
by the preceding instruction. HTML elements with the instruction e-attrtemp

are repeated for all attributes, elements with the instruction e-itemtemp are
repeated for all items in the data object. The iAPI editor relies on a library of

14 F. Daniel

dynamic templates, which it pre-renders on the fly into static templates, which
it hands over to the HTML augmenter of the UIC engine. The HTML augmenter
of the engine provides support for the rendering of static templates as specified
either by the editor or the programmer.

Operationally, the infrastructure supports visual, live data integration as fol-
lows: Upon loading a new page into the Web browser, the browser extension
looks for the presence of iAPIs inside the page. If one or more iAPIs are found,
the extension parses their annotations and injects the respective graphical con-
trols and event handlers into the HTML markup of the page. Now the user is
able to visually identify the iAPIs in the page by simply moving the mouse over
the page, which shows or hides available graphical controls. If the user expresses
a data integration logic using these controls and the respective user interactions,
the iAPI editor turns the logic into JavaScript code that is injected into the
page and automatically executed by the browser, providing the user with a vi-
sual and live development experience. All modifications applied to a page are
automatically stored by the extension in the browser’s local storage, using the
page’s URL as identifier. This allows the user to close a modified page and to
re-open it at a later stage without loosing applied modifications. When a page
is loaded into the browser, before enacting the iAPI editor the extension checks
if the local storage already contains modifications to be applied. If yes, it loads
them and injects them, restoring the state of the page as it was when the user
abandoned the page the last time.

Programmatically developed data integrations are inserted by the program-
mer directly into the source markup of the page and contain both the JavaScript
code of the integration logic and possible static HTML templates. This kind of
integration is thus automatically executed by the Web browser when loading
the page, thanks to the availability of the iapi JavaScript library, and does not
require further interventions by the UIC runtime environment unless the user of
the page decides to modify the page interactively.

Note that the clear separation of the visual, interactive development paradigm
(the iAPIs with their graphical controls) from the programmatic development
paradigm (JavaScript abstractions) also provides for a clear separation of the
visual iAPI editor from the runtime environment. While the execution logic of
data integrations always boils down to the operations discussed earlier in this
paper, the interpretation of how these are best expressed via UI elements and
user interactions is a matter of taste as well as of effective HCI. The implemented
architecture makes it easy to develop different visual editors with different con-
ventions than described on top of the current runtime environment.

The browser extension is available as open source on https://github.com/

floriandanielit/interactive-apis. The code is currently being refactored.

7 Case study

We are now ready to come back to our initial data integration scenario and to
show how it can be solved following the UIC approach. Figure 4 illustrates the

Personal Data Integration through UI-Oriented Computing 15

Home page of researcher 1

Publications
Get data

Publications

Group's website

Apply filter conditions

Home page of researcher 2

Publications
Get data

Group's website

Group's publications

Publications

...ConfTitle Author

Group's publications Publications
Hide column:
 o Ttitle
 o Author
 o Conf
 o ...
Filter data

iAPI

Apply Cancel

contains Title

Integrate data

Apply Cancel

(a) Integration of the publications by the
two researchers: drag and drop of the
respective lists of publications into the
group's website; the second drag and
drop operation requires selecting "merge
data (without diplicates).

Looks like there is already data in the
table. What would you like to to?

Merge data (with duplicates)
Merge data (without duplicates)
Join data based on column
Replace old data

1
2

3

4

(b) Filtering publications: the graphical controls of the newly created
iAPI with the integrated publications allows the user to specify the filter

condition that keeps only publications that contain "iAPI" in the title.

Fig. 4. UI-oriented computing solution to the initial data integration scenario.

steps that are necessary to develop the described data integration following the
visual, interactive development paradigm. The whole process consists of four dif-
ferent steps: (1) dragging and dropping the list of papers of the first researcher
into the group’s website, (2) dragging and dropping the publications of the sec-
ond researcher, (3) specifying that the two lists are to be merged without keeping
duplicates. This produces an iAPI inside the group’s website that contains all
publications. In order to show only the publications on the specific topic “iAPIs,”
it is enough to configure a suitable filter through the iAPI’s graphical controls
(4). This ends the data integration process. Throughout all these steps, the user
always experiences live the effect of his modifications, which allows him to easily
understand whether the applied operations achieve the effect he expected or not.

The video available at http://www.floriandaniel.it/demo/uic.mp4 gives
a more concrete feeling of the user experience of data integration as supported
by the current prototype implementation of the iAPI editor and UIC engine. The
showcased scenario is similar to the one of this paper, makes use of an auxiliary
page for intermediate data formatting, and also uses the projection feature.

The JavaScript code that corresponds to the above scenario is as follows:

iapi.fetchData("http://researcher1.edu/pubs", 1, function(pubs1) {
iapi.fetchData("http://researcher2.edu/pubs", 1, function(pubs2) {
iapi.unionAll(pubs1, pubs2, function(pubs) {
iapi.filter(pubs, "’Title’ contains ’iAPI’", function (pubs) {
$("#targetiAPI").renderData(pubs, "tbl");

}); }); }); });

16 F. Daniel

The code is automatically injected by the iAPI editor into the page of the
group. However, it could also be written by a programmer of the group and
embedded in the page, producing exactly the same result.

8 Related work

The idea pushed forward in this paper proposes a novel perspective on the field of
Web engineering in general. To the best of our knowledge, this is the first paper
that interprets standard UI elements – as already in use for the implementation
of Web UIs – as constructs to express generic computation logics. Traditionally,
computation logic for the Web is expressed either via programming languages,
such as Java, Python, PHP, JavaScript, and similar, or via model-driven develop-
ment formalisms [5]. Orthogonally to these paradigms, Web services [1, 10] have
emerged over the last decade as one of the most prominent Web technologies
that influenced integration on the Web in general. Their focus, however, is on
the application logic layer, not the presentation layer (the UIs) of applications.

Research on the reuse of UIs has mostly focused on the identification and def-
inition of UI-centric component technologies, such as standard W3C widgets [14]
and Java portlets [11] or proprietary formats [15], and the development of suit-
able integration environments [4, 6]. The former essentially apply the traditional
programmer perspective to UIs and still require integration at the application
logic layer, e.g., via Java or JavaScript. The latter generally follow a black-box
approach in the reuse of UIs: components are small, stand-alone applications
and they are either included or excluded in a composition/workspace. The Web
augmentation approach by Diaz et al. [9] is a partial exception: it allows for a
fine-grained reuse of data among websites, starting from their UIs. The approach
extracts data elements of limited size (individual labels or small fragments) with-
out requiring additional annotations; on the downside, the approach still requires
programming knowledge. None of these UI-centric approaches are however able
to implement the data integration scenario approached in this paper.

Mashups [8] are the approach that comes closest to the described scenario;
in fact, the discussed group website can be seen as a mashup, in particular, a
data mashup. It could, for instance, be approached with the help of Yahoo! Pipes,
JackBe Presto, or similar data mashup tools. Pipes (http://pipes.yahoo.com),
for example, proposes a model-driven paradigm that starts from the assumption
that the data to be integrated are available as RSS/Atom feeds or XML/JSON
resources. This is not supported in our scenario, but can be achieved using
content extraction tools like Dapper. The two lists of publications can then be
merged, duplicates eliminated, and the final filter condition applied by selecting
and configuring dedicated built-in constructs. The result is accessible as RSS
feed via Yahoo! Pipes. Although the described logic is very similar to the one of
our scenario, it still lacks the embedding of the result into the group’s website,
a task that requires manual development.

To aid both the extraction of content from HTML markup and the trans-
parent invocation of backend Web services, this paper proposes the use of ex-

Personal Data Integration through UI-Oriented Computing 17

plicit annotations, similar to microformats (http://microformats.org). The
approach does not yet focus on the annotation of data with semantics, as pro-
posed by the Semantic Web initiative [2]. The goal of the annotations in this
paper is to provide functional benefits to the consumers of data: annotations
allow the injection of graphical controls that actually enable the UIC paradigm.

9 Discussion and future work

The goal of this paper is to propose a completely new perspective on a rele-
vant problem in modern Web engineering, i.e., lightweight data integration. It
does so from an original perspective, that of the UIs of applications, and in a
holistic fashion. In fact, the proposed UI-oriented computing approach comes
with all the ingredients that are necessary to turn it into practice: (i) a micro-
format for the annotation of data published inside Web pages or via common
Web APIs/services, (ii) a UI-oriented development paradigm oriented toward
users without programming skills (the interactive APIs), (iii) a UI-oriented de-
velopment paradigm oriented toward programmers (the iAPI-specific JavaScript
library), and (iv) a functioning runtime environment for UI-oriented data inte-
grations (the browser extension).

On the one hand, UI-oriented computing raises the level of abstraction to
programmers, who are provided with high-level, UI-specific constructs for data
integration that allow them to neglect the technicalities of data access and ma-
nipulation. On the other hand, it lowers the level of abstraction to users, who are
enabled to express data integrations by manipulating familiar UI constructs and
do not have to learn programmer-oriented concepts that are abstract to them
(e.g., Web services or database queries).

The approach further comes with a set of beneficial side effects: The deploy-
ment of iAPIs is contextual to the deployment of their host application, and
they do not require separate deployment or maintenance. The documentation
of iAPIs comes for free; the UI and the injected graphical controls already tell
everything about them. The retrieval of iAPIs does not ask for new infrastruc-
ture or query paradigms; since iAPIs are an integral part of the Surface Web,
it is enough to query for desired data via common Web search. All these make
iAPIs and UI-oriented computing a natural integration paradigm for the Web
with huge potential for fast prototyping, client-side customization, and EUD.
The key difference of the proposed iAPI annotation from Semantic Web anno-
tations is that they can immediately be turned into readily usable functionality,
while generic semantic annotations lack clear target use cases and require clients
to provide own implementations for their uses cases.

The limitations of UI-oriented computing as of today are the relatively low
performance (UIs need to be instantiated locally), the missing support for more
advanced uses cases beyond data integration, the lack of standardization, and,
of course, the lack of annotated Web pages in general.

With our future work, we aim to address some of these limitations and to
develop an iAPI annotation tool that allows one to “extract” iAPIs from third-

18 F. Daniel

party websites, to apply the UI-oriented computing approach also to forms
(providing access to remote application logic) and sequences of user interac-
tions (processes), and to propose an approach to clone complete iAPIs includ-
ing their own UI. We aim to develop the respective iAPI microformat with
the help of the community via the W3C Interactive APIs Community Group
(http://www.w3.org/community/interative-apis).

Acknowledgements. My thanks go to A. Nouri and A. Zucchelli for their
criticism and help with the implementation of the Google Chrome extension.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitectures, and Applications. Springer, 2003.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
pages 34–43, May 2001.

3. M. J. Cafarella, A. Halevy, and N. Khoussainova. Data Integration for the Rela-
tional Web. Proc. VLDB Endow., 2(1):1090–1101, Aug. 2009.

4. C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo, and C. Francalanci.
DashMash: A Mashup Environment for End User Development. In ICWE 2011,
pages 152–166, 2011.

5. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. De-
signing Data-Intensive Web Applications. Morgan Kauffmann, 2002.

6. O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J. I. Fernández-Villamor, V. I.
Chepegin, J. A. Fornas, S. Wilson, C. Kögler, and H. Chang. End-user-oriented
telco mashups: the OMELETTE approach. In WWW 2012 (Companion Volume),
pages 235–238, 2012.

7. F. Daniel and A. Furlan. The Interactive API (iAPI). In ComposableWeb 2013
(ICWE 2013 Workshops), pages 3–15. Springer, July 2013.

8. F. Daniel and M. Matera. Mashups: Concepts, Models and Architectures. Springer,
2014.

9. O. Dı́az, C. Arellano, and M. Azanza. A Language for End-user Web Augmenta-
tion: Caring for Producers and Consumers Alike. ACM Trans. Web, 7(2):9:1–9:51,
May 2013.

10. R. Fielding. Architectural Styles and the Design of Network-based Software Archi-
tectures. Ph.d. dissertation, University of California, Irvine, 2007.

11. S. Hepper. Java Portlet Specification, Version 2.0, Early Draft. Technical Report
JSR 286, IBM Corp., http://download.oracle.com/otndocs/jcp/portlet-2.

0-edr-oth-JSpec/, July 2006.
12. M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS 2002, pages

233–246, 2002.
13. A. Namoun, T. Nestler, and A. D. Angeli. Service composition for non-

programmers: Prospects, problems, and design recommendations. In A. Brogi,
C. Pautasso, and G. A. Papadopoulos, editors, ECOWS, pages 123–130. IEEE
Computer Society, 2010.

14. Web Application Working Group. Widgets Family of Specifications. Technical
report, W3C, http://www.w3.org/2008/webapps/wiki/WidgetSpecs, May 2012.

15. J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera. A
Framework for Rapid Integration of Presentation Components. In WWW 2007,
pages 923–932, 2007.

