
MAY • JUNE 2007 1089-7801/07/$25.00 © 2007 IEEE Published by the IEEE Computer Society 59

En
gi

ne
er

in
g

th
e

W
eb

 T
ra

ckEditors : Michael Rabinovich • mis@br ics .dk
Steve Vinoski • v inosk i@ieee .org

Florian Daniel
and Maristella Matera
Politecnico di Milano

Jin Yu, Boualem Benatallah,
and Regis Saint-Paul
University of New South Wales

Fabio Casati
University of Trento

Understanding UI Integration
A Survey of Problems,
Technologies, and Opportunities

Creating composite applications from reusable components is an important

technique in software engineering and data management. Although a large body

of research and development covers integration at the data and application levels,

little work has been done to facilitate it at the presentation level. This article

discusses the existing user interface frameworks and component technologies

used in presentation integration, illustrates their strengths and weaknesses, and

presents some opportunities for future work.

T he difficulty of creating applications
from components has been a large
area of investigation in software engi-

neering and data management for the past
30 years. It has led to a body of research
and development in areas such as compo-
nent-based systems, enterprise information
integration, enterprise applications integra-
tion, and service composition.

Although the results from these efforts
have simplified integration at the data and
application levels, the research communi-
ty has done little work at the presentation
level. User interface (UI) development is
one of the most time-consuming parts of
application development, testing, and
maintenance,1 so, clearly, reusing UI com-

ponents is just as important as reusing
application logic. But even though frame-
works (such as Java Swing) help facilitate
current UI development, the integration of
coarse-grained and possibly stand-alone
applications at the UI level hasn’t received
much attention.

In this article, we investigate the prob-
lem of GUI integration — that is, the inte-
gration of components by combining
their presentation front ends instead of
their application logic or data schemas.
Here, component granularity is that of
stand-alone modules or applications; the
goal is to leverage components’ individ-
ual UIs to produce richer, composite
applications. The need for such integra-

tion is manifest, and examples are numerous:
applications that overlay real estate information
on Google Maps, aggregated dashboards that show
consoles monitoring different aspects of a comput-
er’s performance (such as http://h20229.www2.
hp.com/products/ovd/), or “Web” operating sys-
tems that allow coordinated interactions with mul-
tiple applications on the same Web page (see
www.eyeos.org). All these examples require coor-
dination among application UIs — zooming out on
a map, for example, means that overlaid informa-
tion on houses for sale must change as well.

This article aims to identify the basic charac-
teristics of UI integration as a research discipline,
discuss its main issues, and present the approaches
that developers can take to address them. Specifi-
cally, we describe and exemplify the characteris-
tics, challenges, and opportunities of UI integration
in comparison with data and application integra-
tion. This is important not only to understand why
UI integration differs from other integration prob-
lems — and, hence, requires unique solutions — but
also to understand and learn from its similarities.

Integration Layers
To describe the different types of integration, we
use a simple but concrete scenario based on actu-
al applications developed at Hewlett-Packard.
Consider a set of applications that monitor the per-
formance and quality of systems, networks, servic-
es, and business processes. In this scenario, a
system-monitoring tool logs metrics (such as CPU
use) for a set of machines and sends alerts in case
they go above certain thresholds, while a process-
monitoring application looks at business-process
executions and reports on key performance indi-
cators such as process duration or process instan-
tiation rate. Like most modern applications, each
of these is structured into three layers: presenta-
tion, application (also called the business-logic
layer), and data.

Historically, programmers developed monitor-
ing applications independently, but we increasing-
ly need to look at them in an integrated fashion.
This is useful for root-cause analysis (to under-
stand what system problem caused a delay at the
process level) as well as business-impact analysis
(to understand the “damage” that a backend sys-
tem’s failure or performance degradation caused
at the process level), and, in general, to have an
end-to-end view of managed IT systems. As a sim-
ple integration example, assume that two compo-

nents form an integrated monitoring application: a
business-process-monitoring tool and a system-
monitoring tool. In an integrated application,
when the user chooses to visualize a specific
process in the process-monitoring tool, the health
and availability status of its supporting systems
should appear in the system-monitoring applica-
tion. Let’s examine how to build it.

In data integration approaches,2 composite
applications have their own presentation and
application layers, whereas the data layer is an
integration of the data sources that component
applications maintain independently, as in Figure
1a. In our system-management scenario, the dif-
ferent monitoring applications collect data in their
local repositories, unaware that they’re the objects
of integration. An integration layer brings data
sources together and exposes a unified, homoge-
neous view to the composite application. The inte-
gration layer can materialize or remain virtual.

Data integration presents several issues, rang-
ing from the resolution of mismatches between
component data models (such as the same terms
having different meanings) to the construction and
maintenance of virtual schemas and query map-
pings between global and local schemas. It requires
little “cooperation” from component applications:
we can always tap into the applications’ databas-
es via SQL queries or Enterprise Information Inte-
gration (EII) technologies. The drawback is that
doing so requires a significant effort to understand
the data models, analyze semantic heterogeneities,
and maintain the composite schema in the wake of
changes to the component data schemas.3

Researchers have thoroughly studied appli-
cation integration over the past 30 years, even-
tually giving us technologies such as remote
procedure calls (RPCs), object brokers, and Web
services.4 In application integration, a composite
application has its own UI, but its business-logic
layer is developed by integrating the functions
that component applications expose, as in Figure
1b. In our management scenario, monitoring
applications could expose APIs that let clients
retrieve performance data for certain systems or
subscribe to alerts about performance degradation.
The composite application uses these APIs to get
information, correlate it across different monitor-
ing applications, and display a consolidated
overview on its GUI. When possible — that is,
when such APIs are available — this integration
model has several benefits, including

60 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

• the granularity of the functions that the com-
ponent applications provide is generally well
suited for high-level integration (for example,
we can tell an application to begin monitoring
machine xyz without considering how this
activity will affect data in the integrated appli-
cation’s database), and

• it’s more stable because the component appli-
cation is aware of the integration (it exposes
the API) and will attempt to stabilize the inter-
face across versions.

UI integration, as depicted in Figure 1c, should
aim to compose applications in the presentation
layer, leaving the responsibility of data and busi-
ness-logic management to each component. UI inte-
gration is particularly applicable when application
or data integration just isn’t feasible (such as when
applications don’t expose business-level APIs), or
when developing a new UI from scratch is too cost-
ly (such as when the component application
changes frequently or its UI is overly complex).

The UI Integration Problem
Researchers have studied four classes of problems
in data and application integration that are also
key issues in UI integration. They’re related to

• models and languages for specifying components;
• models and languages for specifying compo-

nent composition;
• communication styles through which compo-

nents can interact; and
• discovery and binding mechanisms (possibly

enacted at runtime) for identifying components.

Ideally, models and specifications must be sim-
ple enough for users to understand and easily
adopt, formal enough for applications and tools
to parse, and expressive enough to model a wide
range of concerns.

Let’s examine these four dimensions and intro-

duce a fifth that’s more specific to the UI integra-
tion problem.

Component Model
In application integration, components are essen-
tially characterized by an API and possibly a com-
ponent model (such as in Corba). In data
integration, data source schemas describe the com-
ponents, but only recently have external specifica-
tions received attention in UI integration. Indeed,
UI integration was mostly intended to reuse class
libraries, but performing integration at the presen-
tation layer also requires a component model that
can support complex interactions and coordination.
For each single component in our management sce-
nario, for example, we must describe

• the software interface of the component used
for integration, and

• the user interface of the component that
enables the interaction with it.

We can distinguish among several “degrees of
interoperability” that a UI component’s interface
allows.

GUI-only. Analogous to a traditional monolithic
desktop application, all interactions with GUI-only
components are performed through the compo-
nent’s UI logic. The only way to integrate a com-
ponent application is to intimately know its UI, be
able to track the user’s mouse position or key-
strokes, and thus understand what the component’s
UI shows and possibly even execute actions that
cause UI modifications (such as by having the com-
posite application simulate mouse clicks or key-
strokes). Integration in this case is a daunting task.

Hidden interface. In many Web applications, the
component has an interface that lets users control
its UI, but it isn’t publicly described. When inter-
acting with a Web application, for example, we can

MAY • JUNE 2007 61

Understanding UI Integration

Figure 1. Component integration at different levels. The integration of (a) different data sources, (b) distributed business
logic elements, and (c) two autonomous applications reveals how integration at the UI level can reduce development times
and costs and thus foster the reuse of UIs.

Application

Data source 1 Data source 2

Presentation
Business logic
Integration

Application

Data source 1
Business logic 1

Data source 2
Business logic 2

Presentation
Integration

Application

Integration

Data source 1
Business logic 1

Data source 2
Business logic 2

Presentation 1 Presentation 2

(a) (b) (c)

access and manipulate content by sending HTTP
requests and displaying responses. Such applica-
tions obey a general protocol for interaction
among clients (UIs) and applications, but it might
be hard to identify how this protocol is formulated
because it isn’t assumed to be used programmati-
cally by clients.

Published interface. In this ideal case, the compo-
nent provides a public description of its UI and an
API to manipulate it at runtime. A low-level API
might allow control of individual UI elements such
as button or text areas. A high-level API would
instead expose a set of entities — that is, observ-
able and controllable objects, such as “system” or
“network” in our monitoring example, as well as
operations to change entity status, such as “show
status of system xyz.”

Composition Language
In data integration, composition often occurs via
SQL views that allow data designers to express a
global schema as a set of views over local
schemas.2 In application integration, composi-
tion occurs either via general-purpose program-
ming languages such as Java, or dedicated
application integration languages, such as work-
flow or service composition languages (see www.
oasis-open.org/committees/tc_home.php?wg
_abbrev=wsbpel). Although little work has been
done in this direction for UI integration, we
believe that similar approaches should work here
as well. We distinguish between two kinds of
composition languages.

General-purpose programming languages. Devel-
opers can adopt third-generation languages for
application composition. Such languages are very
flexible but lack abstractions to coarse-grained
components (such as facilities for component dis-
covery and binding or high-level primitives for
synchronizing what UI components display).

Specialized composition languages. High-level lan-
guages, on the other hand, are typically used with
an XML syntax tailored to the composition of UI
components at the level of abstract/external descrip-
tions. The main benefit of such languages is higher-
level programming of the composition, which
leverages the component model’s characteristics. If
the component model has the notion of entities, for
example, the composition language would then pro-

vide primitives to directly deal with these concepts
(such as change the displayed entity).

Communication Style
In our monitoring example, we want to know how
monitoring components exchange UI events to
receive instructions on what to display or notify
other components about any user actions signifi-
cant to the composite application (a user focuses
on a different system, for example, so all UI com-
ponents need to refocus as well).

In data integration, components are typically
passive and don’t initiate communications with the
integrating application. This perspective is also
common in application integration, in which a
centralized entity (the composite application)
invokes components as needed, although fully dis-
tributed interactions have become more common
(such as a seller, buyer, and shipper interacting
without a central coordinator).

In UI integration, we can also distinguish
between centrally mediated communication, in
which the composite application has a central
coordinator that receives events from components
and issues instructions to manipulate component
UIs, and direct component-to-component commu-
nication, in which the composite application is a
coalition of individual components — no first-class
application orchestrates their activities. An addi-
tional distinction is the one between RPC-style
interaction, in which components exchange infor-
mation via method calls and returned data, and
publish-subscribe interaction,5 in which applica-
tions communicate in a loosely coupled way via
messages exchanged through message brokers. In
the latter case, a message broker distributes mes-
sages based on content or topic.

Discovery and Binding
Ultimately, UI integration involves identifying
which components to integrate and how to get a
reference to them (such as an object ID or a URI).
We can do this statically (at design or deployment
time) or dynamically (at runtime). In our monitor-
ing example, the problem is how the composite
application identifies and then binds to the rele-
vant monitoring applications.

In data and application integration, binding
between different data sources typically occurs at
design time, when we define the global data
schema. Although the integration middleware
allows dynamic discovery and binding (see http://

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

microsites.cmp.com/documents/s=9063/cujcexp
2007vinoski/),4 this flexibility remains largely
unexploited because of the difficulty of interact-
ing with newly discovered components, especial-
ly when another company provides them (its
reliability is questionable). In many cases, appli-
cations resort to combined static and dynamic
binding, in which the application designer iden-
tifies and tests a set of potential components and
the user then selects a subset of them at runtime
based on the task; we call this solution hybrid
binding, in which discovery is static, but we get
the reference at runtime. The same distinction is
possible in UI integration.

Component Visualization
So who is in charge of displaying a UI component,
the component itself or the composite application?
In our monitoring example, we want to know
whether components display their own monitor-
ing dashboard or whether the composite applica-
tion receives UI markup code from the components
and renders it.

Markup visualization requires interpretation
from a rendering engine (such as a browser or a
thin-client application) to translate the descriptions
into graphical elements. Markup specifications
typically describe static UI properties, whereas
scripting languages provide dynamic behavior. We
can also describe markup with document-oriented
languages (such as XHTML and Wireless Markup
Language [WML; www.openmobilealliance.org/
tech/affiliates/wap/wap-238-wml-20010911-a.pdf])
or UI languages that model sophisticated applica-
tion interfaces (such as eXtensible Application
Markup Language [XAML; http://msdn2.microsoft.
com/en-us/library/aa479869.aspx]; XML User In-
terface Language [XUL; www.mozilla.org/projects/
xul]; User Interface Markup Language [UIML;
www.uiml.org]; and eXtensible Interface Markup
Language [XIML; www.ximl.org]).

For visualization, we distinguish between two
different UIs.

Component-rendered UI. Here, the component
handles the UI’s rendering and display, thus the
composite application is a collection of the
components’ UIs. This is the case with classical
desktop applications that leverage executable com-
ponents of linked graphics libraries.

Markup-based UI. Here, the component returns UI

code and delegates the final UI’s rendering to
either the composite application or the environ-
ment in which the composite application executes.
The composite application must thus be able to
interpret the components’ UI code and allocate
suitable space on the display for component ren-
dering. In this case, user interaction with the com-
posite application generates UI events that the
component can handle directly via a suitable
scripting logic embedded in the component’s
markup, or the composite application can intercept
generated UI events and forward them to the com-
ponent for interpretation.

UI Composition Technologies
A few existing UI technologies provide some inter-
esting insights and might even become candidate

technologies for future UI composition. Table 1
compares the different UI technologies we consid-
er in the context of UI composition.

Desktop UI Components
UI composition was first considered for desktop
applications. The introduction of component tech-
nologies eventually provided an environment in
which applications developed with heterogeneous
languages could interoperate. A typical example
is ActiveX (http://msdn.microsoft.com/workshop/
components/activex/activex_node_entry.asp), which
leverages Microsoft’s COM technology for embed-
ding a complete application UI into host applica-
tions. Other examples include OpenDoc (http://
developer.apple.com/documentation/mac/ODProg-
Guide/ODProgGuide-2.html) and Bonobo (http://
developer.gnome.org/arch/component/bonobo.
html), which rely heavily on the underlying oper-
ating system or on component middleware for
interoperability.

By contrast, the Composite UI Application
Block (CAB; http://msdn2.microsoft.com/en-us/
library/aa480450.aspx) is a framework for UI com-

MAY • JUNE 2007 63

Understanding UI Integration

UI integration should leave
the responsibility of data and
business-logic management to
each component.

position in .NET with a container service that lets
developers build applications on loadable modules
or plug-ins. CAB components can be used with
any .NET language to build composite containers
and perform component-container communica-
tions. CAB further provides an event broker for
many-to-many, loosely coupled intercomponent
communication based on a publish–subscribe run-
time event model.

Eclipse’s Rich Client Platform (RCP; http://wiki.
eclipse.org/index.php/Rich_Client_Platform) pro-
vides a similar framework but includes an applica-
tion shell with UI facilities such as menus and
toolbars; it also offers a module-based API that lets
developers build applications on top of this shell.
In addition, Eclipse lets developers customize and
extend UI components (or plug-ins) via so-called
“extension points,” a combination of Java inter-
faces and XML markups that define component
interfaces and facilitate their loose coupling.

Desktop UI components typically use general-
purpose programming languages to integrate
components (C# for CAB and Java for RCP, for
example) because the component interfaces are
language-specific programming APIs. Components
perform their own UI rendering, and they could
support flexible communication styles, including
centrally mediated and component-to-component.
Both design-time and runtime bindings are sup-
ported as well, with the latter relying on language-
specific reflection mechanisms.

Many of the technologies for desktop UI com-
ponents are OS-dependent. Although CAB and

RCP don’t depend on the OS directly, they rely on
their respective runtime environments. The lack of
technology-agnostic, declarative interfaces makes
interoperation between components implemented
with different technologies difficult to achieve.

Browser Plug-In Components
In markup-based interfaces, we can get rich UI fea-
tures via embedded UI components such as Java
applets, ActiveX controls, and Macromedia Flash.

The external interface of such components is
very simple and usually requires only the proper
configuration parameters when embedding compo-
nents into the markup code (which represents the
composition language). Plug-in components provide
for their own rendering, with little further commu-
nication between components and the containing
Web page, or among components themselves. A Web
designer specifies component bindings at page-
authoring time; during runtime, the browser down-
loads and instantiates the components.

Embedded UI components are easy to use, but
their lack of a systematic communication frame-
work is a limitation. They can communicate
through ad hoc JavaScript, but this approach is far
from uniform. However, this limitation comes
more from the browser’s sand-box mechanism for
executing plug-ins than it does from the compo-
nent model itself.

Web Mashups
Web mashups are Web sites that wrap and reuse
third-party Web content (http://www-128.ibm.com/

64 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

Table 1. Comparison of current user interface (UI) integration approaches.

UI component Composition Communication Discovery Component
model and language style and binding visualization
external specification

Desktop UI Published, programmable General-purpose Centrally mediated and Static and dynamic Component rendered
components API programming component-to-component binding

language communication could
be supported

Browser plug-in Published, basic interface Document markup Centrally mediated; very Static binding Component rendered
components (startup configuration code and JavaScript limited intercomponent

parameters) communication via ad
hoc JavaScript

Web mashups Hidden interface; General-purpose Centrally mediated Static binding Typically markup
published API programming language based

Web portals Standard interface based on General-purpose Centrally mediated Static and Markup based
and portlets public API; interface wrapped programming (interportlet communication dynamic binding

as a Web service language under development)

developerworks/library/x-mashups.html?ca=dgr-ln
xw16MashupChallenges). The first mashups couldn’t
rely on APIs because the actual content providers
didn’t even know their Web sites were wrapped into
other applications. The first mashups for Google
Maps, for example, predated the official release of
the Google Maps API (www.google.com/apis/
maps/). The API is Google’s answer to the growing
number of hacked map integrations, in which peo-
ple read the whole AJAX code for the maps applica-
tion and derive the needed functionalities.

Publicly available APIs for mashups are still
rare, but their numbers are growing — most of them
come from hidden interfaces. A developer thus per-
forms the integration in an ad hoc fashion by lever-
aging whatever programming language the content
source provides, either on the client or server side.
Content providers typically provide content as
markup code, and mashup developers integrate it
in a centrally mediated way. Because content is
markup based, the composite application (running
in the browser) usually renders the components.
The lack of infrastructure makes component–
component communication difficult and only pro-
vides a way to statically bind components.

Because component interfaces might not be
stable, most effort in mashup development is in
manual testing. Due to the lack of framework sup-
port, code isolation isn’t guaranteed, so conflicts
among UI components can occur. Building a Web
mashup is a time-consuming and challenging task.

Web Portals and Portlets
Web portal development explicitly distinguishes
between UI components (portlets) and composite
applications (portals) and is probably the most
advanced approach to UI composition today. (The
term portlets comes from Java Portlets [http://
jcp.org/en/jsr/detail?id=168], but the following
considerations on portlets also hold for ASP.NET
Web Parts [http://msdn.microsoft.com/asp.net/
default.aspx?pull=/library/en-us/dnvs05/html/web
parts.asp].) Portlets are full-fledged, pluggable Web
application components; they generate document
markup fragments that adhere to certain rules, thus
facilitating content aggregation in portal servers
to ultimately form composite documents. Portal
servers typically let users customize composite
pages (by rearranging or showing/hiding portlets)
and provide single sign-on and role-based person-
alization. Example portlets include weather reports,
discussion forums, and stock quotes.

Analogous to Java servlets, portlets implement
a specific Java interface to the standard portlet
API, which was intended to help developers create
portlets that can plug into any standard-conform
portal server. JSR-168, for example, defines a run-
time environment for portlets and the Java API
(http://jcp.org/en/jsr/detail?id=286). For Java port-
lets, portal applications are based on the Java pro-
gramming language, whereas with Web Parts, a
Web developer programs applications in .NET. The
portal application aggregates its portlets’ markup
outputs and manages communication in a central-
ly mediated fashion. Portlets also allow both stat-
ic and dynamic binding; during runtime, the portal
application can make portlets available in a reg-
istry for user selection and positioning.

JSR-168 doesn’t provide interportlet commu-
nication mechanisms, but research is under way.
Web Parts supports interpart communication with
shared data structures, but this feature makes Web
Parts tightly coupled — a publish–subscribe event
mechanism might be more desirable.

Although portlets and Web Parts have similar
goals and architectures, they aren’t interoperable.
Web Services for Remote Portlets (WSRP; www.
oasis-open.org/committees/tc_home.php?wg_abbrev
=wsrp) addresses this issue at the protocol level by
exposing remote portlets as Web services; commu-
nications between the portal server (WSRP con-
sumer) and portlets (WSRP producer) occur via
SOAP, which means developers can build the portal
and portlets with different languages and runtime
frameworks. WSRP 1.0 doesn’t support interportlet
communication, but ongoing work in WSRP 2.0
proposes an event distribution mechanism.

A lthough the efforts we’ve described here are
certainly useful, we believe that effective stan-

dardization similar to that of standardizing serv-
ice interfaces is needed for UI integration to really
take off. In general, we see a lack of abstraction to
conceptualize composition-oriented features in the
context of UI integration.

UI development faces many challenges, includ-
ing those related to software engineering issues
and the human-computer interface. The integra-
tion of reusable components is a possible solution,
but it directly affects the complexity and richness
of the UIs we can produce for a given cost.
Research in this very interesting and challenging
domain is still in its early stages,6 and we believe

MAY • JUNE 2007 65

Understanding UI Integration

that the models and infrastructures for UI integra-
tion will be an area of great interest in the com-
ing years.

References

1. B.A. Myers and M.B. Rosson, “Survey on User Interface

Programming,” Proc. SIGCHI Conf. Human Factors in

Computing Systems, ACM Press, 1992, pp. 195–202.

2. M. Lenzerini, “Data Integration: A Theoretical Perspective,”

Proc. 21st ACM SIGMOD-SIGACT-SIGART Symp. Princi-

ples of Database Systems, ACM Press, 2002, pp. 233–246.

3. A. Halevy et al., “Enterprise Information Integration: Suc-

cesses, Challenges and Controversies,” Proc. 2005 ACM

SIGMOD Int’l Conf. Management of Data, ACM Press, 2005,

pp. 778–787.

4. G. Alonso et al., Web Services: Concepts, Architectures, and

Applications, Springer, 2004.

5. P.T. Eugster et al., “The Many Faces of Publish/Subscribe,”

ACM Computing Surveys, vol. 35, no. 2, 2003, pp. 114–131.

6. J. Yu et al., “A Framework for Rapid Integration of Presen-

tation Components,” to be published in Proc. 16th Int’l

World Wide Web Conf., ACM Press, 2007.

Florian Daniel is a postdoctoral researcher at the Politecnico di

Milano, Italy. His research interests include modeling and

design of Web applications, adaptivity, and business

processes. Daniel has a PhD in information technology from

Politecnico di Milano. Contact him at daniel@elet.polimi.it.

Jin Yu is a PhD candidate in computer science and engineering

at the University of New South Wales, Australia. His re-

search focuses on rich Internet applications and UI inte-

gration. Contact him at jyu@cse.unsw.edu.au.

Boualem Benatallah is an associate professor at the Universi-

ty of New South Wales, Australia. His interests include data

and application integration, service-oriented computing,

and data analysis for process and event-based systems.

Benatallah has a PhD in computer science from the Uni-

versity of Grenoble, France. Contact him at boualem@cse.

unsw.edu.au.

Fabio Casati is a full professor at the University of Trento, Italy.

His research interests include business process intelligence,

Web services, and data warehousing. Casati has a PhD in

computer science from Politecnico di Milano, Italy. Con-

tact him at casati@dit.unitn.it.

Maristella Matera is an assistant professor at Politecnico di

Milano, Italy. Her research interests span modeling, design,

and quality analysis of Web applications. Matera has a PhD

in computer science from Politecnico di Milano. Contact

her at matera@elet.polimi.it.

Regis Saint-Paul is an associate researcher at the University

of New South Wales, Australia. His research interests

include service-oriented architecture and data mining.

Saint-Paul has a PhD in computer science from the Uni-

versity of Nantes, France. Contact him at regiss@cse.

unsw.edu.au.

By Susan K. Land
Northrup Grumman

Software process definition,
documentation, and improvement
are integral parts of a software
engineering organization. This
ReadyNote gives engineers
practical support for such
work by analyzing the specific
documentation requirements
that support the CMMI Project
Planning process area. $19
www.computer.org/ReadyNotes

IEEE Software Engineering Standards Support
for the CMMI Project Planning Process Area

IEEE ReadyNotes

66 www.computer.org/internet/ IEEE INTERNET COMPUTING

Engineering the Web Track

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 72.00000
 72.00000
 72.00000
 72.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

