
Distributed Orchestration of User Interfaces

Florian Daniela,1, Stefano Soia, Stefano Tranquillinia, Fabio Casatia, Chang Hengb, Li Yanb

aDepartment of Information Engineering and Computer Science, University of Trento
Via Sommarive 5, 38123 Povo (TN), Italy

bHuawei Technologies
Shenzhen, P.R. China

Abstract

Workflow management systems focus on the coordination of people and work items, service composition approaches
on the coordination of service invocations, and, recently, web mashups have started focusing on the integration and co-
ordination of pieces of user interfaces (UIs), e.g., a Google map, inside simple web pages. While these three approaches
have evolved in a rather isolated fashion – although they can be seen as evolution of the componentization and coordi-
nation idea from people to services to UIs – in this paper we describe a component-based development paradigm that
conciliates the core strengths of these three approaches inside a single model and language. We call this new paradigm
distributed UI orchestration, so as to reflect the mashup-like and process-based nature of our target applications. In
order to aid developers in implementing UI orchestrations, we equip the described model and language with suitable
design, deployment, and runtime instruments, covering the whole life cycle of distributed UI orchestrations.

Keywords: UI orchestration, Distributed UIs, UI orchestration patterns, BPEL4UI, Mashups, UI components,
MarcoFlow

1. Introduction

Workflow management systems support office automa-
tion processes, including the automatic generation of form-
based user interfaces (UIs) for executing human tasks in
a process. Service orchestrations and related languages
focus instead on integration at the application level. As
such, this technology excels in the reuse of components
and services but does not facilitate the development of UI
front-ends for supporting human tasks and complex user
interaction needs, which is one of the most time consuming
tasks in software development [1].

Only recently, web mashups [2] have turned lessons
learned from data and application integration into
lightweight, simple composition approaches featuring a sig-
nificant innovation: integration at the UI level. Besides
web services or data feeds, mashups reuse pieces of UI (e.g.,
content extracted from web pages or JavaScript UI wid-
gets) and integrate them into a new web page. Mashups,
therefore, manifest the need for reuse in UI development
and suitable UI component technologies. Interestingly,
however, unlike what happened for services, this need has
not yet resulted in accepted component-based develop-
ment models and practices.

Email addresses: daniel@disi.unitn.it (Florian Daniel),
soi@disi.unitn.it (Stefano Soi), tranquillini@disi.unitn.it
(Stefano Tranquillini), casati@disi.unitn.it (Fabio Casati),
changheng@huawei.com (Chang Heng), liyanmr@huawei.com (Li
Yan)

1Corresponding author. Tel. +39 0461 283780, Fax +39 0461
282093

This paper tackles the development of applications that
require service composition/process automation logic but
that also include human tasks, where humans interact with
the system via possibly complex and sophisticated UIs that
are tailored to help perform the specific job they want
to carry out. In other words, this work targets the de-
velopment of mashup-like applications that require
process support , including applications that require dis-
tributed mashups coordinated in real time, and provides
design and tool support for professional developers, yield-
ing an original composition paradigm based on web-based
UI components and web services.

This class of applications manifests a common need that
today is typically fulfilled by developing UIs in ad hoc ways
and using and manually configuring a process engine in the
back-end for process automation. As an example, consider
the scenario in Figure 1: The figure shows a home assis-
tance application for the Province of Trento whose devel-
opment we want to aid in one of our projects. A patient
can ask for the visit of a home assistant (e.g., a paramedic)
by calling (via phone) an operator of the assistance service.
Upon request, the operator inputs the respective details
and inspects the patient’s data and personal health his-
tory in order to provide the assistant with the necessary
instructions (steps 1-5). There is always one assistant on
duty. The home assistant views the description, visits the
patient, and files a report about the provided service (steps
6-7). The report is processed by the back-end system and
archived (steps 8-9). If no further exams are needed, the
process ends (steps 10-11). If exams are instead needed,

Preprint submitted to Information Systems June 30, 2011

Patient DB service

yes

no

Further exams
needed?

Report DB
service

Archive report

Get
patients

1
3

4

5

6

7

8

9

12

13

14

10

11

2

Send info to
book exam

Register
booking

Exam DB
service15 11

Figure 1: A home assistance application integrating both web services and UI components into a process-like orchestration logic.

the operator books the exam in the local hospital ask-
ing confirmation to the patient via phone (steps 12-13).
Upon confirmation of the exam booking, the system also
archives the booking, which terminates the responsibility
of the home assistance service (steps 14-15).

The application in the scenario includes, besides the pro-
cess logic, two mashup-like, web-based control consoles for
the operator and the assistant that are themselves part
of the orchestration, need to interact with the process,
and are affected by its progress. In addition, the UIs are
themselves component-based and created by reusing and
combining existing UI components that are instantiated
in the users’ web browsers (both web pages in Figure 1
are composed of four components). The two applications,
once instantiated, allow the operator and assistant to man-
age an individual request for assistance; each new request
requires starting a new instance of the application.

In summary, the scenario requires the coordination of
the individual actors in the process and the development
of the necessary distributed user interface and service or-
chestration logic. Doing so requires addressing a set of
challenges (each leading to a specific contribution):

1. Understanding how to componentize UIs and compose
them into web applications;

2. Defining a logic that is able to orchestrate both UIs
and web services;

3. Providing a language and tool for implementing dis-
tributed UI compositions; and

4. Developing a runtime environment that is able to ex-
ecute distributed UI and service compositions.

This article is an extended version of our paper [3]
presented at the BPM 2010 conference, in which we ap-
proached these challenges in their core aspects. Here, we
advance that work in several ways: We provide a complete
description of the nature of UI components and of the de-
velopment and configuration of layout templates, turning
the paper into a self-contained piece of work. We conceptu-
alize the types of orchestrations that can be developed with
the described development paradigm and discuss their im-
pact on the runtime platform; this represents a major new
contribution. We describe our BPEL4UI editor and the
web-based management console, and, finally, we summa-
rize the lessons that we learned during the development
and use of the described system.

In Section 2 we introduce the state of the art of the
related composition approaches and technologies. In Sec-
tion 3, we derive requirements from the above scenario and
outline the approach we follow in this paper, including the
architecture of our MarcoFlow platform that will serve as
a guide throughout the rest of the paper. In Section 4,
we then introduce the concept of HTML/JavaScript UI
component and show how defining a new type of bind-

2

ing allows us to leverage the standard WSDL [4] language
to abstractly describe them. We then build on existing
composition languages (in particular WS-BPEL [5]) to in-
troduce the notions of UI components, pages, and actors
into service compositions (Section 5) and explain how such
extension can be used to model UI orchestrations (Section
6). In Section 7 we discuss the different types of UI or-
chestrations that can be implemented. In Section 8, we
show how we extended the Eclipse BPEL editor to sup-
port design, and we describe how to run UI orchestrations.
Finally, in Section 9 we report on the lessons we learned
with MarcoFlow and conclude the paper in Section 10.

2. State of the Art in Orchestrating Services, Peo-
ple and UIs

Workflow or business process management sys-
tems are the traditional solution to coordinate peo-
ple; web services have been integrated over the last
decade, while support for UI development is still
rather weak. For instance, the Oracle BPEL Proc-
cess Manager (http://www.oracle.com/technetwork/
middleware/bpel) uses Workflow Services to handle the
work-lists of each user and to allow them to perform their
tasks. The tool provides two solutions for creating user
interfaces: automatic generation, where the tool generates
the forms, and custom generation, which enables the mod-
eler to select the template and the parameters to display.
Both solutions produce a JSP-based form. Bonita Studio
(http://www.bonitasoft.com) has an extension of the
tool to create forms. The software allows the developer
to use existing form templates; alternatively, forms can be
created using a WYSIWYG interface. Forms can be cus-
tomized by hand and exported as portlets. Similarly, also
the tool based on the popular workflow language YAWL
[6] and its extension (YAWL4Film [7]) do not go beyond
custom or automatically generated web forms (based on
the Java Server Faces technology). WebRatio BPM [8]
allows the developer to generate WebML [9] web applica-
tion templates starting from BPMN process models. The
templates can then be refined by the developer to equip
each page (for task execution) with the necessary data and
application functionality, which enables the tool to auto-
matically generate the necessary application code.

All these solutions provide good means to render input
and output parameters of tasks as HTML forms, which
can either be based on pre-defined form templates or cus-
tom forms implemented by the developer. None of the ap-
proaches, however, supports the reuse of third-party UIs
(e.g., a Google map) as first-class application components
and, hence, they are not able to orchestrate them. The
synchronization of the two pages in our reference scenario,
requiring direct UI-to-UI communications, is thus out of
the reach of these tools.

In service orchestration approaches, such as BPEL
[5], there is no support for UI design. Many variations of
BPEL have been developed, e.g., aiming at the invocation

of REST services [10] or at exposing BPEL processes as
REST services [11]. IBM’s Sharable Code platform [12]
follows a slightly different strategy in the composition of
REST and SOAP services and also allows the integration
of user interfaces for the Web; UIs are however not pro-
vided as components but as ad-hoc Ruby on Rails HTML
templates filled at runtime with dynamically generated
content.

BPEL4People [13] is an extension of BPEL that intro-
duces the concept of people task as first-class citizen into
the orchestration of web services. The extension is tightly
coupled with the WS-HumanTask [14] specification, which
focuses on the definition of human tasks, including their
properties, behavior and operations used to manipulate
them. BPEL4People supports people activities in the form
of inline tasks (defined in BPEL4People) or standalone hu-
man tasks accessible as web services. In order to control
the life cycle of service-enabled human tasks in an interop-
erable manner, WS-HumanTask also comes with a suitable
coordination protocol for human tasks, which is supported
by BPEL4People. The two specifications focus on the co-
ordination logic only and do not support the design of the
UIs for task execution.

The systematic development of web interfaces and
applications has typically been addressed by the web en-
gineering community by means of model-driven web de-
sign approaches. Among the most notable and advanced
model-driven web engineering tools we find, for instance,
WebRatio [15] and VisualWade [16]. The former is based
on a web-specific visual modeling language (WebML), the
latter on an object-oriented modeling notation (OO-H).
Similar, but less advanced, modeling tools are also avail-
able for web modeling languages/methods like Hera [17],
OOHDM [18], and UWE [19]. These tools provide expert
web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web appli-
cations based on a hyperlink-based navigation paradigm.
WebML has also been extended toward web services [20]
and process-based web applications [21]; reuse is however
limited to web services and UIs are generated out of dy-
namically filled HTML templates.

A first approach to component-based UI develop-
ment is represented by portals and portlets [22], which ex-
plicitly distinguish between UI components (the portlets)
and composite applications (the portals). Portlets are
full-fledged, pluggable Web application components that
generate document markup fragments (e.g., in (X)HTML)
that can however only be reached through the URL of the
portal page. A portal server typically allows users to cus-
tomize composite pages (e.g., to rearrange or show/hide
portlets) and provides single sign-on and role-based per-
sonalization, but there is no possibility to specify process
flows or web service interactions; also the WSRP [23] speci-
fication only provides support for accessing remote portlets
as web services.

Finally, the web mashup [2] community has produced
a set of so-called mashup tools, which aim at assisting

3

mashup development by means of easy-to-use graphical
user interfaces targeted also at non-professional program-
mers. For instance, Yahoo! Pipes (http://pipes.yahoo.
com) focuses on data integration via RSS or Atom feeds via
a data-flow composition language; UI integration is not
supported. Microsoft Popfly (http://www.popfly.ms;
discontinued since August 2009) provided a graphical user
interface for the composition of both data access appli-
cations and UI components; service orchestration was
not supported. JackBe Presto (http://www.jackbe.com)
adopts a Pipes-like approach for data mashups and allows
a portal-like aggregation of UI widgets (so-called mash-
lets) visualizing the output of such mashups; there is no
synchronization of UI widgets or process logic. IBM QED-
Wiki (http://services.alphaworks.ibm.com/qedwiki)
provides a wiki-based (collaborative) mechanism to glue
together JavaScript or PHP-based widgets; service com-
position is not supported. Intel Mash Maker (http:
//mashmaker.intel.com) features a browser plug-in that
interprets annotations inside web pages supporting the
personalization of web pages with UI widgets; service com-
position is outside the scope of Mash Maker.

In the mashArt [24] project, we worked on a so-called
universal integration approach for UI components and
data and application logic services. MashArt comes with a
simple editor and a lightweight runtime environment run-
ning in the client browser and targets skilled web users.
MashArt aims at simplicity: orchestration of distributed
(i.e., multi-browser) applications and complex features like
transactions or exception handling are outside its scope.
The CRUISe project [25] has similarities with mashArt,
especially regarding the componentization of UIs. Yet,
is does not support the seamless integration of UI com-
ponents with service orchestration, i.e., there is no sup-
port for complex process logic. CRUISe rather focuses
on adaptivity and context-awareness. Finally, the Serv-
Face project [26] aims to support even unskilled web users
in composing web services that come with an annotated
WSDL description. Annotations are used to automatically
generate form-like interfaces for the services, which can be
placed onto one or more web pages and used to graphi-
cally specify data flows among the form fields. The result
is a simple, user-driven web service orchestration. None
of these projects, however, supports the coordination of
multiple different actors inside a same process.

As this analysis shows, existing development approaches
for web-based applications lack an integrated support for
service orchestration, component-based UI development,
and coordination of users, three ingredients that instead
are necessary to fully implement applications like the one
described in our example scenario.

3. Distributed User Interface Orchestration: Def-
initions, Requirements, and Architecture

If we analyze the home assistance scenario, we see
that the envisioned application (as a whole) is highly dis-

tributed over the Web: The UIs for the actors participating
in the application are composed of UI components, which
can be components developed in-house (like the Patient

Profile component) or sourced from the Web (like the
Map component); service orchestrations are based on web
services. The UI exposes the state of the application and
allows users to interact with the application and to enact
service calls. The two applications for the operator and the
assistant are instantiated in different web browsers, con-
tributing to the distribution of the overall UI and raising
the need for synchronization.

The key idea to approach the coordination of (i) UI com-
ponents inside web pages, (ii) web services providing data
or application logic, and (iii) individual pages, as well as
the people interacting with them, is to split the coordina-
tion problem into two layers: intra-page UI synchroniza-
tion and distributed UI synchronization and web service
orchestration. We call an application that is able to man-
age these two layers in an integrated fashion a distributed
UI orchestration [3].

3.1. Requirements and approach

Supporting the development of distributed UI orchestra-
tions is a complex and challenging task. Especially the aim
of providing a development approach that is able to cover
all development aspects in an integrated fashion poses re-
quirements to the whole life cycle of UI orchestrations, in
particular, in terms of design, deployment, and execution
support.

Indeed, supporting the design of distributed UI orches-
trations requires:

• Defining a new type of component, the UI component,
which is able to modularize pieces of UI and to ab-
stract their external interfaces. For the description of
UI components, we slightly extend WSDL [4], obtain-
ing what we call WSDL4UI, a language that is able to
deal with the novel technological aspects that charac-
terize UI components by reusing the standard syntax
of WSDL.

• Bringing together the needs of UI synchronization and
service orchestration in one single language. UIs are
typically event-based (e.g., user clicks or key strokes),
while service invocations are coordinated via control
flows. In this paper, we show how to extend the stan-
dard BPEL [5] language in order to support UIs. We
call this extended language BPEL4UI.

• Implementing a suitable, graphical design environ-
ment that allows developers to visually compose ser-
vices and UI components and to define the group-
ing of UI components into pages. BPEL comes with
graphical editors and ready, off-the-shelf runtime en-
gines that we can reuse. For instance, we extend the
Eclipse BPEL editor with UI-specific modeling con-
structs in order to design UI orchestrations and gen-
erate BPEL4UI in output.

4

Supporting the deployment of UI orchestrations re-
quires:

• Splitting the BPEL4UI specification into the two or-
chestration layers for intra-page UI synchronization
and distributed UI synchronization and web service
orchestration. For the former we use a lightweight
UI composition logic, which allows specifying how UI
components are coordinated in the client browser. For
the latter we rely on standard BPEL.

• Providing a set of auxiliary web services that are able
to mediate communications between the client-side UI
composition logic and the BPEL logic. We achieve
this layer by automatically generating and deploying
a set of web services that manage the UI-to-BPEL
and BPEL-to-UI interactions.

Supporting the execution of UI orchestrations requires:

• Providing a client-side runtime framework for UI syn-
chronization that is able to instantiate UI components
inside web pages and to propagate events from one
component to other components. Events of a UI com-
ponent may be propagated to components running in
the same web page or in other pages of the application
as well as to web services.

• Providing a communication middleware layer that is
able to run the generated auxiliary web services for
UI-to-BPEL and BPEL-to-UI communications. We
implement this layer by reusing standard web server
technology able to instantiate SOAP and RESTful
web services.

• Setting up a BPEL engine, in charge of orchestrat-
ing web services and distributed UI-to-UI communi-
cations, and implementing a management console for
both developers and participants in UI orchestrations,
enabling them to deploy UI orchestrations, to instan-
tiate them, and to participate in them as required.

These requirements and the respective hints to our solu-
tion show that the main methodological goals in achieving
our UI orchestration approach are (i) relying as much as
possible on existing standards (to start from a commonly
accepted and known basis), (ii) providing the developer
with only few and simple new concepts (to facilitate fast
learning), and (iii) implementing a runtime architecture
that associates each concern with the right level of ab-
straction and software tool (to maximize reuse), e.g., UI
synchronization is handled in the browser, while service
orchestration is delegated to the BPEL engine.

3.2. Architecture

A possible system architecture that meets the above re-
quirements is shown in Figure 2. It is the architecture of
our MarcoFlow platform, which has been developed jointly

by Huawei Technologies and the University of Trento. For
presentation purposes, we discuss a slightly simplified ver-
sion and partition its software components into design
time, deployment time, and runtime components.

The design part comprises a BPEL4UI editor, which
comes with a UI partner link configurator, enabling the
setup of UI components inside a UI orchestration, and a
layout configurator, assisting the developer in placing UI
components into pages. Starting from a set of web ser-
vice WSDLs, UI component WSDL4UIs, and HTML tem-
plates the application developer graphically models the UI
orchestration, and the editor generates a corresponding
BPEL4UI specification in output, which contains in a sin-
gle file the whole logic of the UI orchestration.

The deployment of a UI orchestration requires trans-
lating the BPEL4UI specification into executable formats.
In fact, as we will see, BPEL4UI is not immediately ex-
ecutable neither by a standard BPEL engine nor by the
UI rendering engine (the so-called UI engine in the right
hand side of the figure). This task is achieved by the
BPEL4UI compiler, which, starting from the BPEL4UI
specification, the set of used HTML templates and UI
component WSDL4UIs, and the system configuration of
the runtime part of the architecture, generates three kinds
of outputs:

1. A set of communication channels (to be deployed in
the so-called UI engine server), which mediate com-
munications between the UI engine client (the client
browser) and the BPEL engine. These channels are
crucial in that they resolve the technology conflict in-
herently present in BPEL4UI specifications: a BPEL
engine is not able to talk to JavaScript UI components
running inside a client browser, and UI components
are not able to interact with the SOAP interface of a
BPEL engine. For each UI component in a page, the
compiler therefore generates (i) an event proxy that is
able to forward events from the client browser to the
BPEL engine and (ii) an event buffer that is able to
accept events from the BPEL engine and store them
on behalf of the UI engine client. The compiler also
generates suitable WSDL files for proxies and buffers.

2. A standard BPEL specification containing the dis-
tributed UI synchronization and web service orches-
tration logic (see Section 6.1). Unlike the BPEL4UI
specification, the generated BPEL specification does
no longer contain any UI-specific constructs and can
therefore be executed by any standards-compliant
BPEL engine. This means that all references to UI
components in input to the compilation process are
rewritten into references to the respective communi-
cation channels of the UI components in the UI engine
server, also setting the correct, new SOAP endpoints.

3. A set of UI compositions2 (one for each page of the ap-
plication) consisting of the layout of the page, the list

2Details about the format and logic of these UI compositions can
be found in [24].

5

Event buffer/
proxy WSDLs

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Web service
WSDLs

UI component
WSDL4UIs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL
communication

BPEL2UI
communication

JSON via
HTTP

XML via
SOAP

SOAP web
services

Application
developer

System
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI
logic generator

BPEL generator

Comm. services
generator

AB
C

UI components

A B C
UI component container

JSON via
HTTP

XML via
SOAP

XML via SOAP

Layout
configurator

UI partner link
configurator

HTML
templates

UI
compositions

Layout and
UI logic

System components

Document flows
System/human communications
Automatically generated elements

Event
forwarder
Event

forwarder
Event

forwarders

Notification
handler

Notification
handler

Notification
handlers

Event
proxy

Event
proxy

Event
buffer

Event
proxy

Event
proxy

Event
proxy

Users

Figure 2: From design time to runtime: overall system architecture of MarcoFlow.

of UI components of the page, the assignment of UI
components to place holders, the specification of the
intra-page UI synchronization logic (see Section 6.1),
and a reference to the client-side runtime framework.
Interactions with web services or UI components run-
ning in other pages are translated into interactions
with local system components (the notification han-
dlers and event forwarders), which manage the neces-
sary interaction with the communication channels via
suitable RESTful web service calls.

Finally, the BPEL4UI compiler also manages the de-
ployment of the generated artifacts in the respective run-
time environments. Specifically, the generated communi-
cation channels and the UI compositions are deployed in
the UI engine server and the standard BPEL specification
is deployed in the BPEL engine.

The execution of a UI orchestration requires the setting

up and coordination of three independent runtime environ-
ments: First, the interaction with the users is managed in
the client browser by an event-based JavaScript runtime
framework that is able to parse the UI composition stored
in the UI engine server, to instantiate UI components in
their respective place holders, to configure the notification
handlers and event forwarders, and to set up the necessary
logic ruling the interaction of the components running in-
side the client browser. While event forwarders are called
each time an event is to be sent from the client to the
BPEL engine, the notification handlers are active compo-
nents that periodically poll the event buffers of their UI
components on the UI engine server in order to fetch pos-
sible events coming from the BPEL engine.

Second, the UI engine server must run the web services
implementing the communication channels. In practice we
generate standard Java servlets and SOAP web services,
which can easily be deployed in a common web server,

6

such as Apache Tomcat. The use of web server technol-
ogy is mandatory in that we need to be able to accept
notifications from the BPEL engine and the UI engine
client, which requires the ability of constantly listening.
The event buffer is implemented via a simple relational
database (in PostgreSQL, http://www.postgresql.org)
that manages multiple UI components and distinguishes
between instances of UI orchestrations by means of a ses-
sion key that is shared among all UI components partici-
pating in a same UI orchestration instance.

Third, running the BPEL process requires a BPEL en-
gine. Our choice to rely on standard BPEL allows us
to reuse a common engine without the need for any UI-
specific extensions. In our case, we use Apache ODE
(http://ode.apache.org), which is characterized by a
simple deployment procedure for BPEL processes.

We discuss each of the ingredients in the following.

4. The Building Blocks: Web Services and UI
Components

Orchestrating remote application logic and pieces of UI
requires, first of all, understanding the exact nature of
the components to be integrated, i.e., web services and UI
components.

For the integration of application logic, we rely on stan-
dard web service technologies, such as WSDL-SOAP
web services, i.e., remote web services whose exter-
nal interface is described in WSDL, which supports in-
teroperability via four message-based types of opera-
tions: request-response, notification, one-way, and solicit-
response. Most of today’s web services of this kind are
stateless, meaning that the order of invocation of their op-
erations does not influence the success of the interaction,
while there are also stateful services whose interaction re-
quires following a so-called business protocol that describes
the interaction patterns supported by the service.

For the integration of UI, we rely instead on
JavaScript/HTML UI components, which are simple,
stand-alone web applications that can be instantiated and
run inside any common web browser [24]. Figure 3 illus-
trates an example of UI component (the Patient Profile

UI component of our reference scenario), along with an ex-
cerpt of its JavaScript code. The figure shows that, unlike
web services, UI components are characterized by:

• A user interface . UI components can be instanti-
ated inside a web browser and can be accessed and
navigated by a user via standard HTML. The UI al-
lows the user to interactively inspect and alter the
content of the component, just like in regular web ap-
plications. UI components are therefore stateful, and
the component’s navigation features replace the busi-
ness protocol needed for services.

• Events. Interacting with the UI generates system
events (e.g., mouse clicks) in the browser used to man-

 function PatientProfile(id,divId,params){
 this.backgroundColor = params["backgroundColor"]; // Property
 ...

 this.load = function() { // Initialiazation function
 var mydiv= document.getElementById(this.divId);

mydiv.innerHTML="<div style='overflow:auto; background-color:"+
 backgroundColor + “><h2>No patient selected" + ... ;

 }

 this.show=function(patient){ ... } // Internal function

 this.sendPatientCoord= function(inputArray){ // Event
var outputArray= new Array();
outputArray["latitude"]=parseFloat(this.lat);
outputArray["longitude"]=parseFloat(this.lng);
MarcoFlow.FW.raiseEvent(id,"sendPatientCoord",outputArray);

 }

 this.showPatientProfile= function(inputArray){ // Operation
var patient =inputArray["patient"];
this.lat= patient["latitude"];
this.lng= patient["longitude"];
this.show(patient);

 }
 }

The component's
JavaScript code

Event
Graphical rendering
of the Patient Profile
UI component

Figure 3: Graphical rendering and internal logic of a UI component

age the update of contents. Some events may be ex-
posed as component events, in order to communicate
state changes. For instance, a click on the “map” link
in Figure 3 launches a sendPatientCoord event.

• Operations. Operations enact state changes from
the outside. Typically, we can map the event of one
component to the operation of another component in
order to synchronize the components’ state (so that
they show related information).

• Properties. The graphical setup of a component
may require the setting of constructor parameters,
e.g., to align background colors or set other style prop-
erties.

In order to make UI components accessible to BPEL,
each component must be equipped with a descriptor that
describes its events, operations, and properties in terms
of WSDL operations. As already anticipated in the pre-
vious section, doing so requires extending the standard
WSDL description logic, i.e., its meta-model, from web
services to UI components. The result of this extension
is called WSDL4UI . Figure 4 illustrates its meta-model,
from which we can see that the extension toward UI com-
ponents occurs via two different techniques:

1. First, we introduce a set of conventions of how the
abstract WSDL constructs can be used to describe
UI components. The properties of the UI component
are encapsulated by means of a dedicated constructor

7

Definition

Import

Types Service

Port

Binding

Port Type

Operation

Part

Message

1..N

0..N

1..N

1..N

1..1

1..1
located on

1..1

1..1
accessed by

1..N

1..N

1..N1..N

1..N
1..N

0..1

0..1
0..1

1..N
fault

output

input

Constructor

0..N

JS Binding
Version

JS Function
Name

1..N

UIOperationUIEvent

references

WSDL4UI conventions:
(1) All Operations are either UIOperations, UIEvents, or a Constructor.
(2) UIOperations only have inputs.
(3) UIEvents only have outputs.
(4) The Constructor is unique and has only inputs.
(5) The service's port address points to the JavaScript class of the UI component.

Figure 4: Simplified WSDL4UI meta-model (inspired by [27] and
extended – via the gray boxes – toward UI components).

operation that can be used to set properties at instan-
tiation time of the component. Next, all operations
specified in the description are either UIOperations,
UIEvents, or a constructor. UIOperations have only
inputs; UIEvents have only outputs; the constructor
is an operation. Finally, the port address of the de-
scribed service corresponds to the URL at which the
actual UI component can be downloaded for instanti-
ation (in form of a JavaScript file).

2. Second, we introduce a new JavaScript binding that
allows us to associate to each abstractly defined op-
eration a JavaScript function of the UI component.
Doing so enables the client-side runtime environment
(the UI engine client) to parse the WSDL4UI descrip-
tion of a component, to invoke its constructor, and to
correctly access events and operations in JavaScript.

Only WSDL files that conform to these rules are
considered correct WSDL4UI descriptors of UI compo-
nents. Figure 5, for instance, shows the descriptor of the
Patient Profile UI component. Its interface is charac-
terized by three WSDL operations: ShowPatientProfile,
SendPatientCoord, and constructor (lines 9-17), corre-
sponding, respectively, to a UIOperation, to a UIEvent
and to the component’s custructor, as stated in the
JavaScript binding (lines 20-31). In the binding, there are
also specified, through the related jsFunction attributes
(e.g., line 23), the actual JavaScript functions implement-
ing the operations, which are contained in the file located
at the URL defined in the service’s port address (line 35).

For the BPEL engine, in order to interact with a com-
ponent, the BPEL4UI compiler introduced in Section 3.2
generates a respective event buffer and event proxy for
the UI engine server and equips them with two standard

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <wsdl:definitions name="PatientProfile" targetNamespace="http://www.unitn.it/
 3 JS/Patient" ... >
 4 <!-- types definition -->
 5 ...
 6 <!-- massages definition -->
 7 ...
 8 <wsdl:portType name="PatientPortType">
 9 <wsdl:operation name="constructor">
10 <wsdl:input message="tns:constructorMessage"/>
11 </wsdl:operation>
12 <wsdl:operation name="ShowPatientProfile">
13 <wsdl:input message="tns:ShowPatientProfileMessage"></wsdl:input>
14 </wsdl:operation>
15 <wsdl:operation name="SendPatientCoord">
16 <wsdl:output message="tns:SendPatientCoordMessage"></wsdl:output>
17 </wsdl:operation>
18 </wsdl:portType>
19
20 <wsdl:binding name="PatientJS" type="tns:PatientPortType">
21 <js:binding version="1.0" />
22 <wsdl:operation name="constructor">
23 <js:operation jsFunction="load" />
24 </wsdl:operation>
25 <wsdl:operation name="ShowPatientProfile">
26 <js:operation jsFunction="showPatientProfile" />
27 </wsdl:operation>
28 <wsdl:operation name="SendPatientCoord">
29 <js:event jsFunction="sendPatientCoord" />
30 </wsdl:operation>
31 </wsdl:binding>
32
33 <wsdl:service name="PatientProfile">
34 <wsdl:port name="PatientJS" binding="tns:PatientJS">
35 <soap:address location="http://www.unitn.it/JS/Patient.js" />
36 </wsdl:port>
37 </wsdl:service>
38 </wsdl:definitions>

Figure 5: Example of WSDL/UI description of a UI component.

WSDL descriptors. These descriptors contain the abstract
service description as defined in the WSDL4UI file (the
event buffer contains all operations of the UI components,
the event proxy all events), yet their port addresses point
to the newly generated services and their JavaScript bind-
ing is turned into a SOAP binding.

5. The UI Orchestration Meta-Model

Starting from web services and UI components, develop-
ing a UI orchestration requires modeling two fundamental
aspects: (i) the interaction logic that rules the passing
of data among UI components and web services and (ii)
the graphical layout of the final application. Supporting
these tasks in service orchestration languages (like BPEL)
requires extending the expressive power of the languages
with UI-specific constructs.

Figure 6 shows the simplified meta-model of BPEL4UI,
addressing these two concerns. Specifically, the figure de-
tails all the new modeling constructs necessary to spec-
ify UI orchestrations (gray-shaded) and omits details of
the standard BPEL language, which are reused as is by
BPEL4UI (a detailed meta-model for BPEL can be found,
for instance, in [28]). The code snippet in Figure 7 exem-
plifies the syntax that we use, in order to express the novel
concepts in BPEL4UI.

In terms of standard BPEL [5], a UI orchestration is a
process that is composed of a set of associated activities
(e.g., sequence, flow, if, assign, validate, or similar), vari-
ables (to store intermediate processing results), message
exchanges, correlation sets (to correlate messages in con-
versations), and fault handlers. The services or UI com-
ponents integrated by a process are declared by means of

8

Process

Activity Container

Activity

Catch

Message
Exchange

Correlation
Set

Variable
Partner Link

Page
Name
Description
TemplateURL
UIEngineName
isStartPage

Actor
Name

Place Holder
Name

UI Component
Name

UI Type
WSDL-UI

Property
Name
Value
Type

Partner Link Type

fault handlers

accessible to

contains

rendered in

has

described by

0..N

1..1
0..N

1..1
1..N

1..1

1..1

1..1 0..N

1..1

0..N
described by

0..N

1..1

0..N

0..N

0..N

0..N

1..N

0..N

Figure 6: Simplified BPEL4UI meta-model in UML. White classes
correspond to standard BPEL constructs [28]; gray classes corre-
spond to constructs for UI and user management.

so-called partner links, while partner link types define the
roles played by each of the services or UI components in
the conversation and the port types specifying the opera-
tions and messages supported by each service or compo-
nent. There can be multiple partner links for each partner
link type.

Modeling UI-specific aspects requires instead introduc-
ing a set of new constructs that are not yet supported by
BPEL. The constructs, illustrated in Figure 6, are:

• UI type : The introduction of UI components into
service compositions asks for a new kind of partner
link type. Although syntactically there is no differ-
ence between web services and UI components (the
JavaScript binding introduced into WSDL4UI comes
into play only at runtime), it is important to distin-
guish between services and UI components as (i) their
semantics and, hence, their usage in the model will be
different from that of standard web services, and (ii)
the UI orchestration editor must be aware of whether
an object manipulated by the developers is a web ser-
vice or a UI component, in order to support the set-
ting of UI-specific properties.

As exemplified in Figure 7, we specify the new partner
link type like a standard web service type (lines 7-10).
In order to reflect the events and operations of the UI
component, we distinguish the two roles. Lines 1-
5 define the necessary name spaces and import the
WSDL4UI descriptor of the UI component.

• Page : The distributed UI of the overall application
consists of one or more web pages, which can host
instances of UI components. Pages have a name, a
description, a reference to the pages’ layout template,
the name of the UI engine they will run on, and an

indication of whether they are a start page of the ap-
plication or not (as we will see in Section 7, inside a
process model, not all pages allow the correct instan-
tiation of the process).

The code lines 13-20 in Figure 7 show the definition of
a page called “operator”, along with its layout tem-
plate and the name of the UI engine on which the
page will be deployed; the page is a start page for the
process.

• Place holder : Each page comes with a set of place
holders, which are empty areas inside the layout tem-
plate that can be used for the graphical rendering
of UI components. Place holders are identified by
a unique name, which can be used to associate UI
components.

Place holders are associated with page definitions and
specified as sub-elements, as shown in lines 16-19 in
Figure 7.

• UI component : UI types can be instantiated as UI
components. For instance, there may be one UI type
but two different instances of the type running in two
different web pages. Declaring a UI component in a
BPEL4UI model leads to the creation of an instance
of the UI component in one of the pages of the appli-
cation. Each component has a unique name.

We specify UI component partner links by extend-
ing the standard partner link definition of BPEL with
three new attributes, i.e., isUiComponent, pageName,
and placeHolderName. Lines 25-32 in Figure 7 show
how to declare the Patient Profile component of
our example scenario.

• Property : As we have seen in the previous section,
UI components may have a constructor that allows
one to set configuration properties. Therefore, each
UI component may have a set of associated proper-
ties than can be parsed at instantiation time of the
component. We use simple name-value pairs to store
constructor parameters.

Properties extend the definition of UI component link
types by adding property sub-elements to the partner
link definition, one for each constructor parameter, as
shown in lines 30-31 in Figure 7.

• Actor : In order to coordinate the people in a process,
pages of the application can be associated with indi-
vidual actors, i.e., humans, which are then allowed to
access the page and to interact with the UI orches-
tration via the UI components rendered in the page.
As for now, we simply associate static actors to pages
(using their names); yet, actors can easily be assigned
also dynamically at deployment time or at runtime by
associating roles instead of actors and using a suitable
user management system.

9

 1 <bpel:process name="HomeAssistance" targetNamespace="http://www.unitn.it/
 2 example/HomeAssistance" xmlns:wsdl6="http://www.unitnt.it/JS/Patient" ...>
 3 <bpel:import namespace="http://www.unitnt.it/JS/Patient"
 4 location="Patient.wsdl" importType="http://
 5 schemas.xmlsoap.org/wsdl/" />
 6 ...
 7 <bpel:partnerLinkType name="PatientPL">
 8 <bpel:role name="receive" portType="wsdl6:PatientPortTypeReceive"/>
 9 <bpel:role name="invoke" portType="wsdl6:PatientPortTypeInvoke"/>
10 </bpel:partnerLinkType>
11 ...
12 <bpel4ui:pages>
13 <bpel4ui:page name="operator" templateURL="operator.html"
14 uiEngineName="HAEngine" actorName="SteS"
15 description="the operator page" isStartPage="true" >
16 <bpel4ui:placeHolder name="marcoflow-top-left" />
17 <bpel4ui:placeHolder name="marcoflow-top-right" />
18 <bpel4ui:placeHolder name="marcoflow-bottom-left" />
19 <bpel4ui:placeHolder name="marcoflow-bottom-right" />
20 </bpel4ui:page>
21 ...
22 </bpel4ui:pages>
23
24 <bpel:partnerLinks>
25 <bpel:partnerLink name="PatientProfileUI_operator"
26 partnerLinkType="tns:PatientPL"
27 myRole="receive" partnerRole="invoke"
28 isUiComponent="yes" pageName="operator"
29 placeholderName="marcoflow-top-left">
30 <bpel4ui:property name="backgroundColor" type="xsd:string"
31 value="white" />
32 </bpel:partnerLink>
33 ...
34 </bpel:partnerLinks>
35
36 <!-- orchestration logic definition -->
37 ...
38 </bpel:process>

Figure 7: Excerpt of the BPEL4UI home assistance process (new
constructs in bold)

Actors are simply added to page definitions by means
of the actorName attribute, as highlighted in line 14
in Figure 7.

The addition of these new concepts to BPEL turns the
service orchestration language into a language that, in ad-
dition to service invocation logic, is also able to specify
the organization of an application’s UI and its distribu-
tion over multiple servers and actors. Our goal in doing
so was to keep the number of new concepts as small as
possible, while providing a fully operational specification
language for UI orchestrations.

6. Modeling Distributed UI Orchestrations

The code example in Figure 7 shows that the UI-specific
modeling constructs have a very limited impact on the
syntax of BPEL and are mostly concerned with the ab-
stract specification of the layout and the declaration of UI
partner links. The actual composition logic, instead, re-
lies exclusively on standard BPEL constructs. Yet, since
UI components are different from web services (e.g., it is
important to know in which page they are running), mod-
eling UI orchestrations requires a profound understanding
of the necessary modeling constructs and their semantics.
In particular, it is important to understand the effect that
individual modeling patterns have on the execution of the
final application, i.e., the semantics of the patterns, and
which other modeling tasks (data transformations, mes-
sage correlations, and layout design) are necessary to fully
specify a working UI orchestration.

UI operations of the
Exams and Map UI
components

Intra-page UI
synchronization

that can be
executed entirely
on the client side

Distributed UI synchronization and service orchestration that requires mediation
by the BPEL engine. The two events (Receive activities) are correlated by means of a
BPEL correlation set composed of the parameter tuple <UIOrchestrationID, VisitID>,
i.e., an identified assigend by the UI engine and the identifier of the re-quested visit
(carried in the report).

UI events
coming from
the client side

Figure 8: Part of the BPEL4UI model of the home assistance process
as modeled in the extended Eclipse BPEL editor (the dashed and
dotted lines/arrows have been overlaid as a means to explain the
model).

6.1. Core UI orchestration design patterns

The first step toward this understanding is mastering
the core design patterns that characterize UI orchestra-
tions. As hinted at in Section 3 and illustrated in Figure
8, we distinguish three main design patterns:

• Intra-page UI synchronization : The small model
block (a BPEL sequence construct) in the right part
of Figure 8 shows the internals of step 7 in Figure
1. When the assistant clicks on the “map” link, the
patient’s address is shown on the Google map. In
BPEL terms, we receive a message from the Patient

Profile UI component (the event) and forward it to
the operation of the Map component, both running in-
side the web page of the assistant. The pattern, hence,
implements a so-called intra-page UI synchronization,
i.e., a synchronization of UI components that run in-
side a same page. From a runtime point of view, this
kind of UI synchronization can be performed entirely
on the client side without requiring support from the
BPEL engine.

• Distributed UI synchronization : The bigger
model block (again a BPEL sequence construct) in
the left part of the figure, instead, contains a dis-
tributed UI synchronization that cannot be executed
on the client side only, as the two UI components
involved in the communication (Visit Report and
Exams Booking) run in different web pages. The
event generated upon submission of a new report is
processed by the BPEL engine, which then decides
whether an additional exam needs to be booked by
the operator or not. As such, the BPEL engine man-
ages two independent concerns, i.e., the forwarding of

10

the event from one UI component to another and the
evaluation of the condition, of which only the former
is necessary to implement a distributed UI synchro-
nization pattern. The execution of a distributed UI
synchronization pattern always requires the cooper-
ation of both the BPEL engine and the client-side
runtime environment.

• Service orchestration : The distributed UI synchro-
nization also involves the orchestration of the Report

DB and Exam DB web services, as well as some BPEL
flow control constructs. In fact, the modeled logic
checks whether the report expresses the need for fur-
ther exams or not. In either case, the further process-
ing of the report involves the invocation of either one
or both the web services, in order to correctly termi-
nate the handling of a visit request. The pure invo-
cation of web services represents a service invocation
pattern, whose execution can be entirely managed by
the BPEL engine without requiring support from the
client-side runtime environment.

The BPEL4UI excerpt in Figure 8 shows that, when
modeling a UI orchestration, it is important to keep in
mind who communicates with whom and which UI com-
ponent will be rendered where. Depending on these two
considerations, the modeled composition logic will either
be executed on the client side, in the BPEL engine, or
in both layers. For instance, it suffices to associate the
Map component with a different page, in order to turn the
intra-page UI synchronization in the right hand side of
Figure 8 into a distributed UI synchronization and, hence,
to require support from the BPEL engine.

6.2. Data transformations

When composing services or UI components, it is not
enough to model the communication flow only. An impor-
tant and time-consuming aspect is that of transforming
the data passed from one component to another. With
BPEL4UI we support all data transformation options pro-
vided by BPEL by means of its Assign construct. This
allows us to leverage on technologies, such as XPath,
XQuery, XSLT, or Java, for the implementation of also
very complex data transformations.

Yet, it is important to keep in mind that the type of
data transformation may affect the logic of the UI orches-
tration: For instance, if the SetPosition activity in the
top-right corner of Figure 8 does not transform data at
all or only performs simple parameter mappings (with the
BPEL Copy construct), we fully support the execution of
the intra-page UI synchronization in the client browser. If
instead a more complex transformation is needed, we rely
on the BPEL engine to perform it.

The reason for this choice is that UI synchronization
typically requires the exchange of only simple data (e.g.,
parameter-value pairs), which do not require complex
transformation capabilities like the ones we need when

interacting with web services. Supporting only simple
parameter-parameter mappings on the client side allows us
to keep the client-side runtime framework as lightweight as
possible, without however giving up any of BPEL’s data
transformation capabilities.

6.3. Message correlation

Independently of the format of data, UI orchestrations
may require a careful design of the messages used in the
orchestration and of how these must be correlated, in or-
der to enable the runtime environment to dispatch each
message to its correct UI orchestration instance. In fact,
just like in conventional workflow or service orchestration
engines, there may be multiple instances of UI orchestra-
tions running concurrently in a same BPEL/UI engine.
Message correlation is required in all those cases where
the orchestration involves multiple entry points into the
orchestration logic (e.g., callbacks from external web ser-
vices or a condition that requires input from two different
events).

If we look at our modeling example in Figure 8, we see
that the intra-page UI synchronization in the top-right
corner does not involve multiple entry points. It is there-
fore not necessary to implement any correlation logic in
BPEL4UI, in order to propagate the SendPatientCoord

event from the Patient Profile UI component to the
ShowPoint operation of the Map UI component. Since both
UI components involved in this synchronization run inside
the same web page and, therefore, there is no ambiguity
regarding which instance of the Map UI component is the
target of the SendPatientCoord event. In Section 7, we
will see that this is not always the case.

The distributed UI synchronization, instead, involves
two UI events from two different actors and, hence, differ-
ent pages: ReportCompleted and BookingConfirmed. In
this case, it is necessary to configure a so-called correlation
set (in BPEL terminology) that allows the BPEL engine
to understand when two instances of those events belong
to a same process instance. In the example in Figure 8, we
use UIOrchestrationID (provided by the UI engine) and
VisitID (part of the report) as correlation set.

6.4. Graphical layout

Finally, the complete definition of a UI orchestration
also requires the design of suitable HTML templates and
the assignment of UI components to their place hold-
ers inside the pages. As our goal is the development of
an enabling middleware layer for UI orchestrations, for
the layout templates we rely on standard web design in-
struments and technologies (e.g., Adobe Dreamweaver).
The only requirement the templates must satisfy is that
they provide place holders in the form of HTML DIV
elements that can be indexed via standard HTML iden-
tifiers following a predefined naming convention: <div

id="marcoflow-..."></div>.
Figure 9, for instance, depicts the empty HTML tem-

plate of the assistant’s web page, whose filled version we

11

PlaceHolder
 marcoflow-top-left

PlaceHolder
 marcoflow-bottom-right

PlaceHolder
 marcoflow-top-right

PlaceHolder
 marcoflow-bottom-left

Figure 9: The HTML template of the assistant’s web page highlight-
ing the empty place holders for UI components.

have already seen in Figure 1. The template is a sim-
ple HTML page with a page title and the four uniquely
identified placeholders to be filled with UI components at
runtime. Differently from dynamic HTML and most of the
approaches discussed in Section 2, in which the template
typically also contains the formatting logic for the data to
be rendered inside the place holders, in our case the tem-
plate only identifies the location of the UI components;
the rendering of content is then managed autonomously
by the UI components.

Once all HTML templates for all pages in the UI or-
chestration are defined, the definition of the pages and the
association of UI partner links with place holders therein
proceeds as exemplified in Section 6.

7. Types of UI orchestrations

So far we have seen how BPEL4UI supports the devel-
opment of distributed UI orchestrations. Yet, developing
correct UI orchestrations is still a non-trivial task, in that
the distribution of UI synchronizations and service orches-
trations over two different runtime engines (the UI engine
and the BPEL engine) complicates the instantiation logic
of distributed UI orchestrations, an aspect that developers
should understand thoroughly. As illustrated in Figure 10,
we identify four main types of UI orchestrations that can
be implemented by means of the core patterns described
in Section 6.1, i.e., pure UI synchronizations, pure service
orchestrations, UI-driven UI orchestrations, and process-
driven UI orchestrations. The developer needs to master
these configurations if he doesn’t want to encounter unex-
pected behaviors or errors at runtime. We discuss each of
these configurations next.

7.1. Pure UI synchronizations

From a UI point of view, the basic type of UI orchestra-
tion is represented by applications that involve UI compo-
nents only and, hence, exclusively focus on the synchro-
nization of UIs via events. Typical examples of this type of
UI orchestration are UI-based mashups, portlets/portals,
applications that integrate widgets/gadgets, or similar
component-based UI applications.

Figure 10(a) illustrates a simple example: There are
two concurrent pages, possibly associated with two differ-
ent users and with a total of three UI components, one
in Page 1 and two in Page 2. By interacting with the UI
component A, the user can generate an event that synchro-
nizes component B in the other page; likewise, another user
can interact with B and synchronize both A and C, while C

allows the user to synchronize again B. The three UI com-
ponents are instantiated in their web pages and run until
the users close their web browsers or navigate to another
web page. As such, UI components are stateful: their UI
constantly reflects the interaction state of the users with
the component (e.g., in terms of selections or navigation
actions performed). During their lifetime, each UI compo-
nent may generate multiple events as output and accept
multiple events as input. That is, while in one instance of
the UI orchestration in Figure 10(a) each UI component is
instantiated only once, there may be multiple instances of
synchronization events (the dashed arrows).

Supporting the execution of this type of UI orchestra-
tion requires the presence of both a client-side runtime
environment and a server-side environment. Specifically,
the intra-page UI synchronization of B and C can be han-
dled in the client, since both UI components run inside
the same web page, i.e., web browser. The synchroniza-
tion of A and B, instead, requires help from the server side,
in that they implement a distributed UI synchronization.
Therefore, the event proxy on the server side (cf. Figure
2) is needed, in order to forward communications among
the two web pages.

Sending an event through the event proxy raises the
need for correlation, in that there may be multiple in-
stances of a same UI orchestration running concurrently
and, therefore, it is necessary to identify which event be-
longs to which instance. The solution we adopt is to add
to each generated UI event a so-called UIOrchestrationID,
which uniquely identifies the UI orchestration instance.
The identifier is generated by the UI engine at applica-
tion startup and shared with all the users participating in
the orchestration. This feature is automated in our run-
time framework and does not require any specific modeling
at design time.

7.2. Pure service orchestrations

From a web service point of view, the basic type of UI
orchestration is the one that completely comes without
UI, i.e., a common web service orchestration. Although
this configuration represents a “degenerated” UI orches-
tration (given that there is no UI), it is fully supported

12

Page 2

Page 1

Page 2

A

a

B

C

A

B C

b c

dd

a

c

b

f

e

Page 1

Page 1

A B

Page 2

C D

a

c

b

f

e

d

Legend

Page 1

A

a

Page with one
UI component

Invocation of a web service

UI synchronization event

Data flow

Start node End node

(a) Pure UI synchronization of multiple UI components

(b) Pure service orchestration of multiple web service invocations

(c) UI-driven UI orchestration with UI components
triggering the execution of service orchestration
instances

(d) Process-driven UI orchestration with
the process instance enabling/disabling the
access to pages

Orchestration part
that is instantiated
multiple times

Incoming message/event

Figure 10: The four types of (UI) orchestration supported by BPEL4UI and the MarcoFlow system.

by BPEL4UI and deserves an explanation in that it rep-
resents the building block for the next UI orchestration
types. Typical examples are order processing logics or
payment processes.

Figure 10(b) provides an example: There are six
web service invocations (specifically, synchronous request-
response invocations) and one incoming event arranged in
a typical service orchestration. For presentation purpose,
we adopt a data flow logic to model the orchestration, as
for the discussion in this section it is not important to
explicitly distinguish between control and data flow. The
important aspect of the model is that, upon instantiation
of the service orchestration, each element in the model is
instantiated exactly once – including the data flow connec-
tors (differently from what happened with the UI synchro-

nization events in Figure 10(a)). The data flow connectors
rule both which service invocation can be performed and
how data are passed from one invocation to another.

Executing such a service orchestration requires support
from an orchestration engine/server, such as a BPEL en-
gine, which is able to instantiate on orchestration model,
to invoke the services as prescribed by the model, to trans-
form data formats between service invocations, to accept
incoming notifications or events, and to keep the state of
the progress in the orchestration instance. The actual ser-
vices run remotely, and are outside the scope of the or-
chestration environment.

The important aspect of the model in Figure 10(b) is
the incoming event (graphically represented by the letter
in the circle), as the event raises the need for correlation

13

in the service orchestration. In fact, without the incoming
event, the model would consist only of synchronous ser-
vice invocations, which could be processed easily step by
step by the orchestration engine. The engine would simply
invoke a service, wait for its response, pass the response
to the next service, and so on till the whole orchestration
logics ends. In the presence of the incoming event, instead,
the engine must be able to correlate each incoming event
it receives with the correct target orchestration instance
of the event. Doing so requires sharing at least a sim-
ple key or identifier (the correlation set) among the run-
ning orchestration instance and the incoming event. For
instance, the name of the person who starts the orches-
tration instance could be used as correlation identifier, as
such could be known to both the engine and the external
service sending the event – provided that there is always
only one instance per person running in the engine.

7.3. UI-driven UI orchestrations

A “full” UI orchestration, however, is characterized by
the joint use of both UI synchronizations and service or-
chestrations inside a same application. Depending on
which of these two ingredients dominates the behavior of
the application, we can have either UI-driven orchestra-
tions (where service orchestrations are enacted by the UI)
or process-driven orchestrations (where the UIs are en-
acted by the service orchestration). Here we focus on the
former type, in the next section we discuss the latter. For
instance, a web mashup that integrates RSS data from a
Yahoo! Pipe may invoke the pipe processing logic multiple
times while running.

Figure 10(c) abstracts this type of UI orchestration:
There are two pages with respective UI components and
two service orchestration flows. While the intra-page UI
synchronization of B and C does not involve any web ser-
vice, the distributed UI synchronizations of A and B are
based on intermediate service invocations in both direc-
tions. Just like we can have multiple UI synchronization
events (the dashed arrows) for each instance of UI compo-
nent, we now also have for each synchronization of A and
B a new instance of the intermediate service orchestration
logic (graphically represented by the dashed box around
the service orchestrations).

In order to execute such a UI-driven UI orchestration, we
need to join also the power of the runtime environments of
the two previous configurations. Specifically, UI synchro-
nizations involving service invocations can no longer be
performed with a simple event proxy on the server side
only (like in pure UI orchestrations); instead, the syn-
chronization requires a tight integration of the client-side
runtime environment for UIs with the server-side service
orchestration engine. Specifically, a UI synchronization
event from one page must be able to instantiate and pro-
vide input to a service orchestration logic on the server
side, which, in turn, must be able to deliver its output in
form of a UI synchronization event sent to another page.
That is, we need to have a full two-way communication

channel between the two runtime environments, a feature
that is implemented by the UI components’ event proxies
and event buffers in the UI engine server.

In terms of correlation, all UI synchronization events
carry the UIOrchestrationID, as already introduced for
pure UI orchestrations, while the service orchestration
parts may require additional correlation information in-
side BPEL4UI, depending on their individual topology.
For instance, the service orchestration enacted by prop-
agating an event from B to A only involves synchronous
service invocations and does therefore not require any ad-
ditional correlation information. The other service orches-
tration in Figure 10(c), instead, also involves the reception
of an external event, which requires the setup of an addi-
tional correlation identifier, as already described for Figure
10(b).

7.4. Process-driven UI orchestrations

Finally, we have a process-driven UI orchestration each
time we have an application that brings together UI syn-
chronizations and service orchestrations in which the ser-
vice orchestration dominates over the UI synchronization.
For instance, workflow management or, more in general,
business process management applications that integrate
both web services and UI components and that orchestrate
tasks (work items) to be performed by either users or au-
tomated resources, such as our reference scenario, can be
considered of this type of UI orchestration.

Figure 10(d) schematically illustrates the situation: The
application starts with a pure service orchestration that
enacts a set of services and, only after the successful pro-
cessing of services a, b, c, and d, allows the users to access
their respective web pages. Inside the pages, there are UI
components that allow the users to interact with the pages
and to perform and conclude their tasks, which causes the
UI orchestration to leave again and disable the pages and
to proceed with the processing of the remaining part of
the service orchestration. That is, in process-driven UI or-
chestrations pages are invoked like services, but they are
targeted at users and, therefore, expose a UI the users can
interact with. The overall UI orchestration keeps waiting
until the user successfully completes his/her task, which is
communicated via an outgoing UI synchronization event.

In terms of required execution support, process-driven
UI orchestrations are similar to UI-driven UI orchestra-
tions, with the difference that the main service orchestra-
tion is instantiated only ones, not multiple times.

Correlation requirements are similar, too. As shown in
Figure 10(d), if there is an incoming event that needs to
be injected into a running instance of the UI orchestration,
correlation is needed; otherwise, the whole UI orchestra-
tion can also be processed without correlation. UI synchro-
nization events are again managed via the orchestration’s
unique identifier associated by the UI engine.

14

7.5. Complex UI orchestrations

The four types of UI orchestrations above represent
those classes of UI orchestrations that characterize the
most important application scenarios we encountered
throughout the development of the MarcoFlow system.
Yet, UI orchestrations may easily also get more complex.
For instance, it is possible to use a process-driven UI or-
chestration (including again UIs and actors) in place of
any of the simple service orchestrations in Figure 10(c), or
it is possible to expand the simple pages in Figure 10(d)
into complete UI-driven UI orchestrations (including new
service orchestrations), or we could establish UI synchro-
nizations among the two pages in Figure 10(d), and sim-
ilar. While these kinds of UI orchestrations are theoreti-
cally possible and supported by BPEL4UI and MarcoFlow,
luckily it is hard to find practical examples that indeed re-
quire such a level of complexity.

8. Implementing and Running UI Orchestrations

In order to ease the development, deployment, and ex-
ecution of UI orchestrations, MarcoFlow comes with two
tools that aid the different actors involved: a graphical
BPEL4UI editor for developers and a web-based manage-
ment console for both developers and users.

The graphical BPEL4UI editor for developers has
been implemented as an extension of the Eclipse BPEL
editor (http://www.eclipse.org/bpel/) and comes with
(i) a panel for the specification of the pages in which UI
components can be rendered and (ii) a property panel that
allows the developer to configure the web pages, to set the
properties of UI partner links, and to associate them to
place holders in the layout.

The screenshot in Figure 11 shows the editor at work.
The layout structure of the editor is the same of the stan-
dard Eclipse editor, except for some differences in the right
and bottom side. On the right side, now it is also possible
to define the pages of the UI orchestration (as elements
of the Pages group). Selecting a page in the list shows
the respective details in the Properties panel in the lower
part of the figure and allows the developer to assign the
actor, i.e., the user that will be allowed to access the page,
and the HTML template for the page. Still on the right
side, where usually there are only partner links for web
services, now it is also possible to define UI partner links
for UI components. Selecting a partner link from the list
again shows its details in the Properties panel. Ticking
the UI component checkbox turns the partner link into a
UI partner link and allows the developer to define in which
page and place holder inside the page the UI component
will be rendered. The actual composition logic is specified
in the modeling canvas in the central part of the editor.

The web-based management console helps (i) devel-
opers deploy ready UI orchestrations and (ii) users in in-
stantiating and participating in running UI orchestrations.
Deploying a new UI orchestration requires the developer

Figure 11: The extended Eclipse BPEL editor for developing UI
orchestrations at work.

to pack all the project files (web service WSDLs, UI com-
ponent WSDL4UIs, BPEL4UI specification, HTML tem-
plates, and the system configuration) into a single archive
file and to upload it to the management console. Doing so
allows the developer to deploy the application by means of
a simple mouse click, which invokes the BPEL4UI compiler
and generates the standard BPEL file, the event buffers
and event proxies, their respective WSDL files, and the UI
compositions and then deploys all generated artifacts in
the respective runtime environments.

Figure 12, instead, shows the interface of the manage-
ment console for regular users, where they can see which
UI orchestrations have been deployed they have also access
to. Specifically, a user can either start a new instance of
UI orchestration (via the upper list in the figure) or par-
ticipate in an already running instance of UI orchestration
(via the lower list in the figure), which – in the case of
the operator and assistant in our example scenario – leads
him/her, for example, to one of the pages in Figure 1.
The operator is allowed to instantiate the orchestration,
and the assistant is enabled to participate.

The MarcoFlow system shown in Figure 2 is fully im-
plemented and running (a demo of the tool is available at
http://mashart.org/marcoflow/demo.htm). In our test
setting, we run the UI engine server and the BPEL en-
gine on the same machine, yet these components could
also easily be distributed over different physical machines,
a feature that is already supported by our code generator.

Developing the MarcoFlow platform in a way that is
fully functioning required taking some decisions on the
technologies to be used. As shown in this paper, we opted
for BPEL as service orchestration engine, since BPEL na-
tively supports communication with SOAP/WSDL web
services, a requirement that stems from our scenario. We
opted for JavaScript UI components, as this represents
the current trend in mashups and web-based UI devel-
opment. Yet, the contributions of this paper are inde-

15

Figure 12: The management console for developers and users allow-
ing them to deploy, instantiate, and participate in UI orchestrations.

pendent of these choices and more conceptual than tech-
nological (cf. Section 7). In fact, we can easily imag-
ine substituting the BPEL editor with a BPMN editor,
of course adding the necessary UI-specific extensions to
it. Given the standardized mapping from BPMN 2.0 to
BPEL, this would not affect the runtime part of the archi-
tecture. If we substitute the BPEL engine with another
workflow or business process engine (provided that such al-
ready supports interaction with web services), this would
require a change in the runtime architecture and the gen-
erated process model. But it would be straightforward and
not change the philosophy of the overall platform. Simi-
larly, if we want to manage UI integration at the server-
side (e.g., via server-side scripting languages like Perl or
PHP, ASP.Net or JSP), this could be achieved, but for
the cost of lower performance. User interaction occurs at
the client side and, hence, UI events are generated inside
the client browser. Using server-side technologies means
going through the server each time we have a simple intra-
page UI synchronization, which degrades the overall user
experience. It could however be possible to use different
client-side UI componentization technologies, such as W3C
widgets (again based on JavaScript), for which we are al-
ready studying suitable mashup models [29].

9. Lessons Learned

We conclude the paper with a few considerations on
lessons learned while developing and applying MarcoFlow.

One observation is that developers seem to prefer a web-
based environment rather than an Eclipse-based one. We
had chosen Eclipse because it already comes with an open-
source editor for BPEL, and we felt it was rather powerful
and reasonably easy to extend as opposed to developing a
new editor. In the end, working with the editor took a lot
of time, so that we did not get the benefits of a web-based
editor nor the time savings we hoped for.

A second issue relates to the number of conversions of
messages from SOAP to REST and vice versa. In the cur-
rent approach, even when two REST services are commu-
nicating we always need to SOAP-ify them. While we aim
to minimize this kind of conversions as much as possible
(by keeping intra-page UI synchronizations on the client),
this limits the scalability if a single UI engine is used.

A limitation of the current implementation is that our
notification handlers inside the client browser continuously
poll the server-side event buffers for updates, which further
produces communication overhead and possibly delays the
forwarding of events. With the growing support for HTML
5 web sockets, we will approach this limitation by pushing
events from the server to the client.

Another limitation is the hard-coded assignment of
users to pages. In our future work we will address this by
investigating how resource managers known from workflow
management systems can be adapted to our needs. Instead
of assigning concrete users, we will therefore assign users
roles to pages, which can then be instantiated either at
deployment time or runtime.

An interesting finding we did not realize in the beginning
is that, since UI orchestrations intermix stateless elements
(web service invocations) with stateful elements (UI com-
ponents) the need for correlation in UI orchestrations is
higher than in pure web service orchestrations. Design-
time and runtime constructs here may be needed to sim-
plify specifications and make the engine more scalable.

However the main considerations that will drive our re-
search are in terms of usability and applicability. While
working with BPEL was a strong requirement initially,
many companies are increasingly considering mashup lan-
guages for non mission-critical applications, targeting rela-
tively simple ways to integrate and present web-accessible
data. This would fit well with the MarcoFlow approach,
which can be extended to deal with mashup languages.

Finally, working with MarcoFlow and experimenting its
usage helped us strengthen our belief that BPEL, its vari-
ations, and actually even mashup languages are not suit-
able for end users, no matter how good development tools
are. Our conclusion here is that if we want to bring de-
velopment power to the end users or at least to knowledge
workers we need to define domain-specific models and tools
rather than general purpose ones. This is the road we be-
gun to undertake in our efforts within the Omelette EU
FP7 project. Yet, we also recognize that UI orchestrations
are intrinsically complex, an observation that already in-
spired a critical survey paper on “process mashups” [30],
in which we conclude that the kind of development scenar-
ios supported by MarcoFlow hardly suits the capabilities
of less-skilled developers or end users.

In summary, we are confident that the technological
limitations of MarcoFlow (no web-based editor, message
conversations, polling, user assignments) can easily be ad-
dressed in our future work. The conceptual limitations,
that is, the intrinsic complexity of UI orchestrations, how-
ever, we cannot eliminate.

16

10. Conclusion

The spectrum of applications whose design intrinsically
depends on a structured flow of activities, tasks or ca-
pabilities is large, but current workflow or business pro-
cess management software is not able to cater for all of
them. Especially lightweight, component-based applica-
tions or Web 2.0 based, mashup-like applications typically
do not justify the investment in complex process support
systems, either because their user basis is too small or be-
cause there is a need only for few, simple applications. Yet,
these applications too demand for abstractions and tools
that are able to speed up their development, especially in
the context of the Web with its fast development cycles.

We introduced an approach to what we call distributed
UI orchestration, a component-based development tech-
nique that introduces a new first-class concept into the
workflow management and service composition world, i.e.,
UIs, and that fits the needs of many of today’s web ap-
plications. We proposed a model for UI components and
showed how dealing with them requires extending the ex-
pressive power of a standard service composition language,
such as BPEL. We equipped the language with a modeling
environment and a code generator able to produce artifacts
that can be executed straightaway by our runtime environ-
ment, which separates intra-page UI synchronization from
distributed UI synchronization and service orchestration.
The result is an approach to distributed UI orchestration
that is comprehensive and free.

A strong point of the described approach is that it recog-
nizes the need for abstraction and more expressive models
and languages at design time, while – thanks to its strong
separation of concerns and powerful code generator – it
does not require any new language or system at runtime.

While the intrinsic complexity of UI orchestrations pre-
vents the adoption of MarcoFlow by less skilled develop-
ers or end users (which was never the goal of the project),
MarcoFlow does provide skilled developers with more ex-
pressive power compared to their current instruments: the
experienced BPEL developer is able to integrate UIs and
people into his service compositions; the mashup developer
is able to design mashups that also involve long-running
service orchestrations and user collaborations.

References

[1] B. A. Myers, M. B. Rosson, User interface programming survey,
SIGCHI Bull. 23 (1991) 27–30.

[2] J. Yu, B. Benatallah, F. Casati, F. Daniel, Understanding
Mashup Development, IEEE Internet Computing 12 (2008) 44–
52.

[3] F. Daniel, S. Soi, S. Tranquillini, F. Casati, C. Heng, L. Yan,
From People to Services to UI: Distributed Orchestration of
User Interfaces, in: BPM’10, pp. 310–326.

[4] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web
Services Description Language (WSDL) 1.1, W3C Note, W3C,
http://www.w3.org/TR/wsdl, 2001.

[5] OASIS, Web Services Business Process Execution Language
Version 2.0, Technical Report, http://docs.oasis-open.org/

wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007.

[6] A. Hofstede, W. van der Aalst, M. Adams, N. Russell, Modern
Business Process Automation: YAWL and its Support Environ-
ment, Springer, 2009.

[7] O. Chun, M. La Rosa, A. ter Hofstede, M. Dumas, K. Shortland,
Toward web-scale workflows for film production, IEEE Internet
Computing 12 (2008) 53 –61.

[8] M. Brambilla, S. Butti, P. Fraternali, Webratio bpm: A tool
for designing and deploying business processes on the web, in:
ICWE, Springer, 2010, pp. 415–429.

[9] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
M. Matera, Designing Data-Intensive Web Applications, Mor-
gan Kauffmann, 2002.

[10] C. Pautasso, BPEL for REST, in: BPM’08, pp. 278–293.
[11] T. v. Lessen, F. Leymann, R. Mietzner, J. Nitzsche, D. Schle-

icher, A Management Framework for WS-BPEL, in:
ECOWS’08, IEEE, 2008, pp. 187–196.

[12] E. M. Maximilien, A. Ranabahu, K. Gomadam, An Online
Platform for Web APIs and Service Mashups, IEEE Internet
Computing 12 (2008) 32–43.

[13] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, WS-BPEL
Extension for People (BPEL4People) Version 1.0, Technical Re-
port, 2007.

[14] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP, Web Ser-
vices Human Task (WS-HumanTask) Version 1.0, Technical Re-
port, 2007.

[15] R. Acerbis, A. Bongio, M. Brambilla, S. Butti, S. Ceri, P. Frater-
nali, Web Applications Design and Development with WebML
and WebRatio 5.0, in: Objects, Components, Models and Pat-
terns, volume 11 of LNBIP, Springer, 2008, pp. 392–411.

[16] J. Gómez, A. Bia, A. Parraga, Tool Support for Model-Driven
Development of Web Applications, in: WISE’05, volume 3806
of LNCS, Springer, 2005, pp. 721–730.

[17] R. Vdovjak, F. Frasincar, G.-J. Houben, P. Barna, Engineering
Semantic Web Information Systems in Hera, Journal of Web
Engineering 2 (2003) 3–26.

[18] D. Schwabe, G. Rossi, S. D. J. Barbosa, Systematic Hypermedia
Application Design with OOHDM, in: HYPERTEXT’96, ACM
Press, 1996, pp. 116–128.

[19] N. Koch, A. Kraus, R. Hennicker, The Authoring Process of
the UML-based Web Engineering Approach, in: IWWOST’01.

[20] I. Manolescu, M. Brambilla, S. Ceri, S. Comai, P. Fraternali,
Model-driven design and deployment of service-enabled web ap-
plications, ACM Trans. Internet Technol. 5 (2005) 439–479.

[21] M. Brambilla, S. Ceri, P. Fraternali, I. Manolescu, Process mod-
eling in Web applications, ACM Trans. Softw. Eng. Methodol.
15 (2006) 360–409.

[22] Sun Microsystems, JSR-000168 Portlet Specification, Tech-
nical Report, http://jcp.org/aboutJava/communityprocess/

final/jsr168/, 2003.
[23] OASIS, Web Services for Remote Portlets, Technical Report,

www.oasis-open.org/committees/wsrp, 2003.
[24] F. Daniel, F. Casati, B. Benatallah, M.-C. Shan, Hosted Uni-

versal Composition: Models, Languages and Infrastructure in
mashArt, in: ER’09, Springer, 2009, pp. 428–443.

[25] S. Pietschmann, M. Voigt, A. Rümpel, K. Meißner, CRUISe:
Composition of Rich User Interface Services, in: ICWE’09,
Springer, 2009, pp. 473–476.

[26] M. Feldmann, T. Nestler, K. Muthmann, U. Jugel, G. Hübsch,
A. Schill, Overview of an end-user enabled model-driven de-
velopment approach for interactive applications based on anno-
tated services, in: WEWST’09, ACM, 2009, pp. 19–28.

[27] A. D’Ambrogio, A Model-driven WSDL Extension for Describ-
ing the QoS of Web Services, in: ICWS’06, pp. 789–796.

[28] WSPER.org, WS-BPEL 2.0 Metamodel, Technical Report,
http://www.ebpml.org/wsper/wsper/ws-bpel20.html, 2007.

[29] S. Wilson, F. Daniel, U. Jugel, S. Soi, Orchestrated User In-
terface Mashups Using W3C Widgets, in: ComposableWeb’11
(ICWE 2011 Workshop Proceedings), Springer, 2011.

[30] F. Daniel, A. Koschmider, T. Nestler, M. Roy, A. Namoun,
Toward Process Mashups: Key Ingredients and Open Research
Challenges, in: Mashups’10, ACM, 2010.

17

