
Toward Process Mashups:
Key Ingredients and Open Research Challenges

Florian Daniel
University of Trento
Via Sommarive 14

38123 Povo (TN), Italy
daniel@disi.unitn.it

Agnes Koschmider
University of Pretoria

Department of Computer
Science

0002 Pretoria
akoschmider@cs.up.ac.za

Tobias Nestler
SAP Research Center

Dresden, Germany
tobias.nestler@sap.com

Marcus Roy
SAP Research Australia

168 Walker Street
2060 North Sydney, Australia

m.roy@sap.com

Abdallah Namoun
Centre for Service Research

University of Manchester
Manchester, M13 9SS, UK

abdallah.namoune@mbs.ac.uk

ABSTRACT
Over the last few years, the mashup community has grown
significantly, and mashup development has matured sub-
stantially compared to the initial hacking practices. Mash-
ups as applications have specialized into data mashups,
service mashups, or user interface mashups – although
these terms lack a common agreement on definitions –
while other types of mashups can still be identified. In
fact, recently the term process mashup emerged, yet, again,
its meaning is everything but clear.

Intrigued by this latter idea, in this paper we try to
understand what process mashups are. We identify three
dimensions that distinguish process mashups from most of
the current types of mashups and we show that exploring
them leads to a set of new types of mashups, which are the
actual basis for the development of process mashups. For
each of these new types of mashups, we provide a discus-
sion, discuss suitable application scenarios and show tool
support, so as to highlight challenges and open issues.

1. INTRODUCTION
During the last few years, Mashups have attracted con-

siderable attention as situational applications composing
existing and reusable Web resources to solve a new and
immediate problem. In this context, the development of
mashup applications is considered relatively easy and flex-
ible compared to traditional application composition by
primarily addressing casual and less experienced develop-
ers. Mashups tools leverage the potential of the long tail
of users, folksonomic features and Web 2.0 techniques,
leading to a large amount of mashup applications being
developed, e.g., see ProgrammableWeb1. Although such
mashup development can be considered quite popular in

1
http://www.programmableweb.com/ (5198 Mashups; Sept’10)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM 978-1-60558-950-3 ...$10.00.

the community, it seemed to fall short of achieving signifi-
cant impact in an enterprise context. To underline, Gart-
ner [4] considered Enterprise Mashups as one of the top ten
strategies in 2008 and 2009 but not for 2010. This raises
the question of possible factors that could have caused the
lack of success for Enterprise Mashups.

From an enterprise Service-Oriented Architecture (eSOA)
point of view, organizations offer Web Services to ex-
pose business-relevant data and functionality from exist-
ing legacy applications. Therefore, business process au-
tomation based on activities implementing these Web Ser-
vices is an essential requirement for enterprises to run cru-
cial business operations. Currently, the application devel-
opment mostly addresses skilled developers and is still a
costly and timely effort vulnerable to frequent changes.

However, business processes are typically characterized
by the involvement of multiple user roles and a workflow-
style composition. As a simple example, a leave request
application might require multiple views, e.g. for an em-
ployee to enter the request as well as for a manager to
review and approve or reject the request. Based on the
manager’s decision, an individual notification might be
sent to the employee. As a minimum, this scenario re-
quires support for multiple users and a central workflow
to guide the manager through a sequence of steps or pages
that require his/her attention.

We argue that existing mashup development approaches
do not adequately address the creation of applications and
capabilities as described in the above scenario. Within
this paper we refer to these kind of resulting applications
as Process Mashups – a term first introduced by [17].
Moreover, its definition is still fairly vague, posing the
question: what actually defines a process mashup? To
better understand the definition and future requirements
of process mashups, we introduce three dimensions, i.e.,
multi-user support, multi-page navigation, and workflow
support, which we consider significant characteristics to
describe this class of mashups. In this context, each com-
bination of our dimensions represents a specific class of
mashups, e.g. ranging from single-user, single-page and no
workflow to multi-user, multi-page and workflow-supported
mashups, where we understand only the latter as process
mashup. Based on our dimensions, we investigate existing
mashup development tools and classify them into the rel-
evant mashup class. Starting from this classification, we

1

outline future research challenges that we have to solve in
order to turn process mashups into practice.

The remainder of this paper is as follows. In Section 2,
we provide a background on tools and technologies sup-
porting the management and execution of processes as well
as first approaches towards Process Mashups. Section 3
introduces our dimensions followed by the classification of
existing mashup tools in Section 4. In Section 5, we dis-
cuss the research challenges before we conclude the paper
in Section 6.

2. BACKGROUND
Commonly we define a mashup as a web application

that integrates data, application logic, and pieces of user
interfaces (UIs) [7]. To understand what kind of new per-
spectives a process mashup should reveal we have to un-
derstand characteristics of a process and a workflow and
how they can stimulate a mashup.

A business process is a set of activities that can be rep-
resented through visual languages. A workflow is an exe-
cutable part of a process that consists of several activities
and defines a series of tasks that need to be managed
by different resources (individuals or application compo-
nents) [14]. A workflow assigns tasks to users and guides
them through these tasks.

Business processes mainly focus on the control-flow per-
spective and the technical level of a Service-to-Service in-
teraction. The extension BPEL4People [2] attempts to
better support human interaction by introducing the con-
cept of the people task as first-class citizen into the or-
chestration of services. The extension is tightly coupled
with the WS-HumanTask [1] specification, which focuses
on the definition of human tasks, including their proper-
ties, behavior and operations used to manipulate them.
BPEL4People supports people activities in form of in-
line tasks (defined in BPEL4People) or standalone human
tasks accessible as web services. In order to control the
life cycle of service-enabled human tasks in an interoper-
able manner, WS-HumanTask also comes with a suitable
coordination protocol for human tasks, which is supported
by BPEL4People. The two specifications focus on the co-
ordination logic only and do not support the design of the
UIs for task execution.

Service composition is still a complex, time consuming,
and error prone process requiring strong modeling abilities
and a deep knowledge in terms of existing standards (WS*
protocol) and composition languages. The need for situ-
ational applications (i.e. applications that come together
for solving some immediate business problems) to address
individual and heterogeneous needs as well as the shift to
more flexible and dynamic business environments encour-
age the idea of lightweight composition and mashups in
particular [9].

While most mashups are still hand-coded, graphical mash-
up platforms aiming for a simplified web development to
support less experiences developers. The graphical com-
position style of platforms like Yahoo! Pipes 2, Open
mashup 3 or Marmite [15] supports the ad-hoc creation
of simple web applications by combining data from het-
erogeneous resources like web feeds, web pages and web
services. Each resource is represented as a component
or widget and can be dragged and linked with others.
Thereby, the output of one component serves as the input

2http://pipes.yahoo.com
3http://www.open-mashups.org/

of another (Piping and Wiring). The majority of plat-
forms (overview provided by [8]) focuses on the develop-
ment of data-oriented mashups in the form of value-added
services, feeds or single page web applications (no views
are supported). Control-flow is typically not considered
and only single users are addressed.

Several tools claim to be a mashup platform and to sup-
port the modeling and execution of business processes as
one feature. Tools like the SOA4All Studio [10] or Ser-
ena Mashup Composer4 provide process modeling editors
among other abstraction layers and views on an appli-
cation. LiquidApps5 supports the integration of BPEL
process descriptions as a foundation for the generation of
screens and forms. Even though all of these tools man-
age business processes they require a deep understanding
of development concepts and can be considered as profes-
sional development environments.

The concept Process Mashup has already been discussed
in the literature. [17] introduces the concept of process
mashups as the next type of mashups that consider be-
sides the data and presentation layer also the integration
of business processes. Following this idea, [16] proposes
process-oriented mashups that support the coordination
or automation of tasks and activities by modeling the con-
trol flow. The authors discuss motivating examples for
this new category of situational applications, point out
interesting challenges like the provision of reusable pat-
tern and artifacts but lack concrete concepts or solutions
about how to achieve this objective. Another approach
that promises to combine data and process flow is Mash-
light [3] where predefined widgets (Mashlight Blocks) can
be ordered along a process flow.

From our understanding, a Process Mashup is more
than adding business processes to the data and presen-
tation layer. The analysis reveals a process mashup be-
yond the current proposals. A process mashup should
tackle multiple users and organize human tasks. If work
is properly structured into tasks, this implies the need for
multiple pages or views on a process even in presence of
only one user. Thus, a process mashup should also ad-
dress multiple pages. The junction of all together allows
a controlled interwoven composition of the three basic in-
gredients data, functionality and UI that is currently not
at all supported.

3. PROCESS MASHUPS: INGREDIENTS
Although mashups are typically still simple, one-page

applications, compared with traditional data and applica-
tion integration practices mashups feature one significant
new innovation: they foster integration – and, hence, reuse
– also at the level of UIs, i.e., the presentation layer. Of
course, this practice is still in an early stage of maturity,
and suitable support in terms of readily available com-
ponents or APIs is still lacking in most of the cases. The
best example of API that comes with its own UI is Google
Maps with its relatively easy to use JavaScript program-
ming interface. Yet, in many cases UI elements are still
scrapped or extracted from web pages, typically without
the actual provider of the web page knowing about it.

The discussion in the last section shows that business
processes have some typical characteristics that also pro-
cess mashups will have to support. Specifically, we can
identify three new dimensions, i.e., support for multiple
users, support for navigation among multiple connected

4http://www.serena.com/products/mashup-composer/
5http://www.liquidappsworld.com/index.php

2

pages, and support for workflows. To be able to analyse
existing mashup approaches in regard to this new dimen-
sions we discuss each of them in the following.

Note that in this paper we explicitly distinguish between
workflow and control flow in order to distinguish the coor-
dination of only human actors and their work tasks (in the
former case) from the generic coordination of (computing)
tasks (in the latter case).

3.1 Multiple users
Supporting multiple users means allowing them to con-

currently operate a same instance of a mashup applica-
tion. This is different from sharing a mashup (e.g., a Ya-
hoo! pipe) among multiple users, which in practice just
means allowing them to run their very own instance of the
mashup.

Identifying and authorizing users and assigning them
individual work items (tasks) is one of the drivers that
led to the emergence of workflow management and busi-
ness process management systems. Activities in a process
model can commonly by associated with actors, e.g., via
swim lanes as in BPMN or via suitable parameters. This
association is usually performed via roles, which allows the
late binding of actual actors to a process instance (e.g., at
deployment time or at runtime).

Such kind of collaborative, multi-user mashups are cur-
rently not supported. Current mashups do not allow multi-
users to concurrently or cooperatively work together (e.g.,
via different UI views of the mashup) nor do they offer
role-based access mechanisms to the mashup. Instead, so
far they mostly focus on single (isolated) users where each
user has his/her own private instance of the mashup.

Supporting multi-user mashups will require addressing
the following challenges (among others):

• Concurrent access: How can we support concur-
rent access of multiple users to a same view of a
mashup application? Concurrent in this case means
that all users work together on a same view of the
mashup. For instance, we can imagine a mashup in
which the employee co-browses his options for the
leave request together with his manager and they
jointly decide when it is fine for both.

• Role-based access: How can we support coopera-
tive access of multiple users to a mashup application
via different views on the application? The goal here
is to allow multiple users to cooperate, but by con-
fronting each user with mashup information that is
relevant for his/her role and activities only. As an
example, the employee and the manager may agree
on the leave request in such a way that the employee
selects his configuration alone, and the manager then
has another view just to accept or reject the pro-
posal.

3.2 Multiple pages
Implementing mashups that are composed of multiple

pages means being able to organize the integrated compo-
nents of the mashup into a possibly hierarchical navigation
structure that can be explored by the users via hyperlinks.

Business process or workflow management systems usu-
ally provide their users with user interfaces (e.g., input
forms) that are tailored to the work item to be done. If
work is properly structured into tasks, this implies the
need for multiple pages or views on a process even in pres-
ence of only one user. If multiple users cooperate via a
process, this requirement becomes even more stringent.

Today, most of the mashups that one can find (e.g., on
programmableweb.com) are web applications with a sin-
gle page. Multiple pages are slightly used for Enterprise
Mashups where multiple pages are generated by using di-
alog controls such as tabs. Besides the fact that in such
a case mashup composers should hold web design criteria
for each page, the tab paradigm is not more than an ac-
ceptable compromise between ease of implementation and
provided features. Also, the problem of current multi-page
mashups is that they are created in an ad-hoc manner, re-
sulting into very different approaches to distribute content
over pages.

A good multi-page mashup answers the following chal-
lenges:

• Navigation structure: How do we structure in-
tegrated data, APIs, and UIs into a structured set
of pages? Connected to this, it is also necessary to
understand how it is possible to define a good nav-
igation structure on top of these pages, i.e., how to
interlink pages. For instance, the employee could
be provided with two pages, one dedicated to the
description of the leave request and one to the ap-
pointment of a substitute; this may enhance the us-
ability of the mashup.

• Navigation state: How do we keep the state of
the navigation in a multi-page mashup? Differently
from traditional web applications, in which the URL
encodes the navigation progress through the applica-
tion, mashups may integrate a variety of JavaScript
or AJAX components (e.g., a Google Map), which
pose new requirements if we want to keep track of the
user’s selections, since they typically operate outside
the control of the browser.

3.3 Workflows
Providing workflow support in a mashup means be-

ing able to specify a control and data flow over human
tasks. That is, it requires being able to define sequences,
branches, or conditional executions of work items.

In the early 90ies, establishing such kind of process logic
as own modeling concern and detaching its execution from
monolithic software systems was one of the major con-
tributions of workflow management systems. Typically,
modern process modeling formalisms distinguish between
control flow (i.e., the order of tasks) and data flow (i.e., the
way data is propagated among tasks). The coordination
of multiple actors may happen via control flow only, since
business data may also ”flow” only in the real world from
one actor to another, yet the process needs to progress.

Today’s data mashups (like Yahoo! Pipes Mashups)
or service compositions are already highly process-based
without however implementing a control flow. In fact,
these types of data mashups are typically data flow based
only. Very likely the reason for this choice is simplicity
and the lack of the need to coordinate multiple actors. UI-
based mashups are more event-based, yet when it comes
to the integration of web services, control flows to express
the service orchestration logic is typically needed.

Mashing up people, UIs, data, and services and map-
ping them to an overall workflow requires again addressing
some peculiar challenges:

• Workflow: How do we define a workflow for hu-
man actors over mashups or components of mash-
ups? Answering this question implies deciding the
granularity at which we want to assign actors and

3

control the state of the progress (e.g., page level vs.
component level) and deciding whether to use pro-
cess data/variables to keep track of the process’ state
or not. In our example, we can, for instance, decide
to put the employee’s request into a cycle with the
manager’s decision, until an agreement is reached.

• Data flow: How do we propagate data from one
task to another task (if any)? Coordinating tasks
may imply forwarding business data (e.g., an elec-
tronic form) from one task to another. This flow
of business data between different mashup tasks and
users, resulting from the need to circulate data (e.g.,
exchanging, manipulating and evolving), must be ef-
ficiently coordinated. The data flow between the em-
ployee and the manager can, for example, be boiled
down to the proposed leave period message and the
acceptance/rejection message.

• Integration of data, services, UIs, and people:
If things get more complex, how do we coordinate
not only human actors but also data, web services,
and the UIs the human actors need to interact with?
Doing so requires conciliating the needs of services
(orchestration) with those of UIs (synchronization)
and those of human actors (workflows).

3.4 The New Perspective
In order to better understand how process mashups

could now look like, we need to put the three previous
ingredients or dimensions together. The output of this
junction is illustrated in Figure 1. The illustration shows
an interesting result, which we think deserves further in-
vestigation before being able to actually talk about pro-
cess mashups: there are a variety of different mashup types
with different characteristics that can be seen as interme-
diate steps (also in terms of the mashup platforms that
can help implementing them) to be investigated, before
approaching the full process mashup problem.

!"#$%&'(#)"'*)%

+,-#%&'(#)"'*)%

.*$/0*1%&'(#)"'*)%

"')-2#%%
3"#$%

"')-2#%%
4,-#%

)*%1*$/0*1%

1*$/0*1%
"344*$5%

(3267%
3"#$%

(3267%
4,-#%

89  :'(42#%;,"<34%
=9  ;3267+,-#%;,"<34%
>9  ?3'@#@%;,"<34%
A9  +,-#%B2*1%;,"<34%
C9  :<,$#@%+,-#%;,"<34%
D9  :<,$#@%:4,E#"%;,"<34%
F9  G**4#$,6H#%;,"<34%
I9  +$*E#""%;,"<34%

!"

#" $"

%"

&"

'"

("

)"

Figure 1: Types of mashups

4. CLASSES OF MASHUP TOOLS
We define and discuss each of the above types in the fol-

lowing section, keeping a special eye on how these types of
mashups are supported with existing mashup tools. Each
junction in the illustration may require different devel-
opment approaches and solutions. Although, we are not
aware of any tool that implements a process mashup, each
of these mashup types is fully justified since they provide
support for different application scenarios.

4.1 Simple Mashups
Definition: This mashup type exclusively addresses Sin-
gle User / Single Page / No Workflow
Example: A simple mashup could, for instance, allow
the employee to have an integrated picture of his/her col-
leagues’ leave requests, so as to tailor their own request
to the company’s needs. Data could be sourced from a
company-internal repository via a dedicated web service,
and results and inputs can be rendered in the web page
via suitable UI components. There is no direct interaction
or cooperation with the manager, and the mashup rather
serves an informational purpose.
Representative platform: The mashArt platform [5],
for example, focuses on so-called hosted universal com-
position for the web. The platform comes with models,
languages, and a composition paradigm that allows one
to abstract from low-level implementation details and to
compose components that are characterized by heteroge-
neous technologies, ranging from simple feeds to complex
web services and UI components, within the same devel-
opment environment. In doing so the platform conciliates
the need for orchestration of process-oriented service com-
position with the need for synchronization of event-based
UI development via a unique event- and data flow-based
composition logic. The platform also supports the defini-
tion of complex, e.g., asynchronous, service orchestration
logics. Mashups can easily be dragged and dropped to-
gether, previewed, stored, and executed in a hosted fash-
ion.

Figure 2: The mashArt editor at work

Figure 2 shows the mashArt editor at work. Data/web
services (the round constructs) can easily be integrated
with user interface components (the rectangles) by piping
and wiring events of one component to operations of other
components. UI components can be associated with place-
holders inside common HTML templates, so that they can
be rendered to the user.
Other platforms: This is the most studied class of mash-
ups as of today. There are a variety of different tools,
among we mention Yahoo! Pipes6 for data mashups, and
Intel Mash Maker7 for UI mashups.

4.2 Multi Page Mashups
Definition: This mashup type exclusively implements
Single User / Multi Page / No Workflow

6http://pipes.yahoo.com/pipes/
7http://mashmaker.intel.com

4

Example: A multi-page mashup in the context of our
leave request example can provide an overview of incoming
leave requests in form of a list. After selecting one specific
entry within the list the mashup switches automatically
to another page and displays additional details about the
requesting employee. Users of such mashups are working
without any interaction or cooperation with other roles
and are not guided in his/her work.
Representative platform: The EzWeb platform allows
users to create Mashups by combining or wiring gadgets.
In this context, each gadget can be understood as a “mini
application” (e.g. Amazon Shopping Cart) developed us-
ing the FAST visual storyboard application [11]. Further-
more, gadgets can consist of multiple screens that are ar-
ranged according to a screenflow (see Fig. 3). The screen-
flow is modeled in a storyboard-like way by placing prede-
fined screens (e.g. Amazon Product List) into the working
area. However, connections between screens are not ex-
plicitly modeled but automatically generated based on a
mapping of their input and output types and semantics.
This means the workflow in FAST does not have a control
flow per se but is implicitly defined by the data flow map-
ping. Although FAST does not support multi-user roles,
it allows a single user to navigate seemingly free through
screens/pages.

Figure 3: Gadget development with FAST [11]

4.3 Guided Mashups
Definition: This mashup type exclusively implements
Single User / Single Page / Control-Flow
Example: This mashup class offers user guidance in or-
der to fulfill his/her task. Such a mashup reacts on user’s
inputs and gradually provides the next possible activities.
Imagine the employee wants to request a leave. He/she in-
vokes the leave request. Instead of showing, for instance,
a PDF with interactive formular fields, this mashup type
guides the user through this process. After selecting his/her
name, the mashup shows the employee’s leave entitlement
for the year. Subsequently, the employee has to decide
what kind of leave he/she requests (holidays, sabbatical
leave). In case of a sabbatical leave a text box is opened
that asks the employee to state a reason. Next, the em-
ployee selects his/her period for the leave. A calendar is
opened and highlights days that are free for a leave in

green color. The remaining days are marked in red. Fi-
nally, the employee must electronically sign the request
form. If all fields were filled correctly, a send button is
shown.
The benefit of this mashup type is that users are guided
through their work.
Representative platform: We are not aware of any
tool for guided mashups. Guided applications for leave
requests might also be implemented with standard soft-
ware. In section 2 we discussed the benefits of situational
applications compared to other application types.

4.4 Page Flow Mashups
Definition: This mashup type addresses Single User /
Multi Page / Control-Flow
Example: Following our running example a mashup of
this category could support the manager in handling leave
requests. One page of the application can provide a list of
incoming leave requests. After selecting one specific en-
try the option to approve or decline the request appears.
To support the decision process, the manager can switch
to another page of the application to request additional
details about the employee as well as an overview of all
the leave requests applied so far. A third page provides
statistics about all leave requests of the employers’ de-
partment for a specific period of time. The manager is
solely working on the pages without any interaction with
the employee.
Representative platform: The ServFace Builder[12]
is a web-based authoring developed in the frame of the
EU-funded project ServFace8. The tool supports non-
programmers in the design and creation of service-based
interactive applications in a WYSIWYG manner. It ap-
plies the approach of service composition at the presenta-
tion layer, in which applications are built by composing
web services based on their frontends, rather than appli-
cation logic or data. Applications are designed as a set
of pages that can be connected to create a navigation
flow. The tool supports different navigation styles like
wizards (Guided Procedure) or a free navigation like the
one known from traditional websites. Services are rep-
resented as form-based UIs and can be connected across
pages in order to define a data flow.

Figure 4: Page Flows within the ServFace Builder

Figure 4 shows the ServFace Builder at work. The appli-
cation has three pages, whereby each page represents one
dialog visible on the screen. Connections between pages
build the control flow of the application and create an en-
try in a navigation menu, which is part of each page. The

8http://www.servface.eu

5

tool supports the user in the connection of pages according
to the chosen navigation style.

4.5 Shared Page Mashups
Definition: This mashup type addresses Multi User /
Single Page / No Workflow
Example: On Programmableweb.com one can find one
mashup addressing multi-users. The Amazon.com Shop-
ping Together mashup allows to shop together through
the MSN Messenger platform. While browsing the online
catalogue users can chat together.
A shared page mashup, in the context of the leave request
scenario, would allow employees to simultaneous work on
a single request. The employees would not be guided in
their work.
Representative platform: We are not aware of any
mashup tool for this category.

4.6 Shared Space Mashups
Definition: This mashup implements Multi User / Multi
Page / No Workflow
Example: Such a mashup allows multiple users to con-
currently share a space.
Let us consider the following scenario. An employee can
edit on the first page his/her leave request, on a second
page he/she can preview previous leave requests. The
employee can share his/her space with the manager and,
if applicable, with his/her temporary replacement. The
manager can even preview the previous leave requests of
the employee, which is prohibited for the temporary re-
placement. In case that the employee has selected days
that are overlapping with leaves of other employees an
additional page is opened in the space of the manager
showing the conflicts. There is no guidance for their work.
Representative platform: The IBM Mashup Center9 is
a collection of tools allowing users to create (Enterprise)
Mashups. Main customers of this tool are businesses look-
ing for a quick access to a consolidated view of informa-
tion. The recent version of the IBM mashup Center (V2.0)
comes with collaboration features called spaces allowing
users to create and (collaboratively) share mashup pages.
Spaces are collections of mashup pages assembled together
and providing a navigation between the pages. The spaces
concept supports concurrent access to the mashup with-
out any user guidance. Additionally, the administrator of
the mashup can establish a role-based access.

4.7 Cooperative Mashups
Definition: This mashup type exclusively addresses Multi-
User / Single Page / Workflow
Example: A mashup of this category would allow one
employee to resolve conflicts about a leave request in case
another employee wants to travel at the same time. They
jointly view the conflict and can decide which leave request
should be deleted. The interaction between the employees
is guided.
Representative platform: Gravity10 is a lightweight,
collaborative and web-based business process modeling
client targeting non-BPM-experts to create immediate ap-
plications based on business process modeling. It allows
multiple users to simultaneously model the underlying
business process (model view) and the corresponding user
interfaces (application-design view) applying mashup-style

9www.ibm.com/software/info/mashup-center/
10http://www.sdn.sap.com/irj/scn/weblogs?blog=
/pub/wlg/17826

composition techniques, e.g., drag & drop and drawing
lines (see Figure 5). Also, changes in the application-
design view are instantaneously propagated to the model
view and vice versa. Hence, Gravity supports multi-user
involvement and defines a control flow based on the under-
lying business process model as well as a data flow based
on the mapping of fields in the application design view re-
sulting into an executable application. Although Gravity
does not literally support multi-pages, it gets quite close
to our definition of a process mashup.

Figure 5: Gravity within the Google Wave envi-
ronment

4.8 Process Mashups
Definition: Multi-User / Multi-Page / Workflow
Example: Finally, process mashups are the most com-
plex of the combinations we identify. We can, for instance,
have a mashup that provides the employee with a mashed
up web page that allows him/her to configure his preferred
flight and hotel combination and the manager with a page
that allows him/her to inspect the employee’s choice and
to approve or reject it. The mashup may further put the
two pages/tasks into a cycle that terminates only upon
the approval of one of the choices.
Representative platform: It is hard to find a good
representative for this type of mashup. Maybe the Mar-
coFlow platform [6], which is based on the idea of dis-
tributed orchestration of UIs, is a first attempt into that
direction. The platform features an application develop-
ment approach that allows one to bring together UIs, web
services, and people in a single orchestration logic, lan-
guage, and tool. MarcoFlow covers three main phases
of the software development life cycle: design (through
a dedicated, visual editor), deployment (through a set of
code generators), and execution (through a distributed
runtime environment). The key idea to approach the co-
ordination of (i) UI components inside web pages, (ii) web
services providing data or application logic, and (iii) indi-
vidual pages (as well as the people interacting with them)
is to split the coordination problem into two layers, i.e.,
intra-page UI synchronization and distributed UI synchro-
nization and web service orchestration, and to provide
runtime environments to both (a client-side JavaScript en-
vironment plus a BPEL engine in the backend).

Development of distributed UI orchestrations is sup-
ported via an extended Eclipse BPEL editor, as illustrated
in Figure 6. The editor supports the specification of com-

6

Figure 6: The extended MarcoFlow Eclipse BPEL
editor; UI-specific extensions are highlighted.

munications among services and UI components (both ab-
stracted in terms of WSDL interfaces), the collection of
UI components into pages, and the assignment of actors
to pages.
Other platforms: Even though it does not really sup-
port the composition of UIs, the use of JOpera, as ex-
emplified by Pautasso [13], could allow the setup of the
interaction logic among components and multiple users.
UIs are developed as traditional web applications and ac-
cessed via RESTful service interfaces.

5. DISCUSSION
The above casuistry shows that while in all the eight

cases of mashup applications it is always possible to pro-
vide meaningful examples of mashups, it is not always
possible to also identify a mashup tool that supports this
specific type of mashup. Specifically, to the best of our
knowledge we have not been able to identify any publicly
available mashup tool for the development of guided mash-
ups and shared page mashups.

Yet, one of the key challenges in supporting the develop-
ment of mashups is to provide appropriate tool support.
Current trends and research show that simplified visual
design metaphors and end-user friendliness are important
criteria for a good mashup platform. In fact, one of the
key drivers for mashups is their simplified and rapid devel-
opment, especially of situational applications, which can-
not be done with traditional composition approaches due
to their complexity in terms of standards and composi-
tion languages. Simple development metaphors and end-
user orientation need to be guaranteed even if the result-
ing mashups incorporate more features and complexity,
such as it is the case of process mashups, otherwise these
tools become more and more powerful development instru-
ments for experienced developers and loose their benefit
to non-programmers. If mashup platforms increase their
complexity too much, this advantage will disappear, and
maybe they are no longer ”mashup platforms”.

In order to better understand this concern, we first of
all need to define what we mean with the term mashup
platform:

A mashup platform is a composition and run-

time environment for applications (mashups)
that may span all three layers of the software
stack (data, application logic, and UI) and that
typically does not require programming skills
(e.g., by keeping technology as simple as possi-
ble and adopting visual development metaphors).

Given this definition, the border between what should
be considered a mashup platform and what not should be
less blurred: Ease of use and end-user focus, i.e., no need
for programming skills, are addressed by tools like FAST,
mashArt, Gravity, and ServFace Builder. More precisely,
FAST and mashArt support the less experienced devel-
oper in the development of complex applications. They
still require some technical knowledge, but they clearly
focus on a rapid and lightweight resource composition.
Gravity and ServFace Builder require less skills and sup-
port the development of applications by end-users and
non-programmers. However, this simplicity does not come
for free, and their complexity or expressiveness is not as
powerful as some of the other platforms. The most com-
plex tool in our analysis is MarcoFlow. The extended
Eclipse BPEL editor provides all the required functional-
ity to realize all the three dimensions of a process mashup,
but clearly looses the lightweight composition perspective
in that it uses an extended version of BPEL, a language
that is already hard to learn by skilled developers. So,
according to our above definition, the MarcoFlow system
cannot really be considered a mashup platform.

Besides effective mashup editors for process mashups, it
is further important to reason about what kind of runtime
support such kind of mashup applications will require.
From the discussion of the different types of mashups
seems to emerge one important aspect that may change
the way mashups are perceived: moving from mashups
that do not support any kind of human workflow to mash-
ups that allow the coordination of and cooperation among
multiple actors means that process mashups loose the typ-
ical situational nature of today’s mashups.

First of all, coordinating different actors and their work
items typically requires software support that is long-run-
ning and, in some cases, stateful. This, in turn, raises the
need for some kind of execution environment for process
mashups that is able to keep alive instances of process
mashups and to progress their state upon user interac-
tions. If the required process logic is only short-living, a
simple application may serve the purpose. But if things
get more complex, an engine that is able to handle long-
running process logic and multiple concurrent instances
will be needed.

Next, dealing with multiple users in the execution en-
vironment raises the need for adequate identification and
authentication mechanisms, a requirement that definitely
adds complexity to both the execution environment and
the mashups running in it. Roles may be needed to or-
ganize users into groups, access rights to restrict access
of individual users or groups to features of the execu-
tion environment or to the mashups themselves. To re-
call, mashup development has become popular due to its
simplicity by purposely avoiding any security and reliabil-
ity requirements among others. Although, more powerful
mashup platforms and execution environments have the
benefit to create more expressive, long-running and pos-
sibly stateful mashup applications involving various user
roles/groups, the required set of skills and knowledge to
use them effectively is counter-productive to the mashup
idea.

7

RESTful or lightweight approaches to these problems
could help simplify some of these issues in terms of tech-
nology, but the conceptual complexity of full-fledged pro-
cess mashups cannot be further reduced. In fact, even
with the simplest development instrument a mashup de-
signer still needs to know how to structure human tasks
into pages that can be assigned to individual actors, how
to coordinate the work of multiple actors, which data the
actors need to perform their tasks, how to propagate such
data from one actor to another, etc. That is, developing
process mashups is a non-trivial effort consolidating vari-
ous stakeholder tasks such as application planning (what
user roles, what functionality must be supported), de-
sign (UI composition), composition (workflow, coordina-
tion of actors), implementation (programming) and execu-
tion (runtime configuration). Hence, mashup developers
performing these task must be quite versatile, having a
bit of all including programming knowledge, otherwise it
will be hard to implement anything that works.

6. CONCLUSION
Current mashups are in most cases single page appli-

cations for one user. They represent the simplest form
of mashups that require the least amount of user skills
to create them. Resulting mashups indeed solve situa-
tional and less complex problem with a high degree of
reusability. However, the need for mashup applications to
solve more specific and complex problems led to mashup
tools supporting multi-users and/or incorporating multi-
pages, which are only applicable in some scenarios, but
not all. Specifically in an enterprise context, the trend to
integrate process functionality within mashups motivated
us to introduce three new dimensions that helped us to
understand the concept behind process mashup. There-
fore, we derived the new dimensions from characteristics
of processes and workflows and discussed how mashups
could benefit from them. Based on the investigation of
existing mashup platforms, we started a classification ac-
cording to our dimensions along which we derived research
challenges that have to be met for future process mashup
development.

In general, we argue that process mashup development
is a challenging task that requires advanced skills and ex-
tended software support, which quickly goes beyond the
original idea of mashup development. Although effort can
(and needs to) be invested in suitable HCI research in
order to come up with intuitive mashup paradigms and
metaphors, which will ease the interaction with mashup
tools, this won’t be able to simplify much further a task
that is intrinsically complex. In fact, we stressed the ad-
ditional requirements and constraints needed to realize
process mashups, which position process mashups at the
boundary between mashups and traditional application
development. Hence, future mashup platforms aiming at
the development of process mashups will have to consider
a trade-off between the expressiveness and capabilities of
mashups and the required skill set of users needed to effec-
tively utilize the mashup platform to create and run them.
In short, we believe that process mashups will not replace
core business process management systems, but their in-
creasing capabilities definitely promise new opportunities
for a widespread adoption of mashups within enterprise
environments.

Acknowledgements
This work is supported by the European research projects
ServFace, Omelette and SOA4All.

7. REFERENCES
[1] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP.

Web Services Human Task (WS-HumanTask),
Version 1.0. Technical report, June 2007.

[2] Active Endpoints, Adobe, BEA, IBM, Oracle, SAP.
WS-BPEL Extension for People (BPEL4People),
Version 1.0. Technical report, June 2007.

[3] M. Albinola, L. Baresi, M. Carcano, and S. Guinea.
Mashlight: a Lightweight Mashup Framework for
Everyone. In Proceedings of WWW, 2009.

[4] D. Cearley and C. Claunch. Top 10 strategic
technologies for 2010.
www.gartnerinfo.com/g17.cgi/104598615/5812/,
October 2009.

[5] F. Daniel, F. Casati, B. Benatallah, and M.-C.
Shan. Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. In
Proceedings of ER’09, pages 428–443, Nov. 2009.

[6] F. Daniel, S. Soi, S. Tranquillini, F. Casati,
C. Heng, and L. Yan. From People to Services to
UI: Distributed Orchestration of User Interfaces. In
Proceedings of BPM’10, pages 310–326., 2010.

[7] F. Daniel, J. Yu, B. Benatallah, F. Casati,
M. Matera, and R. Saint-Paul. Understanding UI
Integration: A survey of problems, technologies.
Internet Computing, 11(3):59–66, May/June 2007.

[8] V. Hoyer and M. Fischer. Market Overview of
Enterprise Mashup Tools. In Proceedings of ICSOC,
2008.

[9] A. Jhingran. Enterprise information mashups:
integrating information, simply. In Proceedings of
VLDB’06, 2006.

[10] R. Krummenacher, B. Norton, E. Simperl, and
C. Pedrinaci. SOA4All: Enabling Web-scale Service
Economies. In Proceedings of ICSC2009, 2009.

[11] D. Lizcano, J. Soriano, M. Reyes, and J. J. Hierro.
EzWeb/FAST: Reporting on a Successful
Mashup-based Solution for Developing and
Deploying Composite Applications in the Upcoming
Ubiquitous SOA. In Proceedings of iiWAS2008,
Linz, Austria, 2008.

[12] T. Nestler, M. Feldmann, G. Hı̈£¡bsch,
A. Preussner, and U. Jugel. The ServFace Builder -
A WYSIWYG approach for building Service-based
Applications. In Proceedings of ICWE’10, 2010.

[13] C. Pautasso. Composing RESTful Services with
JOpera. In Proceedings of SC’09, pages 142–159,
Berlin, Heidelberg, 2009. Springer-Verlag.

[14] W.M.P. van der Aalst and K. van Hee. Workflow
Management - Models, Methods, and Systems. The
MIT Press, Cambridge, Massachusetts, 2002.

[15] J. Wong and J. I. Hong. Making Mashups with
Marmite: Towards End-User Programming for the
Web. In Proceedings of the SIGCHI conference on
Human factors in computing systems, 2007.

[16] L. Xie, P. de Vrieze, and L. Xu. When Social
Software Meets Business Process Management. In
Proceedings of ICCIT2009, 2009.

[17] G. O. Young. The Mashup Opportunity. Forrester
Report, 2008.

8

