
Toward Truly Personal Chatbots
On the Development of Custom Conversational Assistants

Florian Daniel
Politecnico di Milano, DEIB

Milan, Italy
florian.daniel@polimi.it

Maristella Matera
Politecnico di Milano, DEIB

Milan, Italy
maristella.matera@polimi.it

Vittorio Zaccaria
Politecnico di Milano, DEIB

Milan, Italy
vittorio.zaccaria@polimi.it

Alessandro Dell’Orto
Politecnico di Milano, DEIB

Milan, Italy
alessandro2.dellorto@mail.polimi.it

ABSTRACT
Chatbots, i.e., conversational software agents able to interact with
users via instant messaging channels like Messenger, WhatsApp or
SMS, have the power to substantively simplify human-computer
interaction thanks to their natural language paradigm. While this
certainly helps to lower barriers, state-of-the-art chatbots preva-
lently provide access to generic, non-personalized features with
relatively little usefulness. This may hinder adoption. To provide
users with real value, we envision a kind of chatbot that is personal
and helpful by providing services that are chosen and configured
by the users themselves, for themselves. As the development of a
one-size-fits-all, yet flexible and customizable bot is hard, if not im-
possible, we discuss requirements and design options that directly
put the user into control of their own personal bot.

KEYWORDS
Personal chatbots, platform, development, end-users
ACM Reference Format:
FlorianDaniel, MaristellaMatera, Vittorio Zaccaria, andAlessandroDell’Orto.
2018. Toward Truly Personal Chatbots: On the Development of Custom
Conversational Assistants. In SE4COG’18: SE4COG’18:IEEE/ACM 1st Interna-
tional Workshop on Software Engineering for Cognitive Services , May 28–29,
2018, Gothenburg, Sweden. ACM, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.1145/3195555.3195563

1 INTRODUCTION
Many technologists consider chatbots one of the hottest technolo-
gies of today [9]. Facebook’s release of its Messenger API in 2016
heavily contributed to this expectation, with Facebook reporting
already in April 2017 more than 100,000 monthly active bots1 on
the Messenger platform2. But also for Twitter in March 2017 Varol
1For the sake of this paper, we use the terms “chatbot” and “bot” interchangeably.
2https://messenger.fb.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SE4COG’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5740-1/18/05. . . $15.00
https://doi.org/10.1145/3195555.3195563

et al. [12] estimated that between 9% and 15% of active accounts
were bots (29–49 million accounts out of 328 millions3). But bots
are not confined to Facebook and Twitter; today we can find bots
intervening in all kinds of online conversations, from social media,
to chats, to Q&A sites, where yesterday there were only humans.

Starting from Weizenbaum’s Eliza [13], a simple chatbot devel-
oped for psychological conversations, many advanced chatbots
have been developed. Notable examples are the Duolingo bot4 that
provides conversational access to language learning resources, Cle-
verbot5, an AI-powered bot for generic conversations, andMitsuku6,
the three-times winner of the Loebner Prize awarded to the winner
of a Turing test competition. Going beyond these examples, bots
are not limited to generic chats only: Gartner estimates that by 2020
85% of customer requests in companies will be handled by bots [10].
That is, bots are expected to irreversibly permeate both our private
and our professional interactions of tomorrow.

While bots are thus expected to – and partly already do – cover
a wide spectrum of use cases, what is still missing are what we
call personal chatbots, i.e., chatbots that are not meant to cater to a
general audience but to one user only, chatbots that serve as per-
sonal assistants to users, that have intimate knowledge about their
preferences, needs and habits, and that are able to cater to them
with the necessary pieces of information and assistance. Concep-
tually, the idea is similar to that of mashups [7], i.e., applications
that are developed rapidly by reusing existing functionalities to
provide a set of value-adding features to a potentially small user
group (even one user only). As for mashups, the high personaliza-
tion envisioned asks for some form of end-user development [11],
which in the case of chatbots benefits from the simplicity of the
user interface to be developed: the natural language conversation.
The idea is also similar to that of personal assistants like Amazon’s
Alexa, Apple’s Siri and Google’s Assistant, which however focus
on generic, one-size-fits-all services delivered via voice that are not
customizable by non-programmers.

With this position paper, we aim to define what personal chat-
bots are, what they might be able to do, and how they could be
developed. Specifically, in Section 2 we elaborate better on the idea
of personal chatbots, providing an intuitive example conversation,

3https://www.recode.net/2017/7/27/16049084/twitter-jack-dorsey-q2-earnings-2017
4http://bots.duolingo.com/
5http://www.cleverbot.com/
6http://www.mitsuku.com/

https://doi.org/10.1145/3195555.3195563
https://messenger.fb.com
https://doi.org/10.1145/3195555.3195563
https://www.recode.net/2017/7/27/16049084/twitter-jack-dorsey-q2-earnings-2017

SE4COG’18, May 28–29, 2018, Gothenburg, Sweden F. Daniel et al.

and we identify a set of requirements that a chatbot needs to meet
to be classified as “personal.” We use these requirement to discuss
options for personal chatbot development and the conception of
a suitable end-user development paradigm for personal chatbots
(Section 3). Then, we analyze the state of the art, with a special
focus on the support that is already available for the development
of chatbots (Section 4). We conclude the analysis with an outlook
and an outline of our future works.

2 PERSONAL CHATBOTS
2.1 Concept
Let’s exemplify what we mean by “personal bot” with the help from
a simple yet expressive, fictitious conversation between the user
Alice and her personal bot James:

James Alice
Hi James

Good morning, Alice!

Any train delays today?

Let me check... Looks like your
train is on time.

And the next train?
The next one is 10 minutes late.
So, hurry up.

Have my eBay orders been shipped?

You have two orders. One has been
shipped and should be arriving tomorrow.
The other one is still awaiting shipment.

Good. Then can you get me the
cartoon of the day, please?

Here it is. Enjoy!

http://bit.ly/2mBJMhL

The conversation could go on like this with or without interrup-
tions, i.e., across multiple usage sessions. What is remarkable in
the conversation (see the underlined text) is that – differently from
conventional chatbots – James knows very well who he is talking
to (Alice). Alice can make questions that require prior knowledge
about her train connections or eBay orders, and James knows how to
answer and where to retrieve the necessary data from. Retrieving
the cartoon of the day does not require any particular knowledge
about Alice, yet James must know which cartoon she means.

James is truly a personal chatbot, not only because he has all the
necessary information about Alice, but also because he has been
developed to serve only Alice. Alice can “teach” James new features,
and she does not have to worry about James telling her personal

details (e.g., birthdate or passwords) or even intimate secrets (e.g.,
who she is watching on Facebook) to anybody else. Some of the ser-
vices that James provides may be so unique that, among all chatbots
that exist, only James is able to provide them (e.g., retrieving the
cartoon of the day from Alice’s preferred newspaper). By teaching
James what she is really interested in, Alice step by step turns James
into a personal assistant that is able to answer her very individual
needs, for work or private life.

2.2 Requirements
If we carefully analyze the example conversation, we can identify a
set of requirements that must be met in order to make James real.
First, there are requirements related to the capabilities of the bot:

(1) User identification and authentication: First and foremost, it
is important that the chatbot be able to guarantee that it is
interacting with the person it is meant for. That is, the bot
must be able to identify users and authenticate their identity
to be able to provide personal but also confidential services.
James must be sure he is talking to Alice.

(2) Persistent user profiles (long-term memory): In order for the
bot to distinguish users (if it supports more than one) and to
provide custom services, it is necessary to maintain suitable
user profiles persistently. The user profiles must not contain
only basic user identification data (e.g., Alice’s name and
birth date), but also take care of user preferences (e.g., pos-
sible automated reminders) and long-term conversational
context data (e.g., James recalls Alice’s preferred newspaper).

(3) Volatile conversation context (short-term memory): In order
to keep a conversation alive and natural, it is of course neces-
sary that the bot be able to memorize conversational context.
For instance, when Alice asks James about the timeliness of
the “next train” he must remember that the current conver-
sation is about Alice’s train connections.

(4) Generalization: Also, for a natural conversation it is impor-
tant that the bot be able to accept (understand) different ut-
terances or forms of similar questions referencing the same
intent, i.e., the purpose of her question. This is where James’
cognitive capabilities are challenged and AI comes into play.

Then, there are some requirements related to the development of
personal bots (what Alice should be able to develop):

(5) Custom questions/answers: In order to teach the bot new
features, it is necessary that the user be able to define the
questions (inputs) she would like to have answered and as-
sociate possible answers (rendering of outputs) she would
like to receive. Alice defined the question for the cartoon of
the day and decided how James should answer. Ideally, Alice
is asked to provide only one example question, and James
is then able to understand also questions that are similar to
this example (this again asks for AI).

(6) Custom intent-action mapping: In order for custom question-
answer pairs to work, i.e., to bind them to some business
logic able to compute outputs to visualize, it is necessary
that the user be able to associate questions with intents (the
goals of the questions) and to map suitable actions to these
intents. When James is inquired about trains, he knows that
he is asked to retrieve delay data about specific trains.

http://bit.ly/2mBJMhL

Toward Truly Personal Chatbots SE4COG’18, May 28–29, 2018, Gothenburg, Sweden

(7) Custom actions: The actions mapped to intents must be able
to compute some output in response to inputs collected
through the questions. Being these custom, the user must be
able to specify own actions to be used to feed answers with
meaningful outputs. When interrogated about the trains,
James knows where to retrieve the necessary information
(e.g., which train website) and how to fetch it (which ex-
act piece of information to extract from the website) and
assemble it into an answer (which parameter to fill with
the extracted information). Actions may range from simple
information retrieval tasks to the intermediation of tasks
with effects on the real world, e.g., sending a money trans-
fer via the users’ internet banking account or manipulating
actuators of the user’s smart home.

(8) Timed actions: Actions may not necessarily be performed
immediately on request. They may as well be enacted at
given times (periodically or on fixed dates/times). This is
not showcased in the example, but Alice could for instance
ask James to tell her each morning before leaving her house
whether she should carry an umbrella with her or not, bind-
ing the periodic event to a condition to be evaluated before
execution. This requires persistent application state.

(9) Incremental development: Personal bots are not meant to be
a one-shot development effort. Instead, as they “accompany”
their user throughout time, they may be developed incre-
mentally as new needs arise. Before using eBay, Alice may
not have needed James to check her order statuses; once
started using it, she instructed James how to serve her best.

Some other requirements refer to the need for assisted develop-
ment (how Alice should be able to develop), given that she is not a
programmer with software engineering skills:
(10) Guided learning: In order to provide the user with effective

support for the identification of new bot capabilities, the
development method should proactively suggest the user
possible actions, also taking into account emerging patterns
of intent-action mappings learned from past development
sessions from the same user or from other users.

(11) Automatic discovery: The development method should be
able to proactively expand the actions provided by the user
for a more complete experience. For example, if Alice speci-
fies that she wants to obtain information about trains to a
specific location through site x , the method could propose
her to integrate the answer with other contextual informa-
tion, such as weather or temperature information in the
selected location.

Of course, next to these requirements turning a bot into a per-
sonal chatbot, the development of any chatbot requires the avail-
ability of a suitable communication channel, the ability to interpret
natural language, to identify intents, to render answers, tomanage us-
age sessions, etc. For these generic chatbot requirements we redirect
the reader to the state of the art.

3 APPROACH
Analyzing the previous requirements, it is important to note that
personal chatbots are less a technical problem and more a method-
ological problem. In the state of the art discussion, we will see that

for bot development lots of frameworks and APIs exist that help
the developer to implement a variety of features, from identification
and authentication to the management of conversational context.
The challenge of personal chatbots rather lies in enabling the users
of the bots to develop own, custom services to be delivered through
the bot. The challenge is thus enabling the users to customize the
questions, answers and underlying business logic of their bot – all
aspects that do not have ready solutions to rely on. As anticipated,
personal chatbots are an end-user development problem [11].

3.1 Development Paradigm
The core decision to be taken that affects most how to approach
the development of personal chatbots is therefore the decision of
how to enable the end-users to develop. That is, the first decision
is choosing a suitable development paradigm for end-users. Ide-
ally, the paradigm should enable the end-users to satisfy all the
requirements identified in the previous section (plus the generic
requirements of bot development), which is not trivial in general.
Candidate paradigms are:
• Coding in standard programming language (e.g., using Java-
Script, Python or similar). State-of-the-art programming lan-
guages provide the most flexibility and expressive power
and, thus, allow the development of arbitrarily complex bot
logics. This is how a professional developer would proceed,
but it is also the paradigm that is least suited to end-users
who do not have software engineering skills.
• Coding in domain-specific language (e.g., using a purpose-
fully developed textual language). We could imagine to de-
vise a programming language that is specifically tailored
to the problem of developing bots, e.g., featuring instruc-
tions for the specification of questions, answers, actions,
intents, action-intent bindings, timed actions, etc. (the lan-
guage could, for instance, extend AIML, the Artificial Intel-
ligent MarkUp Language7). The limited set of instructions
would, on the one hand, lower the complexity of the devel-
opment task but, on the other hand, it would still require
the user to learn how to program, a task that only few users
would be willing to accomplish.
• Configuration (e.g., like in ifttt8 that provides the user with
a set of adapters to connect to most prominent applications
and devices). It could be possible to pre-define a set of bot
features (e.g., the ability to fetch train status information)
and to provide them as pre-built blocks to the users who
would only be required to select the blocks of interest and
to configure them according to their own needs. However,
it would be impossible to pre-can all blocks that the idea of
personal chatbots envisions (e.g., it would already be nearly
impossible to support all types of transportation means one
can imagine) and, hence, the selection of blocks may turn
out too restricted to be of any use to a wide group of users.
• By example (e.g., by allowing the user to freely navigate the
Web and to point at information she is interested in). This
idea starts from the assumption that all the information the
personal bot should be able to deliver is accessible over the

7https://goo.gl/x83UUX
8https://ifttt.com/

https://goo.gl/x83UUX
https://ifttt.com/

SE4COG’18, May 28–29, 2018, Gothenburg, Sweden F. Daniel et al.

Web and that the user herself is able to show how to find it in
a finite set of navigation steps. In order for the user to add a
new functionality to her bot, it would thus suffice to specify
the set of triggering questions, the intent behind them, a
template for the answer, and to show by example how to
obtain the missing information to fill the template, given a
possible input to be extracted from the questions. Everything
could be carried out live inside the user’s browser with the
bot being updated on the fly.

In all these scenarios, the user could (i) perform all development
tasks alone in complete autonomy (perhaps with the help from
some development documentation and tutorials), (ii) be assisted by
an automated wizard with predefined development steps (e.g., one
flow for adding a new question, one for defining a new actions, etc.),
or – why not? – (iii) be assisted by a dedicated chatbot walking the
user through the different development steps in response to the
user’s input and requests.

Considering the expected ease of development, in this paper
we advocate for a bot-assisted, by-example paradigm that does not
require any particular software development skills, does not leave
the user alone (and possibly frustrated) in her task, and still has the
power of supporting a huge variety of functionalities (everything
that is Web-accessible can be used to create conversations).

3.2 Architecture
Recalling the requirements identified above, it seems reasonable
to start from a multi-tenant platform for personal chatbot devel-
opment able to cater chatbots to multiple users at the same time
upon configuration. Most importantly, a dedicated platform enables
separating generic infrastructure services from bot-specific config-
urations. The former can be provided once for all, the latter can
be provided by the user via a purposefully developed client-side
development environment.

Figure 1 illustrates a possible functional architecture. The user
manager provides for basic user management (R2) and access con-
trol (R1). The personal bot engine comes with built-in support for
context management in conversations (R3) and orchestrates the
input parser, the enactment of suitable actions (possibly making use
of a headless browser to mimic recorded user interactions), and the
output synthesizer. The input parser is responsible for providing
support for generalization in the discourse (R4), e.g., by leveraging
on existing NLP libraries or suitable cognitive APIs. Examples of
basic actions supported are filling a form field, clicking a button, ex-
tracting a piece of information, and similar. The new feature crawler
proactively looks for new bot capabilities that can be suggested
(recommended) to the user at design and runtime (R11), for example
based on similarity measures for intents. All these components may
internally leverage on state-of-the-art machine learning (ML) and
artificial intelligence (AI) support able to provide, for instance, for
advanced language parsing and interpretation.

The design of a new personal chatbot could happen directly
inside the user’s browser with the help from a dedicated bot de-
velopment browser extension able to collect questions, intents and
answer templates (R5) from the user, e.g., via simple HTML forms
and natural language conversation. Once questions and intents are
collected, the user is able to manage the respective relationships and

Personal chatbot platform

Web browser - Generic websites

Bot dev. extension

Conversation
channel

Users Bot specsHeadless browser

User

Storage manager

uses

dev.
bot
with

Pool of supported
basic actions

Input parser

Output synthesizer

New feature crawler

Personal bot engine

New bot
features

Development
bot

User manager

Action def.
event log

Feature
recommender

M
L/

AI
 s

up
po

rt

Figure 1: Functional architecture underlying personal chat-
bots: runtime platform and development environment.

to declare and associate actions to intents (R6). New features are de-
fined by recording exemplary user navigations and actions directly
inside the browser, allowing the user to parametrize the recordings,
to assign default values, to identify outputs, and to map them to
intents and answer templates directly inside the browser extension
(R7). Newly defined features are transparently sent from the browser
extension to the platform and integrated into the user’s existing bot
specifications by a dedicated storage manager. A bot specification
contains example questions, intents, recorded/specified actions, in-
tent action-mappings, answer templates. The action definition event
log captures user interaction events about how the user specifies
new actions, in order to provide support for guided learning (R10),
e.g., using a guided or wizard-like paradigm also able to recognize
if specific corner cases should be considered. The feature recom-
mender pushes recommendations by the new feature crawler to the
user (R11).

The extension and bot engine also support actions that are not
directly mapped to any intent at design time, but that can be as-
sociated with time-dependent invocation logics at runtime. The
necessary vocabulary to define, for example, periodical events (e.g.,
“Please, tell me the weather every morning”) is a built-in feature
of the supporting platform and does not require any additional
specification from the user (R8). The extension further provides for
bot capability management functions, such as adding, deleting, mod-
ifying questions, answers, intents and actions, effectively enabling
a step-by-step specification of the bot features (R9).

4 STATE OF THE ART
Although the current interest in chatbots is still rather young, there
is already a wide spectrum of platforms, libraries, services and APIs
that significantly ease the development of chatbots.

In terms of dedicated platforms, several of them support the rapid
development of chatbots. For example, Dialogflow9 (formerly api.ai)

9https://dialogflow.com/

https://dialogflow.com/

Toward Truly Personal Chatbots SE4COG’18, May 28–29, 2018, Gothenburg, Sweden

and Motion AI10) offer a visual, flowchart-based development para-
digm for the definition of questions, intent interpretations, action-
able answers and their assembly into contextual conversation flows.
Other platforms use a proprietary, textual language for conversa-
tion design. For example, PandoraBots11 proposes AIML (Artificial
Intelligent MarkUp Language), an XML-based language for tagging
conversation elements, such as parameters in the user input, query
patterns and answer templates. Microsoft’s Bot Framework12 rather
bets on conventional programming languages using the .NET family
of languages. IBM’s Watson Conversation Service follows a similar
approach and comes with SDKs for Node, Java, Python, .NET. Most
of these frameworks are already equipped with advanced AI and
NLP support that only needs to be properly configured.

Also, most chatbot platforms enable the development of multi-
channel chatbots, i.e., chatbots that can be accessed through different
conversational channels, such as Facebook Messenger, WhatsApp,
SMS, web chats, social media, but also voice and text. Others, for
example FlowXo13, provide for different deployments each one
specific for a given channel.

Some platforms offer open architectures, enabling the invocation
of external APIs for answering user queries; this enhances, for
example, their integrability into proprietary information systems.
For example, with DialogFlow one can specify that some parameters
of the user queries can be used to invoke external services and thus
to retrieve content from outside the platform. The exchange of data
(input parameters, result sets) in Json is also possible.

The capability to interpret natural language is also very different.
The platforms offered by the big providers (e.g., Microsoft and
IBM) offer the possibility to connect to natural-language processing
engines. In other frameworks, the interpretation of the user queries
and the identification of intents strongly depend on the capability
of the developer to adequately define at design time the different
dialogue elements and the dialogue flow. Yet, the developer has
not to start from scratch and invent own NLP software. There is a
myriad of NLP APIs or libraries that allow everyone to use powerful
language processing capabilities remotely. wit.ai14 is an example of
remote API, rasa NLU15 is an example of locally installable library.

Considering the idea of personal chatbots, it is evident that the
state of the art in bot technology nicely covers the generic bot de-
velopment requirements (basic conversation management, different
channels, context management, etc.) and also requirements R1–R4.
That is, significant work can be reused for the development of per-
sonal chatbots. What is still missing is a development paradigm
oriented toward end-users, both from a customization point of view
and from a development paradigm point of view. Requirements
R5–R11 derived in Section 2.2 become central. In this respect, it
may be possible to capitalize on results achieved in the area of
end-user development, more specifically in the field of mashups
[4, 5, 8]. For instance, Aghaee and Pautasso [1, 2] already studied
the use of natural language for specifying information needs to be
fulfilled by a mashup under composition; however, the approach

10https://www.motion.ai/
11https://www.pandorabots.com/
12https://docs.botframework.com/en-us/
13https://flowxo.com/
14https://wit.ai/
15https://nlu.rasa.ai/

was based on a restricted, structured subset of natural language
only.

As for the personal assistants Alexa, Siri and Assistant proposed
by Amazon, Apple and Google, respectively, it is important to note
that they too could be used as delivery channel of the personalized
services proposed in this paper, since they all provide suitable ex-
tension mechanisms and SDKs. For instance, it could be possible
to imagine Alice talking to James via Google’s Assistant by invok-
ing James using the specific command “Ok Google, talk to James,”
starting from which Assistant would leverage on the capabilities
of James to deliver personalized services. That is, while the idea
of this paper is proposed as a complement of these personal as-
sistants, it could as well be integrated into them as an extension.
Of course, as of now, what is missing in all these three examples
of commercial personal assistants is the possibility for end-users
to personalize their capabilities beyond the possibility to enact
pre-canned applications developed by programmers.

5 OUTLOOK AND CHALLENGES
With this paper, we launch the idea of personal bots, so personal
that they have to be “programmed” by the users themselves. We
have discussed how the intuitiveness of the natural language para-
digm can help end-users i) explore the capabilities of a chatbot, ii)
develop bots that really respond to their needs, and iii) satisfy these
needs on the go. It is important to note that the natural language
paradigm eases end-user development, as it does not require users
to be able to design graphical UIs or data presentation formats
(like in most mashups), a task that can easily get complex. On the
other hand, using a conversational paradigm also for development,
user intents may not be trivial and evolve along the same or differ-
ent interaction sessions, both during development and during use.
Thanks to cutting-edge cognitive applications now available it is
possible to understand intents with confidence and assist the users
also in evolving contexts. How to best leverage on these capabilities
is a challenge to be addressed in our future work.

Another big challenge is understanding how the conversational
paradigm can integrate or even replace the traditional, visual par-
adigm when it comes to data exploration. Widget-based, visual
user interfaces have proven capable of lowering the entry barriers
to users who want to access heterogeneous data in an integrated
fashion [3, 6]. Effectively presenting huge amounts of data to users
in a conversational interface is instead a significant challenge. Pro-
viding them with an integrated view over different, related data
sources is even more complex. This is not only a problem of data
presentation, but also of adequate data analysis techniques, such as
summarization techniques, interactive drill-down and roll-up data
exploration capabilities or the automatic generation of graphical
charts. The natural language paradigm is powerful as long as ques-
tions and answers are simple. If an answer wants to provide insight
into large datasets, effective bot-compliant aggregation techniques
are needed. Our future work will study how these needs impact
the different layers (data, application logic, presentation) in the
development and interaction with personal bots.

Acknowledgement. We would like to thank Stefano Sanitate and
Paolo Roncaglioni for their input and the fruitful discussions.

https://www.motion.ai/
https://www.pandorabots.com/
https://docs.botframework.com/en-us/
https://flowxo.com/
https://wit.ai/
https://nlu.rasa.ai/

SE4COG’18, May 28–29, 2018, Gothenburg, Sweden F. Daniel et al.

REFERENCES
[1] Saeed Aghaee and Cesare Pautasso. 2014. End-User Development of Mashups

with NaturalMash. J. Vis. Lang. Comput. 25, 4 (2014), 414–432. https://doi.org/
10.1016/j.jvlc.2013.12.004

[2] Saeed Aghaee, Cesare Pautasso, and Antonella De Angeli. 2013. Natural End-User
Development of Web Mashups. In 2013 IEEE Symposium on Visual Languages and
Human Centric Computing. IEEE, 111–118.

[3] Cinzia Cappiello, Maristella Matera, and Matteo Picozzi. 2015. A UI-Centric
Approach for the End-User Development of Multi-device Mashups. TWEB 9, 3
(2015), 11. https://doi.org/10.1145/2735632

[4] Cinzia Cappiello, Maristella Matera, Matteo Picozzi, Gabriele Sprega, Donato
Barbagallo, and Chiara Francalanci. 2011. DashMash: A Mashup Environment
for End User Development. In Proc. of ICWE 2011 (LNCS), Vol. 6757. Springer,
152–166.

[5] Florian Daniel. 2015. Live, Personal Data Integration Through UI-Oriented
Computing. In Proc. of ICWE 2015. 479–497. https://doi.org/10.1007/
978-3-319-19890-3_31

[6] Florian Daniel, Fabio Casati, Boualem Benatallah, and Ming-Chien Shan. 2009.
Hosted Universal Composition: Models, Languages and Infrastructure inmashArt.
In Conceptual Modeling - ER 2009 (LNCS), Vol. 5829. Springer, 428–443.

[7] Florian Daniel and Maristella Matera. 2014. Mashups - Concepts, Models and
Architectures. Springer. https://doi.org/10.1007/978-3-642-55049-2

[8] Florian Daniel, Maristella Matera, and Michael Weiss. 2011. Next in Mashup
Development: User-Created Apps on the Web. IT Professional 13, 5 (2011), 22–29.

[9] Matt Grech. 2017. The Current State of Chatbots in 2017. GetVoIP.com (April 2017).
https://getvoip.com/blog/2017/04/21/the-current-state-of-chatbots-in-2017/

[10] Inbenta Technologies Inc. 2016. The Ultimate Guide to Chatbots for Businesses.
Technical Report. www.inbenta.com.

[11] Henry Lieberman, Fabio PaternÚ, and Volker Wulf. 2004. End User Development.
Human-Computer Interaction Series, Vol. 9. Springer.

[12] Onur Varol, Emilio Ferrara, Clayton A Davis, Filippo Menczer, and Alessandro
Flammini. 2017. Online human-bot interactions: Detection, estimation, and
characterization. arXiv preprint arXiv:1703.03107 (2017).

[13] Joseph Weizenbaum. 1966. ELIZA—a computer program for the study of natural
language communication between man and machine. Commun. ACM 9, 1 (1966),
36–45.

https://doi.org/10.1016/j.jvlc.2013.12.004
https://doi.org/10.1016/j.jvlc.2013.12.004
https://doi.org/10.1145/2735632
https://doi.org/10.1007/978-3-319-19890-3_31
https://doi.org/10.1007/978-3-319-19890-3_31
https://doi.org/10.1007/978-3-642-55049-2
https://getvoip.com/blog/2017/04/21/the-current-state-of-chatbots-in-2017/

	Abstract
	1 Introduction
	2 Personal Chatbots
	2.1 Concept
	2.2 Requirements

	3 Approach
	3.1 Development Paradigm
	3.2 Architecture

	4 State of the Art
	5 Outlook and Challenges
	References

