
S. Ceri and M. Brambilla (Eds.): Search Computing, LNCS 5950, pp. 72–93, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Chapter 5:
From Mashup Technologies to Universal Integration:

Search Computing the Imperative Way

Florian Daniel, Stefano Soi, and Fabio Casati

University of Trento - Via Sommarive 14, 38123 Trento - Italy
{daniel,soi,casati}@disi.unitn.it

Abstract. Mashups, i.e., web applications that are developed by integrating da-
ta, application logic, and user interfaces sourced from the Web, represent one of
the innovations that characterize Web 2.0. Novel content wrapping technolo-
gies, the availability of so-called web APIs (e.g., web services), and the increas-
ing sophistication of mashup tools allow also the less skilled programmer (or
even the average web user) to compose personal applications on the Web. In
many cases, such applications also feature search capabilities, achieved by ex-
plicitly integrating search services, such as Google or Yahoo!, into the overall
logic of the composite application.

In this chapter, we first overview the state of the art in mashup development
by looking at which technologies a mashup developer should master and which
instruments exist that facilitate the overall development process. Then we spe-
cifically focus on our own mashup platform, mashArt, and discuss its approach
to what we call universal integration, i.e., integration at the data, application,
and user interface layer inside one and the same mashup environment. To better
explain the novel ideas of the platform and its value in the context of search
computing, we discuss an example inspired by the idea of search computing.

1 Introduction

The advent of Web 2.0 led to the participation of the user into the content creation
and application development processes, also thanks to the wealth of social web ap-
plications (e.g., wikis, blogs, photo sharing applications, etc.) that allow users to
become an active contributor of content rather than just a passive consumer, and
thanks to web mashups [1]. Mashup tools enable fairly sophisticated development
tasks inside the web browser. They allow users to develop their own applications
starting from existing content and functionality. Some applications focus on integrat-
ing RSS1 or Atom2 feeds, others on integrating RESTful services [20], others on
simple UI widgets, etc. Mashup approaches are innovative especially in that they
tackle integration at the user interface level and do not “just” focus on data and in
that they aim at simplicity more than robustness or completeness of features (up to
the point to enable also non-professional programmers to develop own mashups).

1 http://cyber.law.harvard.edu/rss/rss.html
2 http://www.ietf.org/rfc/rfc4287.txt

 From Mashup Technologies to Universal Integration 73

Integrating content and services from the Web also means integrating search results
or services, which makes mashups a natural candidate for search computing applica-
tions, but also poses novel requirements in terms of composition features – especial-
ly as for what regards UIs.

Inspired by and building upon research in SOA and capturing the trends of Web
2.0 and mashups, this chapter introduces the concept of universal integration, that is,
the creation of composite web applications that integrate data, application, and user
interface (UI) components, effectively enabling the imperative development of ad-
vanced search computing applications. Our aim is to do what service composition has
done for integrating services, but to do so at all layers, not just at the application layer,
and remove some of the limitations that constrained a wider adoption of work-
flow/service composition technologies. Universal integration can be done (and is
being done) today by joining the capabilities of multiple programming languages and
techniques, but it requires significant efforts and professional programmers. In this
chapter we provide abstractions, models and tools so that the development and dep-
loyment of universal compositions is greatly simplified, up to the extent that even
non-professional programmers can do it in their web browser.

Scenario. As a reference scenario throughout this chapter, we reuse the conference
search scenario described in [18], based on the search query “find all database confe-
rences in the next six months in locations where the average temperature is 28°C
degrees and for which a cheap travel solution including a luxury accommodation
exists”. Answering this request requires (i) finding interesting conferences; (ii) under-
standing whether the conference location is served by low-cost flights; (iii) finding
luxury hotels close to the conference location with available rooms; and (iv) checking
the expected average temperature of the location. Instead of automatically deriving a
query plan to answer the request, in this chapter we focus on how the request can be
answered through a composite application for the Web that interactively involves the
user into the search process.

The screenshot in Figure 1 shows how such a Conference Trip Planner (CTP) ap-
plication could look like. The application is composed of a variety of different compo-
nents: In the upper left corner we have a Conferences Search component that allows
the user of the application to specify a query string and to search for conferences that
satisfy the query; retrieved results are displayed below the search form. This is a so-
called UI component, as – besides supporting the conference search function – it also
comes with its own UI, which is reused as-is by the composite application. Similarly,
in the lower left corner, we have a BBC Weather UI component that shows the average
weather conditions for a selected city, and in the upper right corner we have an Expe-
dia Hotel UI component that provides a list of hotels given the name of a city. Finally,
in the lower right corner, we have an RSS Reader UI component that displays a list of
possible flight connections from Milano to the destination city.

The four UI components are synchronized via the Conferences Search component,
which represents the entry point for the evaluation of the overall “search query”, i.e.,
the content displayed by the UI components. Specifically, by selecting an event of
interest from the retrieved conferences, the user synchronizes the content of the other
UI components in the page, resulting in a re-computation of the weather, hotel and
flight components. By clicking on the proposed hotels or flights, the user is directly
forwarded to the respective booking pages, where he/she can conclude the booking.

74 F. Daniel, S. Soi, and F. Casati

Fig. 1. Reference scenario: the conference trip planner application. Selecting a conference from
the list aligns the content shown by the components in the page.

We assume that the Conferences Search component is implemented via a simple,
generic search component in conjunction with an external conference search service;
in our example, we use a Yahoo! Pipe3 to search for conferences and filter them ac-
cording to the user’s query. Similarly, we use a standard RSS Reader component to
visualize flights that are retrieved via the kayak.com search engine. For the BBC
Weather and the Expedia Hotel components, instead, we assume that they are both
provided as readily usable UI components by the respective companies.

The application in Figure 1 represents only one possible application able to an-
swer the initial query. In fact, other combinations of components and services could
be adopted, e.g., using lufthansa.com instead of kayak.com or switching the position
of the weather and the hotel components, but in this chapter we are not interested in
identifying the best combination of components (i.e., the best “query plan” using the
terminology of [18]). The challenge we address is how to enable the average web
user to compose an application like the one in Figure 1, relying on his/her own
judgment of how components are best glued together.

Approach and Structure of the Chapter. In this chapter we focus on mashups and
universal integration for the Web. We first offer an overview of the state of the art in
traditional composition technologies (Section 2) and then specifically focus on the

3 http://pipes.yahoo.com/pipes

 From Mashup Technologies to Universal Integration 75

recent trend of composition on the Web, i.e., mashups (Section 3). Next, we introduce
the idea and principles of universal integration (Section 4). As an advanced case study
and concrete implementation of the universal integration idea, in Section 5 we focus
on mashArt. Specifically, we describe the conceptual and architectural aspects of
mashArt, which constitute its innovative contributions in terms of component and
composition models as well as development and runtime infrastructure, and show
mashArt at work. Section 6 concludes the chapter.

2 Traditional Composition and Development Approaches

Several areas of research are related to (lightweight) composition and mashups on the
Web. In this section, we briefly survey the areas of service composition, UI composi-
tion, computer-aided web engineering tools, web portals and portlets, all areas we
feel particularly related to universal composition for the Web. In the next section we
then put some more focus on mashups.

2.1 Service Composition Approaches

A representative of service orchestration approaches is BPEL [6], a standard composi-
tion language by OASIS. BPEL is based on WSDL-SOAP web services, and BPEL
processes are themselves exposed as web services. Control flows are expressed by
means of structured activities and may include rather complex exception and transac-
tion support. Data is passed among services via variables (Java style). So far, BPEL is
the most widely accepted service composition language. Although BPEL has produced
promising results that are certainly useful, it is primarily targeted at professional pro-
grammers like business process developers. Its complexity (reference [6] counts 264
pages) makes it hardly applicable for web mashups.

Many variations of BPEL have been developed, e.g., aiming at invocation of REST
services [7] and at exposing BPEL processes as REST services [8]. In [9] the authors
describe Bite, a BPEL-like lightweight composition language specifically developed for
RESTful environments. IBM’s Sharable Code platform [10] follows a different strategy
for the composition of REST or SOAP services: a domain-specific programming lan-
guage from which Ruby on Rails application code is generated, also comprising user
interfaces for the Web. In [11], the authors combine techniques from declarative query
languages and services composition to support multi-domain queries over multiple
(search) services, while in [21] the authors follow a document-centric approach to service
composition and propose the use of AXML for service mashups. All these approaches
focus on the application and data layer; UIs can then be programmed on top of the ser-
vice integration logic. mashArt features instead universal integration as a paradigm for
the simple and seamless composition of UI, data, and application components. We argue
that universal integration will provide benefits that are similar to those that SOA and
process centric integration provided for simplifying the development of enterprise
processes.

76 F. Daniel, S. Soi, and F. Casati

2.2 UI Composition Approaches

In 12] we discussed the problem of integration at the presentation layer and concluded
that there are no real UI composition approaches readily available: Desktop UI com-
ponent technologies such as .NET CAB [13] or Eclipse RCP [14] are highly technol-
ogy-dependent and not ready for the Web. Browser plug-ins such as Java applets,
Microsoft Silverlight, or Macromedia Flash can easily be embedded into HTML pag-
es; communications among different technologies remain however cumbersome (e.g.,
via custom JavaScript). Java portlets [15] or WSRP [2] represent a mature and Web-
friendly solution for the development of portal applications; portlets are however
typically executed in an isolated fashion and communication or synchronization with
other portlets or web services remains hard. Portals do not provide support for service
orchestration logic.

2.3 Computer-Aided Web Engineering Tools

In order to aid the development of complex web applications, the web engineering
community has so far typically focused on model-driven design approaches. Among
the most notable and advanced model-driven web engineering tools we find, for in-
stance, WebRatio [16] and VisualWade [17]. The former is based on a web-specific
visual modeling language (WebML), the latter on an object-oriented modeling nota-
tion (OO-H). Similar, but less advanced, modeling tools are also available for web
modeling languages/methods like Hera, OOHDM, and UWE. All these tools provide
expert web programmers with modeling abstractions and automated code generation
capabilities, which are however far beyond the capabilities of our target audience, i.e.,
advanced web users and not web programmers.

2.4 Portals and Portlets

Still in the context of web applications, portals and portlets represent a different approach
to the UI integration problem on the Web. Their approach explicitly distinguishes be-
tween UI components (the portlets) and composite applications (the portals) and it is
probably the most advanced approach to UI composition as of today (We use the term
“portlets” taken from the JSR-168 portlet specification [15], but our considerations also
hold for ASP.NET Web Parts). Portlets are full-fledged, pluggable Web application
components that generate document markup fragments (e.g., (X)HTML) and facilitate
content aggregation in a portal server. Portlets are conceptually very similar to servlets.
The main difference between them consists in the fact that while a servlet generates a
complete web page, portlets generates just a piece of page (commonly called fragment)
that is designed to be included into a portal page. Hence, while a servlet can be reached
through a specific URL, a portlet can only be reached through the URL of the whole
portal page. A portlet has no direct communication with the web browser, but this com-
munications are managed by the portal and the portlet container that allow the request-
response flows and the communication between portlets. A portal server typically allows
users to customize composite pages (e.g., to rearrange or show/hide portlets) and provide
single sign-on and role-based personalization.

 From Mashup Technologies to Universal Integration 77

Today, there are several standards for portlets, JSR-168 being the original specifi-
cation. JSR-286 introduced inter-portlet communication via a portlet container that
manages a publish-subscribe infrastructure that can be used by the portlets. Finally,
WSRP [2] also added support for accessing remote portlets as web services over the
Web. The portlet model is powerful as for what regards the presentation integration
part, yet portals do not naturally support interactions with generic web services or the
specification of orchestration logics.

3 Web Mashups

Web mashups somehow address the above shortcomings. Web mashups are web
applications that are developed by combining content, presentation, and application
functionality from disparate Web sources [1]. The term mashup typically implies easy
and fast integration based on open APIs and data sources, yielding applications that
add value to the individual components of the application and thereby often use com-
ponents in ways that differ from the actual reason that led to the original production of
the raw sources.

Mashups are strongly related with the Web. The Web is the natural environment
for publishing content and services today, and therefore it is the natural environment
where to access and reuse them. Content and services are published in a variety of
different forms and by using a multiplicity of different technologies; we can categor-
ize the means to source content and services from the Web into three basic groups:

− Data services like RSS (Really Simple Syndication) or Atom feeds, JSON (Java-
Script Object Notation) or XML resources, or simple text files. A typical example is
newspapers and magazines that publish their news headers via RSS or Atom feeds
that allow users to easily jump to the respective articles. These simple technologies
are used to publish data on the Web that are meant for consumption by machines,
not humans. In fact, they focus on the efficient distribution of content, rather than
on the effective presentation of such contents to human users. Sourcing data via one
of these technologies is typically very simple: it mostly requires accessing an online
resource and processing the response. Data services to not have complex interaction
patterns to be followed.

− Web services or public APIs accessible over the Web, such as SOAP (Simple Ob-
ject Access Protocol) or RESTful (REpresentational State Transfer) web services
or, to a lower degree, Java classes (accessed via the IIOP protocol) or similar. These
technologies are used to publish application logic on the Web. Their goal is there-
fore not just to provide access to contents or data, but also to computing logic (e.g.,
the processing of an order for a book shop). Typically, the interaction with web ser-
vices or APIs is ruled by so-called interaction protocols, which state which opera-
tions can be invoked, in which order, by which partners, etc. Not following the rules
stated by the protocol may impede the correct functioning of the service or API.

− User interface elements, such as HTML clips or JavaScript APIs with own user
interface (e.g., Google Maps), but also banners or advertisements. Content may also
be represented by already formatted and graphically rendered data (typically in
HTML). In many cases, accessing such kind of content means extracting them from
a web page, as there is no equivalent data service available that can be used to

78 F. Daniel, S. Soi, and F. Casati

source the same data. Typically, this occurs without the provider of the contents ac-
tually knowing that there is someone extracting data from its web pages. In other
cases, e.g., Google Maps, the provider of the contents explicitly publishes its data at
the user interface level only.

The very innovative aspect of web mashups is that they integrate sources also at the
UI layer, not only at the data and application logic layers. Integration at the data and
application logic layers has been extensible studied in the past, while integration at all
three layers is still a goal that put architects and programmers in front of important
conceptual and technical problems.

Mashup development is still an ad-hoc and time-consuming process, requiring ad-
vanced programming skills (e.g., wrapping web services, extracting contents from web
sites, interpreting third-party JavaScript code, etc). There are a variety of mashup tools
available online, but, as we will see, only few of them adequately address the problem
of integration at all its layers. In this section, we give an overview of the state of the art
in the mashup world, spanning from manual development to semi-assisted and fully
assisted development approaches.

3.1 Manual Development

Developing applications that aggregate data, application logic and UIs coming from
diverse sources requires deep knowledge about technologies like: (X)HTML, dynam-
ic HTML, AJAX (Asynchronous JavaScript and XML), RSS, Atom; XML specifica-
tions like DTD, XSD, XSLT; protocols like SOAP or HTTP for SOAP and RESTful
web services; programming languages like JavaScript, PHP, Ruby, Java, C#, and so
on; relational or object-oriented databases, etc. In addition, it might be necessary to
master the business protocols of employed services and to have knowledge about how
to compose services into service orchestrations. This long and not exhaustive list of
technologies highlights how mashing up even a simple application, such as the one in
our reference scenario, is a hard and time-consuming task that can only be completed
by skilled programmers.

The development of our Conference Trip Planner requires, for instance, the follow-
ing skills: First of all, the developer needs to understand well the dynamics behind
and interaction logic of the Yahoo! Pipes and Kayak services and the BBC Weather,
Expedia Hotels and RSS Reader UI components of the application. In the specific
case, Expedia Hotels and BBC Weather expose JavaScript APIs that allow the devel-
oper to use and interact with their services; Pipes and Kayak, instead, return their
output as RSS feeds, which need to be appropriately parsed to extract all the neces-
sary information. While the UI components already come with their own UIs, for the
conference and flight search results an ad-hoc user interface has to be developed in
HTML. Next, the developer needs to implement the necessary synchronization logic
among the Conferences Search component and the others, such that on the selection
of a conference the other components will coherently update their content. In addition
to invoking some JavaScript functions of the UI components, this also implies inte-
racting with the remote search services upon the selection of a conference from the
list. Finally, the developer needs to create a suitable layout for the composite applica-
tion, which is able to accommodate the developed components and to render the final
mashup application.

 From Mashup Technologies to Universal Integration 79

The described situation is already an ideal one: all components provide some kind
of componentization. If, instead, we imagine that the developer also needs to develop
the components to be mashed up, things get even worse. For instance, it could be
necessary to implement a wrapper for the BBC Weather component that is able to
automatically request weather forecasts for the correct city, to extract the HTML code
of the average weather conditions, and to expose a JavaScript interface that allows the
interaction with other components in the application. Similar operation would be
necessary also for the other components of the application.

3.2 Semi-assisted Development

To speed up and simplify the development especially of components to be mashed
up, some useful web tools and frameworks have been recently introduced. Typically,
they address the problem of data extraction from web sites and the provisioning of
such data in form of data services or re-usable user interface elements. In the follow-
ing, we analyze two representative tools, i.e., Dapper4 and Openkapow5, which are
very user-friendly.

Dapper is a free online instrument for the generation of data wrappers that extract
data from well-structured web pages. Dapper is based on a point and click technique
able to assist the user in the selection of the contents to be extracted and to infer suita-
ble extraction rules (e.g., regular expressions). Specifically, data extraction leverages
the structure of the HTML formatting to understand which elements to extract (e.g.,
the first cells of all the rows in a table). Once properly identified, extracted data fields
can be named and structured and then published, for instance, as RSS or XML data
services. Published services can easily be accessed via a unique URL and are
processed each time the respective URL is accessed.

Openkapow is a similar open service platform based on the concept of extraction
robot, that is, user-created wrappers. Users of Openkapow can build their own robots,
expose their results via web services, and run them from openkapow.com for free.
Robots are able to access web sites and support the extraction and reuse of data, func-
tionality and even pieces of user interfaces. Robots are built through a visual devel-
opment environment called RoboMaker. RoboMaker allows the user navigate inside
the target web site and to define a series of simple steps, each one representing an
event in the page, until the target data is reached. The extraction results can be ex-
posed in two main ways: as a RESTful service or as an RSS feed, depending on the
extracted content and on the expected use of it. After their publication on the Openka-
pow servers, robots are accessible through a public URL, which identifies the specific
robot to run. So exposed services may also need some input values (e.g., user-id and
password) that can be used to parameterize the services. Inputs can easily be passed
by appending them to the service URL as name-value pairs, following the standard
URL model.

To better understand how these tools can be used in the mashup context, let’s refer
again to the Conference Trip Planner example. Let us suppose that the Kayak flight
search site does not have an RSS output for its search results. In this case, a data ex-
traction service can be used to automatically extract the flight combinations from the

4 http://www.dapper.net/open/
5 http://openkapow.com

80 F. Daniel, S. Soi, and F. Casati

result page. With Dapper, for instance, a developer needs to load one or more exam-
ple pages into the Dapper environment. The more example pages are loaded, the bet-
ter the inferred rules. Then, the developer needs to identify the individual data items
he/she wants to extract from the page by clicking on the respective HTML elements
(e.g., airline, departure time, arrival time, price, intermediate stops, link to booking),
to label them and to assemble the final output (e.g., an RSS feed). There is no need to
write any own line of code, in order to publish the extraction results on the Web.

While this kind of tools undoubtedly speeds up the development of data extraction
from existing web sites, the development effort regarding the composition of compo-
nents into a new application remain in unchanged. Therefore, the developer still has to
be familiar with the services and APIs to be integrated, to display sourced data in a
suitable way, and to manage the communication and synchronization logic between
the components. Even assuming that data extraction tools can be successfully used by
non-programmers, the final mashup development therefore still remains the hard task
that can be performed only by skilled programmers.

3.3 Fully-Assisted Development

The previous analyses and consideration show that mashup development is typically a
knowledge-intensive work, involving a variety of technologies and components. In
addition to simplifying the creation of data extraction instruments for web pages,
which address the problem of developing components for mashups, it is important to
also aid the actual composition of components into applications, which is as hard and
time-consuming as developing components, if not properly supported. Mashup tools
or mashup platforms address exactly this problem, each of them focusing on different
composition aspects and following different mashup approaches. In the following, we
analyze four of these tools, which we think are most representative for this kind of
assisted mashup development: Yahoo! Pipes, JackBe Presto6, Microsoft Popfly7, and
Intel Mash Maker8. There are also other tools like Google App Engine9 or IBM’s
Lotus Mashups10 and so on, but their discussion exceeds the scope of this chapter.

Yahoo! Pipes provides a simple and intuitive visual editor that allows one to de-
sign data-centric compositions. It takes data as input and provides data as output; the
most important supported formats are RSS/Atom, XML, and JSON. A pipe is a data
processing pipeline in which input data (coming from diverse data sources) are
processed, manipulated and used as input for other processing steps, until the target
transformation is completed. This pipeline-style process is implemented through an
arbitrary number of intermediate operators, which manipulate data items inside the
data feeds or provide features like loops, regular expressions or more advanced fea-
tures like automatic location extraction or connection to external services. The set of
operators are predefined and fixed; new functionality can be included in form of web
services. Also, stored pipes can be reused as sources of another pipe.

6 http://www.jackbe.com/
7 http://popflyteam.spaces.live.com – MS Popfly has been discontinued since

August 24, 2009.
8 http://mashmaker.intel.com/web
9 http://code.google.com/intl/it-IT/appengine/
10 http://www-01.ibm.com/software/lotus/products/mashups/

 From Mashup Technologies to Universal Integration 81

Yahoo! Pipes’ development environment is characterized by a simple and intuitive
development paradigm that is however targeted at advanced web users or program-
mers. In fact, the level of abstraction of its operations (e.g., the regular expression
component) and the characteristic data flow logic is only hardly understandable to
non-programmers. Pipe’s output is not meant for human consumption (RSS, Atom,
JSon, etc.) but rather for integration in other applications. This limits both the variety
of input sources that can be used and the accessibility of its output. In fact, the ab-
sence of any support for UIs prevents the direct use of Pipe’s output by common web
users. However, Pipes is a very popular data-mashup development tool, very likely
due to its efficient and intuitive component placing and connection mechanism.

The development tool does not need any installation or plug-ins; it runs in any
AJAX-enabled web browser. The development environment comes with a very effi-
cient, integrated debugging tool that helps the developer during the design phase.
Pipes are stored online and accessible via an own URL. When invoking a pipe, an
execution process is started on the server side, relieving the client from the execution
overhead. This characteristic could represent a problem under a scalability perspec-
tive: if a large number of simultaneous accesses to a pipe are made, performance and
stability might suffer.

Considering our example application, with Yahoo Pipes it would be unfeasible to
realize the application as described in the reference scenario, as there is no support for
the user interface of the application. However, what we can do, for instance, is using
Pipes to simplify the collection, aggregation and filtering of conferences sourced from
different web sources, such as conference-service.com and allconferences.com. On
top of this pipe, it is then necessary to provide a suitable user interface.

JackBe Presto is a robust and complete mashup platform which provides enter-
prise-level solutions. Presto gives the possibility to easily produce (design, test and
deploy) mashups merging data coming from disparate sources. In particular it can be
also connected to data sources very common in the business world (like Excel spread-
sheets, Oracle data software, etc.), that most of mashup competitor’s solutions cannot
access. Simple mashup composition can be done, also by non-IT users, through the
Presto Wires tool. More advanced composition can be obtained only by professional
developers implementing them in EMML language with the support of the Presto
Mashup Studio plug-in for Eclipse. This language is the main actor of the OMA
(Open Mashup Alliance) project, which aims to define an open language allowing
enterprise mashup interoperability and portability.

The development environment is constituted by several independent tools.
Wires is a visual editor based on a simple and intuitive data pipeline composition
approach. It allows one to merge data coming from disparate internal and external
sources producing a final output that can be graphically displayed as a mashlet.
Mashlets can be plugged into a dash-board like user interface or a portal, or they
can be embedded into a regular web page. Mashlet development is assisted by the
Presto Mashlet tool, while the Mashup Studio is an Eclipse plug-in providing Java
programmers with complete control on the mashup development process. Connec-
tors allow one to hook up Presto to diverse software, such as Microsoft Excel, web
portals, any Oracle technology, and similar. Presto services can be accessed
through APIs, available for main programming languages (Java, JavaScript, C#,
Python, etc.).

82 F. Daniel, S. Soi, and F. Casati

The runtime server provides secure mechanisms to virtualize (abstract the user from
actual implementation details) and normalize (put the service output into standard
formats: JSON or XML) any kind of service or data (SOAP, REST, RSS, DB, Excel)
and expose them in a secure and governed way. Presto is not a hosted service, like
Yahoo! Pipes; it needs to be installed and configured in each company individually.

Let us briefly analyze the possibility to create our Conference Trip Planner applica-
tion with Presto. Just like Yahoo! Pipes, Wires gives the opportunity to easily access,
merge and filter the RSS channels of the conferences search services and the Kayak
flights search service. Retrieved items can be displayed by means of two mashlets.
The development of the other UI components in form of mashlets has to be done
manually in Mashup Studio using a standard programming language like Java. At this
point the produced mashlets can be put together inside one web page. However, this
solution does not provide for the synchronization of the basic components in the ap-
plication (the mashlets), so that the selection of a conference updates the data shown
in the other components. There is not inter-mashlet communication.

Microsoft Popfly gained a great consensus in the mashup community and achieved
good levels of popularity and usage. Although the Popfly project has been discontin-
ued, we analyze this mashup tool because we consider it an interesting example for UI
composition with peculiarities that cannot be found in other tools.

Popfly provides a visual development environment for the realization of mashups
based on the concept of components, or block as they are called in Popfly. A composi-
tion is created by dragging and dropping blocks of interest onto a design canvas and
by graphically connecting them to create the desired application logic. A block can
take the role of connector to external services or it can represent some internal func-
tionality (implemented through a JavaScript function). Each block provides input and
output ports that enable its connection to other blocks. Blocks can also be used to
provide a user interface that can display the result of some processing. Placing mul-
tiple visualization blocks into a same page allows one to define the overall layout of
the page. The internal layout of blocks can be customized by inserting ad-hoc HTML,
CSS or JavaScript code. Popfly has a wide collection of available blocks, offering
functionalities like RSS readers, service connectors, map components based on Vir-
tual Earth, etc. New blocks and compositions can be defined (in JavaScript), saved,
shared and managed in a dedicated section of the platform.

At runtime, the communication flow is event-driven, that is, the activation of a cer-
tain component depends on the raising of some event by another component. There is
no support for exception and transaction handling, but Popfly provides a section dedi-
cated to the test and preview of the composition. Ready compositions are stored on
the Popfly server, but the execution is done on the client – as many of the built-in
blocks are based on the Silverlight platform. The client-side execution of mashups
alleviates the server from heavy loads and limits scalability and performance.

Considering the Conference Trip Planner application, Popfly is the first tool that
can be used to fully implement the application. We assume that skilled programmers
already developed and published all blocks needed for the composition, especially the
UI components Conferences Search, Expedia Hotels and BBC Weather, while the
RSS reader necessary to display the output of the conference and flight search servic-
es already exists. At this point, the developer of the composition can drag and drop
these components onto the modeling canvas and connect the blocks, also providing

 From Mashup Technologies to Universal Integration 83

for the necessary mapping of the data parameters from outputs to inputs. In particular,
the Conferences Search block must be connected to all the other blocks, in order to
provide for the synchronization of the whole composition. Finally, the graphical ap-
pearance of the application’s layout can be set up by including a custom CSS style
sheet into the page. What is missing in Popfly is the possibility to define more com-
plex, process-like service compositions, as could for example be needed to process
the conference search results directly in Popfly.

Intel Mash Maker provides a completely different mashup approach: an environ-
ment for the integration of data from annotated source web pages based on a powerful,
dedicated browser plug-in for the Firefox web browser. Rather than taking input from
structured data sources such as RSS/Atom feeds or web services, Mash Maker allows
users to reuse entire web pages and, if suitably annotated, to extract data from the pag-
es. That is, the “components” that can be used in Mash Maker are standard web pages.
If a page has been annotated in the past, it is possible to extract the annotated data from
the page and share it with other components in the browser. If the page has not been
annotated, it is possible reuse the page as is without however supporting any inter-page
communication.

In order to annotate a page, Mash Maker allows developers and users to annotate
the structure of web pages while browsing and to use such annotations to scrap con-
tents from annotated pages. Advanced users may leverage the integrated Structure
Editor to input XPath expressions with the help from FireBug’s DOM Inspector
(another plug-in for the Firefox web browser). Annotations are linked to target pages
and stored on the Mash Maker server in order to share them with other users.

Composing mashups with Mash Maker occurs via a copy/paste paradigm, based on
two modes of merging contents: whole page merging, where the content of one page is
inserted as a header into another page; and item-wise merging, where contents from two
pages are combined at row level, based on additional user annotations. The two tech-
niques can be used to merge also more than two pages. Data exchange among compo-
nents is achieved by means of a blackboard-like approach, where data of components
integrated into an application are immediately available to all other components. Not
only the development, but also the execution of mashups is entirely performed with the
help from the browser plug-in at the client side; on the server side there are only the
annotations for data extraction and the stored mashup definitions.

To build the Conference Trip Planner with MashMaker, first we need to devise the
necessary components in form of annotated web pages. For instance, instead of using
the RSS interface toward the conference search services or toward the flight search
service, we need to navigate the respective web sites and annotate the data items that
are necessary to answer our reference query. Similarly, we need to annotate the UI
components of our application. Next, all these individual pieces of HTML markup
and annotations must be joined following an item-wise merging strategy. It is possible
to implement the needed synchronization mechanisms to coordinate the components
of the application with each other by means of sophisticated merge operations. The
whole development procedure is a non-trivial and time-consuming, it requires some
non-intuitive skills to annotate, decompose, merge and reconstruct pages and web
applications of arbitrary complexity. Without advanced programming skills it is hard
to implement the synchronization of components upon selection of a conference.

84 F. Daniel, S. Soi, and F. Casati

4 Universal Composition: Guiding Principles

As highlighted above, although existing mashup approaches have produced promising
results, techniques that cater for simple and universal integration of web components
at all the three layers of the application stack are still missing. We think such tech-
niques are necessary to transition Web 2.0 programming from elite types of compu-
ting environments to environments where users leverage simple abstractions to create
composite web applications over potentially rich web components developed and
maintained by professional programmers.

We aim at universal integration, and this has fundamental differences with respect
to traditional composition. In particular, the fact that we aim at also integrating UI
implies that:

(i) Synchronization, and not (only) orchestration a-la BPEL, should be adopted as
interaction paradigm;

(ii) Components must be able to react to both human user input and programmatic
interaction;

(iii) We must be able to design the user interface of the composite application, not
just the behavior and interaction among the components.

This shows the need for a model based on state, events and synchronization more than
on method calls and orchestration. We recognize in particular that events, operations,
a notion of state and configuration properties are all we need to model a universal
component.

On the data side, we realize that data integration on the Web may also require dif-
ferent models: for example RSS feeds are naturally managed via a pipe-oriented data
flow/streaming model (a-la Yahoo Pipes) rather than a variable-based approach as
done in conventional service composition.

Another dimension of universality lies in the interaction protocols. As there might
be a variety of components and component implementations, we must be able to deal
with multiple communication protocols at the same time. For instance, the most used
protocols on the Web are REST/HTTP, SOAP, RSS, Atom, and JSON.

These requirements are often at odds with the other key design goal we have: sim-
plicity. We want to enable advanced web users to create applications (an old dream of
service composition languages which is still somewhat a far reaching objective). This
means that the universal composition paradigm must be fundamentally simpler than
programming languages and current composition languages. As an example, we target
the complexity of creating web pages with a web page editor, or the complexity of
building a pipe with Yahoo Pipes (something that can be learned in a matter of hours
rather than weeks).

5 The mashArt Platform

To achieve simplicity in mashArt, we make three design decisions: First, mashArt
aims at hiding the complexity of the specific protocol or data model supported by
each component. That is, the goal is that from the perspective of the composer all
these specificities are hidden – with the exceptions of the aspects that have a bearing

 From Mashup Technologies to Universal Integration 85

on the composition (e.g., if a component is a feed, then we are aware that it operates,
conceptually, by pushing content periodically or on the occurrence of certain events).

As a second decision, we keep the composition model lightweight: for example,
there are no complex exception or transaction mechanisms, no BPEL-style structured
activities or complex dead-path elimination semantics. This still allows a model that
makes it simple to define fairly sophisticated applications. Complex requirements can
still be implemented but this needs to be done in an “ad hoc” manner (e.g., through
proper combinations of event listeners and component logic) but there are no specia-
lized constructs for this. Such constructs may be added over time if we realize that the
majority of applications need them.

The third decision is to focus on simplicity only from the perspective of the user of
the components, that is, the designer of the composite applications. In complex appli-
cations, complexity must reside somewhere, and we believe that as much as possible
it needs to be inside the components. Components usually provide core functionalities
and are reused over and over (that’s one of the main goals of components).Thus, it
makes sense to have professional programmers develop and maintain components.
We believe this is necessary for the mashup paradigm to really take off. For example,
issues such as interaction protocols (e.g., SOAP vs. REST or others) or initialization
of interactions with components (e.g., message exchanges for client authentication)
must be embedded in the components.

In the following, we describe in more detail the component model and the compo-
sition model enabling universal integration and the implementation of the mashArt
platform with its design-time and runtime support.

5.1 The mashArt Component Model

The first step toward the universal composition model is the definition of a compo-
nent model. MashArt components wrap UI, application, and data services and expose
their features/functionalities according to the mashArt component model. The model
described here extends our initial UI-only component model presented in 3] to cater
for universal components. The model is based on four abstractions: state, events,
operations, and properties:

− The state is represented as a set of name-value pairs. What the state exactly con-
tains and its level of abstraction is decided by the component developer, but in
general it should be such that its change represents something relevant and sig-
nificant for the other components to know. For example, in our Conference
Search component we can change the search string of the query and re-compute
the list of pertaining conferences; this component-internal activity is irrelevant
for the other components who are not interested in such low level of detail. In-
stead, clicking on (selecting) a specific conference expresses an information that
may lead other components to show related information or application services
to perform actions (e.g., query for flights). This is a state change we want to cap-
ture. In our case study, the state for the Conference Search component is the set
of conferences being displayed plus the selected conference.

Modeling state for application components is something debatable as services
are normally used in a stateless fashion. This is also why WSDL does not have a

86 F. Daniel, S. Soi, and F. Casati

notion of state. However, while implementations can be stateless, from a model-
ing perspective it can be useful to model the state, and we believe that its omis-
sion from WSDL and WS-* standards was a mistake (with many partial attempts
to correct it by introducing state machines that can be attached to service mod-
els). Although not discussed here, the state is a natural bridge between applica-
tion services and data-oriented services (services that essentially manipulate a
data object).

− Events communicate state changes and other information to the composition en-
vironment, also as name-value pairs. External notifications by SOAP services,
callbacks from RESTful services, and events from UI components can be mapped
to events. When events represent state changes, initiated either by the user by
clicking on the component’s UI or by programmatic requests (through operations,
discussed below), the event data includes the new state. Other components sub-
scribe to these events so that they can change their state appropriately (i.e., they
synchronize). For instance, when selecting a conference in the Conference Search
component, an event is generated that carries details (e.g., name, city, start/end
date) about the performed selection.

− Operations are the dual of events. They are the methods invoked as a result of
events, and often represent state change requests. For example, the Conference-
Search component has a state change operation ShowConferences that can be
used to display retrieved conferences. In this case, the operation parameters in-
clude the necessary information about the state to which the component must
evolve (the list of conferences). In general, operations consume arbitrary parame-
ters, which, as for events, are expressed as name-value pairs to keep the model
simple. Request-response operations also return a set of name-value pairs – the
same format as the call – and allow the mapping of request-response operations
of SOAP services, Get and Post requests of RESTful services, and Get requests of
feeds. One-way operations allow the mapping of one-way operations of SOAP
services, Put and Delete requests of RESTful services, and operations of UI com-
ponents. The linkage between events and operations, as we will see, is done in the
composition model. We found the combination of (application-specific) states,
events, and operations to be a very convenient and easy to understand program-
ming paradigm for modeling all situations that require synchronization among UI,
application, or data components.

− Finally, configuration properties include arbitrary component setup information.
For example, UI components may include layout parameters, while service com-
ponents may need configuration parameters, such as the username and password
for login. The semantics of these properties is entirely component-specific: no
“standard” is prescribed by the component model.

In addition to the characteristics described above, components have aspects that are in-
ternal, meaning that they are not of concern to the composition designer, but only to the
programmer who creates the component. In particular, a component might need to handle
the invocation of a service, both in terms of mapping between the (possibly complex)
data structure that the service supports and the flat data structure of mashArt (name-value
pairs), and also in terms of invocation protocol (e.g., SOAP over HTTP). There are two
options for this: The first is to develop ad hoc logic in form of a wrapper. The wrapper

 From Mashup Technologies to Universal Integration 87

takes the mashArt component invocation parameters, and with arbitrary logic and using
arbitrary libraries, builds the message and invokes the service as appropriate. The second
is to use the built-in mashArt bindings. In this case, the component description includes
component bindings such as component/http, component/SOAP, component/RSS, or
component/Atom. Given a component binding, the runtime environment is able to me-
diate protocols and formats by means of default mapping semantics. In summary, the
mashArt model accommodates component models such as UI components, SOAP and
RESTful services, RSS and Atom feeds.

In Figure 2(a) we introduce our graphical modeling notation for mashArt compo-
nents that captures the previously discussed characteristics of components, i.e., state,
events, operations, and UI. Stateless components are represented by circles, stateful
components by rectangular boxes. Components with UI are explicitly labeled as such.
We use arrows to model data flows, which in turn allow us to express events and
operations: arrows going out from a component are events; arrows coming in to a
component are operations. There might be multiple events and operations associated
with one component. Depending on the particular type of operation or event of a
stateless service, there might be only one incoming data flow (for one-way opera-
tions), an incoming and an outgoing data flow (for request-response operations), or
only an outgoing data flow (for events). Operations and events are bound to their
component by means of a simple dot-notation: component.(operation|event).

The actual model of a specific component is specified by means of an abstract
component descriptor, formulated in the mashArt Description Language (MDL) a
simple, XML-based interface description language. MDL is for mashArt components
what WSDL is for web services.

5.2 Universal Composition Model

Since we target universal composition with both stateful and stateless components, as
well as UI composition, which requires synchronization, and service composition,
which is more orchestrational in nature, the resulting model combines features from
event-based composition with flow-based composition. As we will see, these can
naturally coexist without making the model overly complex.

In essence, composition is defined by linking events (or operation replies) that
one component emits with operation invocations of another component. In terms of
flow control, the model offers conditions on operations and split/join constructs,
defined by tagging operations as optional or mandatory. Data is transferred be-
tween components following a pipe/data flow approach, rather than the variables-
based approach typical of BPEL or of programming languages. The choice of the
data flow model is motivated by the fact that while variables work very well for
programs and are well understood by programmers, data flows appear to be easier
to understand for non-programmers as they can focus on the communication be-
tween a pair of components. This is also why frameworks such as Yahoo Pipes can
be used by non-programmers.

The universal composition model is defined in the Universal Composition Lan-
guage (UCL), which operates on MDL descriptors only. UCL is for universal
compositions what BPEL is for web service compositions (but again, simpler and
for universal compositions). A universal composition is characterized by:

88 F. Daniel, S. Soi, and F. Casati

− Component declarations: Here we declare the components used in the composi-
tion and provide references to the MDL descriptor of each component and set
possible constructor parameters.

− Listeners: Listeners are the core concept of the universal composition approach.
They associate events with operations, effectively implementing simple publish-
subscribe logics. Events produce parameters; operations consume them (static
parameter values may be specified in the composition). Inside a listener, inputs
and outputs can be arbitrarily connected (by referring to the respective IDs and
parameter names) resulting into the definition of data flows among components.
An optional condition may restrict the execution of operations; conditional
statements are XPath statements expressed over the operation’s input parame-
ters. Only if the condition holds, the operation is executed.

− Type definitions: As for mashArt components, the structures of complex parameter
values can be specified via dedicated data types.

We are now ready to compose our Conference Trip Planner. Composing an applica-
tion means connecting events and operations via data flows, and, if necessary, speci-
fying conditions constraining the execution of operations. The graphical model in
Figure 2(a) represents, for instance, the “implementation” of the reference scenario
described in the introduction. We can see the four UI components Conferences
Search, Expedia Hotels, RSS Reader and BBC Weather and the two stateless service
components ConferencePipe and Kayak. The composition has four listeners:

1. If a user enters a conference search string and starts the search (SearchConference
event), the ConferencePipe service is invoked by processing a Yahoo! pipe that
queries two other services: conference-service.com and allconferences.com. The
internals of the pipe are shown in Figure 3(b). The pipe joins the results coming
from the two services and applies the filter condition provided by the user; the re-
sult is passed back to the mashArt composition by invoking the ShowConferences
operation of the Conferences Search UI component.

Note that similar operators and feed processing logics as shown in Figure 3(b)
could easily be implemented also directly in mashArt, but we prefer reusing Yahoo!
Pipes to show an example of how mashup platforms can interoperate.

2. If a user selects a conference from the list of retrieved conferences (ConferenceSe-
lected event), three listeners reacting to the same event are activated. The first lis-
tener propagates the selected conference location and dates to the Expedia Hotel
service that retrieves a list of available hotels from the Expedia repository.

3. The second listener activated after the selection of a conference searches for
matching flights and visualizes them in the RSS Reader. The flights are retrieved
by invoking a kayak.com flight search service and delivering its results as RSS
feed. Such feed is provided as input to the RSS Reader via the ShowRSS operation.

4. Finally, the last listener activated upon selection of a conference aligns the data
shown in the BBC Weather component by forwarding the name of the city the
conference is located in through the SearchWeather operation. This causes the
component to visualize the average weather conditions for the selected city.

 From Mashup Technologies to Universal Integration 89

(a) The mashArt composition model for the example scenario plus the notation not used in the
example

(b) The internals of the conference search aggregation and filtering pipe

Fig. 2. Composition model for the Conference Trip Planner application

In the model, stateful components handle multiple invocations during their life-
time; stateless components represent single invocations. The ConferencePipe service
is invoked each time a user inputs a new search query, while the Conferences Search
component is instantiated only once and handles multiple events and operations.

Regarding the semantics of the three data flows leaving the Conferences Search
component upon a ConferenceSelected event, it is worth noting that we allow the asso-
ciation of conditions operations. A condition is a Boolean expression over the opera-
tion’s input (e.g., simple expressions over name-value pairs like in SQL where clauses)
that constrains the execution of the operation. The three data flows in Figure 2(a)
represent a parallel branch (conjunctive semantics); if conditions where associated
with either SearchHotel, ShowRSS or SearchWeather the flows would represent a
conditional branch (disjunctive semantics). A similar logic applies to operations with
multiple incoming flows that can be used to model join constructs. Inputs may be op-
tional if they are not required for the execution of the operation. If only mandatory
inputs are used, the semantics is conjunctive; otherwise, the semantics is disjunctive.

Data transformations can be defined via either (i) simple parameter mappings as de-
scribed above; (ii) inline scripting, e.g., for the computation of aggregated or combined
values; (iii) runtime XSLT transformations; or (iv) dedicated data transformation ser-
vices that take a data flow in input and transform it, producing a new output.

Conferences
Search

UI

BBC
Weather

UI

RSS
Reader

UI

Expedia
Hotels

UIConference
Selected

ConferencePipe.
getConferences

Kayak.
searchFlights

SearchHotels

ShowRSS

SearchWeatherUI component with
events and operations

ShowConferences

SearchConferences

Conference
Selected

Conference
Selected

Data flow

Stateless Request-Response
service invocation

Stateful
component

Notation not used in
the example

Stateless.Event

Stateless.OneWay

90 F. Daniel, S. Soi, and F. Casati

5.3 Implementing and Provisioning Universal Compositions

Development Environment. In line with the idea of the Web as integration platform,
the mashArt editor runs inside the client browser; no installation of software is re-
quired. The screenshot in Figure 3 shows how the universal composition of Figure 2(a)
can be modeled in the editor. The modeling formalism of the editor slightly differs
from the one introduced earlier, as in the editor we can also leverage interactive pro-
gram features to enhance user experience (e.g., users can interactively choose events
and operations from respective drop-down panels). But the expressive power of the
editor is the same as discussed above.

The list of available components on the left hand side of the screenshot shows the
components and services the user has access to in the online registry (e.g., the Confe-
rences Search or the BBC Weather component). The modeling canvas at the right
hand side hosts the composition logic represented by UI components (the boxes),
service components (the circles), and listeners (the connectors). A click on a listener
allows the user to map outputs to inputs and to specify optional input parameters.

In the lower part of the screenshot, tabs allow users to switch between different
views on the same composition: visual model vs. textual UCL, interactive layout vs.
textual HTML, and application preview. The layout of an application is based on
standard HTML templates; we provide some default layouts, own templates can easi-
ly by uploaded. The preview panel allows the user to run the composition and test its
correctness. Compositions can be stored on the mashArt server.

Fig. 3. The mashArt editor

Component browser Composition canvas

Events and
operations

UI componentService component Data flow connector

 From Mashup Technologies to Universal Integration 91

Fig. 4. Universal execution framework

The implementation of the editor is based on JavaScript and the Open-jACOB
Draw2D library (http://draw2d.org/draw2d/) for the graphical composition logic and
AJAX for the communication between client and server. The registry on the server
side, used to load components and services and to store compositions, is implemented
as a RESTful web service in Java. The platform runs on Apache Tomcat.

Execution Environment. Developing the mashArt execution environment requires
solving issues like (i) the seamless integration of stateful and stateless components
and of UI and service components, (ii) the conciliation of short-lived and long-lasting
business process logics in one homogeneous environment, (iii) the consistent distribu-
tion of actual execution tasks over client and server, and (iv) the transparent handling
of multiple communication protocols [19].

Figure 4 illustrates the functional architecture of our execution environment. The
environment is divided into a client- and a server-side part, which exchange events
via a synchronization channel. On the client side, the user interacts with the applica-
tion via its UI, i.e., its UI components, and thereby generates events that are inter-
cepted by the client-side event bus. The bus implements the listeners that are executed
on the client side and manage the data and SOAP-HTTP adapters. The data adapter
performs data transformations, the SOAP-HTTP adapters allow the environment to
communicate with external services. Stateful service instances might also use the
SOAP-HTTP adapters for communication purposes.

The server-side part is structured similarly, with the difference that the handling of
external notifications is done via dedicated notification handlers, and long-lasting
process logics that can be isolated from the client-side listeners and executed inde-
pendently can be delegated to a conventional process engine (e.g., a BPEL engine).

The whole framework, i.e., UI components, listeners, data adapters, SOAP-
HTTP adapters, and notification handlers are instantiated when parsing the UCL
composition at application startup. The internal configuration of how to handle the
individual components is achieved by parsing each component’s MDL descriptor

Web user
interface

UI component
instances

UI component
instances

UI component
instance

Process engine

Notification
handler

Long-running
processes

External
services

User

Data
adapter

SOAP
adapter

HTTP
adapter

UI component
instances

UI component
instances

Stateful service
instances

Client-side bus Server-side bus

Data
adapter

HTML
layout MDL UCL

Client Server

SOAP,
HTTP

SOAP,
HTTP

SOAP
adapter

HTTP
adapter

92 F. Daniel, S. Soi, and F. Casati

(e.g., to understand whether a component is a UI or a service component). The
composite layout of the application is instantiated from the HTML template filled
with the rendering of the application’s UI components.

6 Conclusion

In this chapter, we have considered a novel approach to UI and service composition
on the Web, i.e., universal composition. This composition approach is the foundation
of the mashArt project, which aims at enabling even non-professional programmers
(or Web users) to perform complex UI, application, and data integration tasks online
and in a hosted fashion (integration as a service). Accessibility and ease of use of the
composition instruments is facilitated by the simple composition logic and imple-
mented by the intuitive graphical editor and the hosted execution environment. The
platform comes with an online registry for components and compositions and will
provide tools for monitoring and analysis of hosted compositions.

Throughout the chapter, we have constantly kept an eye on the connection between
universal composition and search computing. The Conference Trip Planner tool im-
plemented using the mashArt instruments and languages shows that it is indeed possi-
ble to develop a component-based application that provides answers to the conference
search problem, provided that the necessary basic components are readily available.
The application’s integration logic is achieved by means of an imperative drag-and-
drop composition paradigm that allows the users of the mashArt platform to compose
applications according to their own knowledge about which components are needed
and about how to glue them together. There exist many alternative solutions to the
implementation of the same application; yet, unlike in [18], where an optimal query
plan is identified automatically, in mashArt it is up to the developer to decide which
solution fits best his/her individual needs.

In terms of output of the composition, it is interesting to note that while in the tra-
ditional search scenario the output is a set of result tuples, the output in mashArt is
rather represented by the whole application, i.e., the individual components and their
interconnection. Given the search query introduced in the introduction of this chapter,
its answer is therefore represented by the screenshot in Figure 1, which naturally
combines simple search outputs with sophisticated UI components.

References

[1] Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development and its
Differences with Traditional Integration. Internet Computing 12(5), 44–52 (2008)

[2] OASIS. Web Services for Remote Portlets (August 2003),
 http://www.oasis-open.org/committees/wsrp

[3] Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Framework for
Rapid Integration of Presentation Components. In: WWW 2007, pp. 923–932 (2007)

[4] Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures
and Applications. Springer, Heidelberg (2003)

[5] Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Ser-
vices 1(1), 1–30 (2005)

 From Mashup Technologies to Universal Integration 93

[6] OASIS. Web Services Business Process Execution Language Version 2.0 (April 2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

[7] Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)

[8] van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management
Framework for WS-BPEL. In: ECoWS 2008, Dublin (2008)

[9] Curbera, F., Duftler, M.J., Khalaf, R., Lovell, D.: Bite: Workflow Composition for the
Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749,
pp. 94–106. Springer, Heidelberg (2007)

[10] Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and
Service Mashups. Internet Computing 12(5), 32–43 (2008)

[11] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries
on the Web. In: VLDB 2008, Auckland, pp. 562–573 (2008)

[12] Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Understanding
UI Integration - A Survey of Problems, Technologies, and Opportunities. IEEE Internet
Computing, 59–66 (May 2007)

[13] Microsoft Corporation. Smart Client - Composite UI Application Block (December
2005), http://msdn.microsoft.com/en-us/library/aa480450.aspx

[14] The Eclipse Foundation. Rich Client Platform (October 2008),
 http://wiki.eclipse.org/index.php/RCP

[15] Sun Microsystems. JSR-000168 Portlet Specification (October 2003),
 http://jcp.org/aboutJava/communityprocess/final/jsr168/

[16] Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applica-
tions Design and Development with WebML and WebRatio 5.0. TOOLS (46), 392–411
(2008)

[17] Gómez, J., Bia, A., Parraga, A.: Tool Support for Model-Driven Development of Web
Applications. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 721–730. Springer, Heidelberg (2005)

[18] Braga, D., Ceri, S., Daniel, F., Martinenghi, D.: Optimization of Multi-Domain Queries
on the Web. In: VLDB 2008, Auckland, New Zealand, August 2008, pp. 562–573 (2008)

[19] Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: ER 2009 (November 2009)

[20] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. University of California, Irvine, Dissertation (2000),

 http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
[21] Abiteboul, S., Manolescu, I., Zoupanos, S.: OptimAX: efficient support for data-intensive

mash-ups. In: ICDE 2008, pp. 1564–1567 (2008)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

