
Mashing Up Context-Aware Web Applications:

A Component-Based Development Approach

Florian Daniel1 and Maristella Matera2

1 University of Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it
2 DEI - Politecnico di Milano

Via Ponzio 34/5, 20133 Milano, Italy
matera@elet.polimi.it

Abstract. Context-awareness and adaptivity in web applications have
been gaining momentum in web engineering over the last years, and it
is nowadays recognized that, more than a mere technology aspect, they
represent a first-class design concern. This acknowledgment has led to
a revision of existing design methods and languages, finally resulting in
runtime adaptation being considered a cross-cutting aspect throughout
the whole development process. In this paper, we propose a radically new
view on context-awareness and show how a well-done component-based
development may allow the fast mashup of context-aware and adaptive
web applications. The proposed approach comes with an intuitive graph-
ical development environment, which will finally enable even end users
themselves to mash up their adaptive applications.

1 Introduction

The current technological advances are shaping up various scenarios where peo-
ple with different (dis)abilities interact with web applications through multiple
types of mobile devices and in a variety of different contexts of use. That is,
we are moving toward accessing at any time, from anywhere, and with any me-
dia customized services and contents. In such scenarios, the need for effective
methodologies for the fast development of adaptive and context-aware web ap-
plications arises.

Adaptivity is intended as the autonomous capability of the application to
react and change in response to specific events occurring during the execution
of the application, so as to better suit dynamically changing user profile data.
Context-awareness is intended as adaptivity based on generic context data, not
limited to user profile data.

Some works already addressed adaptivity and context-awareness, spanning
a number of perspectives: from the representation of context properties through
formalized context models [1, 2], to the definition of high-level modeling abstrac-
tions for the conceptual design of adaptive behaviors [3–6] (in Section 2 we
discuss the cited approaches in detail). Typically, all these approaches share the

same view over context-awareness and consider it an explicit design dimension,
to be addressed with specific (sometimes complex) design artifacts.

In this paper we break with this interpretation and show how a mashup
approach to the development of web applications may implicitly provide support
for context-awareness. More specifically, we propose an innovative framework
for the development of context-aware web applications, which tries to hide the
complexity of adaptivity design, also fostering reuse. In line with the current
trend supported by the recent Web 2.0 technologies [7], our approach indeed
aims at empowering the users (both developers and end users) with an easy-to-
use tool for mashing up applications by integrating ready (adaptive) services or
application components.

The framework leverages our previous results in the design of context-aware
web applications [6, 8] and in the component-based development of web appli-
cations [9, 10]. In particular, we exploit an event-driven paradigm, which en-
ables the composition of self-contained, stand-alone applications (components)
equipped with their own user interface [10, 9], and show how context-aware ap-
plications can be composed by integrating context components with generic com-
ponents. Context components are in charge of monitoring the context and gen-
erating context events when the context changes [8]. Such context events are
then mapped onto operations of the generic components, which in this way are
enabled to change their internal state to adapt to context changes. Provided that
context components and generic components are respectively able to generate
context events and react to such events, the adaptivity logic simply resides in
the composition logic, which defines the synchronization of components without
requiring any “ad-hoc” extension of the composition framework for the specifi-
cation and implementation of adaptive behaviors.

To further facilitate the application development, the proposed approach is
also complemented with an intuitive visual development environment, which will
eventually enable even end users to mash up their adaptive applications.

1.1 Motivating scenario

As a reference example throughout this paper, we have implemented a location-
aware tourist guide through Trento, Italy. Trento is particularly suited to our
application, as the city center, where all the interesting sights are located, is
covered with free wireless Internet connection, providing for the necessary con-
nectivity.3 The application is a location-aware mashup of Google Maps and a
tourist information system. Besides explicit user navigations and selections, the
application also reacts to location changes tracked by means of a GPS device.
Figure 1 shows a screen shot and explanations of the application.

3 http://www.wilmaproject.org/

If the user selects

one of the sights in

the list at the right

hand side, the map

displays the

respective location.

If the user moves,

his/her position is

tracked on the

map, and if the

user gets close to

one of the sights,

the respective

details are

displayed at the

right hand side.

List of sights the

user may select

from.

Details of the

selected sight.

Map data and sight

information are

automatically

synchronized.

Fig. 1. Screen shot of the location-aware tourist guide based on GPS position data.

1.2 Contributions

Besides introducing a novel development paradigm, this paper provides an in-
novative vision on context-aware web applications. More specifically, we provide
the following contributions:

– We show how the event-driven paradigm of our component-based web ap-
plication development approach [9, 10] (Section 3) nicely suits the needs of
context-aware applications. The resulting development approach (Section 4)
hides most of the complexity of adaptivity design and fosters reuse.

– Consistently with the component-based approach, we show how also the con-
text model, underlying all adaptive behaviors, can easily be mashed up, start-
ing from so-called context components, generating context events (Section 4).
Each context component is indeed in charge of monitoring and managing a
separate context domain; therefore the “global” context model, needed to
support adaptivity, is simply mashed up by composing context components.

– We equip the described approach with a Web 2.0 development and execu-
tion environment (Section 5), in order to enable also end users to mash up
context-aware web applications. More precisely, we describe our easy-to-use,
graphical editor and the light-weight, client-side execution environment.

– We finally summarize the main novelties of the proposed development method
and provide an outlook over current and future works (Section 6).

2 Current approaches to context-awareness

Context-awareness has been mainly studied in the fields of ubiquitous, wearable,
or mobile computing. Several applications have been developed [11, 12], and con-

text abstraction efforts have produced platforms or frameworks for rapid pro-
totyping and implementation of context-aware software solutions [13]. However,
recently some efforts have also been devoted to the Wed domain; they principally
deal (i) with the gathering of context data and their representation as proper
context models, and (ii) with the identification of modeling abstractions, able to
support the design of adaptive behaviors.

Belotti et al. [14] address the problem of the fast and ease development of
context-aware (web) applications and propose the use of a universal context en-
gine in combination with a suitable content management system [15]. In such a
framework, context affects the actual web application indirectly by altering the
state of the database and is not able to trigger autonomously application func-
tionalities. Also, developers have to deal with a centralized context model, pos-
sibly integrating the heterogeneous data coming from different context sources.

At a more conceptual level, some well known model-driven methodologies
(such as Hera [16], UWE [5], and WebML [6]) aid developers in the design of
adaptive web information systems, by extending design models with concepts
and notations to specify adaptive behaviors. For example, Ceri et al. [6] propose
an extension of the WebML model, in which adaptive pages are associated with a
chain of operations that implement the page’s adaptivity logic and are executed
each time a context monitor [8] (which restricts the analysis of the context
model to the only properties relevant to the currently viewed page) demands
for adaptation. The modeling of adaptive actions leverages a set of adaptivity-
specific units, especially related to the acquisition and management of context
data and the enactment of adaptation actions. In [17] and [18, 19], the authors
propose the use of event-condition-action rules for adaptivity specification and
management.

The modeling approaches proposed so far allow developers to reason at a high
level of abstraction. However, in all these approaches adaptivity design is strictly
coupled with application design and requires the explicit and detailed specifi-
cation of adaptivity rules and actions. The framework that we propose in this
paper goes beyond these limitations and allows developers, or even end users, to
concentrate on the global adaptive behavior of the application in an event-driven
fashion, hiding the complexity of how single adaptation actions are executed –
also fostering reuse, a typical feature of component-based development.

Finally, a family of approaches to personalization or adaptation is based on
algebraic specifications and formal reasoning. For example, in [2] the authors
extend SiteLang, a process algebra developed by the authors to express so-called
application “stories”. User preferences are specified by means of algebraic pre-
and post-conditions that act as filters over a web information system’s story
space and tailor the algebraic expression of the story space to an individual
user. Unfortunately, despite their effectiveness, such approaches make the im-
plementation less intuitive, compared to both model-driven approaches and the
component-based development proposed in this paper.

3 The Mixup approach to component-based web

application development

In [10, 9] we have shown an approach to the fast development of web applica-
tions based on the composition of components that are equipped with own User
Interfaces (UIs), i.e., we have introduced a systematic approach to mash up web
applications. The distinguishing characteristic of the proposed approach is that
it focuses on the integration of components at the presentation layer, leaving
application and data management logic inside components. As illustrated in the
rest of this section, component and composition models are inspired by research
in the field of web services and the service-oriented architecture (SOA).

3.1 Component model

A so-called UI component is characterized by an abstract external interface
that enables its integration into composite applications and the setup of inter-
component communications. UI components are proper stand-alone applications,
whose state is represented by the portion of UI published by the component
and by the value of some component-specific properties. Components may gen-
erate events, which communicate to the outside world changes in the internal
state; events are component-specific and typically follow a high-level seman-
tics, e.g. a component that provides tourist information may publish an event
sightSelected to notify other components of the selection performed by the
user.4 Components may have operations, which enable the outside world to
modify the internal state of a component; operations are component-specific
and follow the semantics of events, e.g. the tourist information component may
have a showSight operation, which allows one to emulate a user selection from
the outside.

Similarly to WSDL for web services, components are abstractly described via
so-called UISDL (UI Service Description Language) descriptors. The tinfo.uisdl
file in Figure 2 shows for example the UISDL descriptor of the tourist information
component used in our case study (see Figure 1); for presentation purposes, the
example is kept simple (e.g. we omit data types and technology bindings). After
a mandatory header, the descriptor specifies the actual component: its identifier,
its location, and its operations and events with possible parameters.

3.2 Composition model

Given the described abstract UI component model, the composition model can
be kept simple. Indeed, we propose an event-driven model, where events from
one component may be mapped to operations of one or more other components;
mappings are expressed by means of so-called listeners. In addition to the direct
mapping of events to operations, listeners also support data transformations in

4 Low-level events such as mouse clicks or keystrokes do not represent meaningful
events in the context of the proposed approach.

Event broker Listeners

Remote

application

logic

Internet

C1AL

C2ALHTML

template

XPIL

C2UI

C1UI

Layout

Design Execution

C1

UISDLs

Mixup

runtime

env.

<?xml version="1.0" encoding="utf-8" ?>

<uisdl xmlns="http://www.openxup.org/…"

 xmlns:tns="...">

 <component id="TouristInfo"

 address="http://www.elet.polimi.it/.../tinfo.js">

 <operation name="showSight" address="showSight">

 <param name="sightName"/>

 </operation>

 <event name="sightSelected">

 <param name="sightName"/>

 <param name="address"/>

 </event>

 </component>

</uisdl>

tinfo.uisdl

<?xml version="1.0" encoding="utf-8"?>

<xpil xmlns="http://www.openxup.org/..."

 xmlns:tns="...">

 <component ref="http://localhost/…/info.uisdl" id="tinfo" address="TouristInfo">

 </component>

 <component ref="http://localhost/.../gmaps.uisdl" id="gmaps" address="GoogleMaps">

 </component>

 <listener id="0" publisher="tinfo" event="sightSelected"

 subscriber="gmaps" operation="showAddress"/>

</xpil>

guide.xpil

Fig. 2. The Mixup framework with UISDL descriptor and XPIL composition.

form of XSLT transformations, and the specification of more complex mapping
logics via inline JavaScript. The definition of listeners represents the composition
logic, while the layout of a composite application is specified by means of a suit-
able HTML template that contains placeholders, which can be used at runtime
to embed and execute components, thereby re-using their UIs.5

The composition logic is expressed in XPIL (eXtensible Presentation Integra-
tion Language), an XML-based language specifying how UISDL-based compo-
nents are integrated within single pages. The file guide.xpil in Figure 2 shows
a simplified XPIL composition for our reference example (we omit complex data
mappings or scripting). The composition refers to the two components in Fig-
ure 1: it references the UISDL descriptors of the tourist information component
and of the Google Maps component and assigns unique identifiers (tinfo and
gmaps). The identifiers are used in the specification of the listener that updates
the map according to the user’s selection of a sight: the sightSelected event of
tinfo is mapped to the showAddress operation of gmaps. The HTML template
corresponds to the HTML page shown in Figure 1 without the rendering of the
two components.

5 In our current implementation, we focus on web technologies, but conceptually our
framework may also span other UI technologies.

3.3 The Mixup framework

The lower part of Figure 2 summarizes the overall framework. At design time,
we mash components up starting from their UISDL documents; the mashup is
stored as XPIL composition equipped with an HTML template for the layout. At
runtime, a JavaScript/AJAX environment running in the client browser parses
the XPIL file, instantiates the components, and places them into the layout for
the rendering of the composite page. As shown in the figure, UI components may
internally communicate with their own remote application logic necessary for the
execution of the component; however, such communications are transparent to
the designer who only focuses on the composition and layout logic.

4 Mashing up context-aware web applications

Leveraging our experience on context-aware applications [6, 18, 19], in this sec-
tion we show how the described mashup approach naturally lends itself to the
development of context-aware and adaptive web applications. The proposed ap-
proach is characterized by an adaptation specification logic that is very simple
and consistent with the previously described composition logic, thus elevating
the abstraction level at which developers deal with adaptivity compared to the
approaches discussed in Section 2.

4.1 Adaptivity layers in Mixup

Context-awareness means runtime adaptation, i.e. adaptivity, in response to
changes of context data, whose structure is expressed by means of some kind
of context model. Let’s first consider the typical adaptivity features of context-
aware web applications, i.e. what we adapt. Considering the works discussed in
Section 2, we can categorize the typical adaptivity actions supported in current
adaptive/context-aware web applications into the following six features:

– Adaptation of contents : contents/data published in pages may be changed;
– Enactment of operations : external operations or services may be invoked;
– Adaptation of style: properties like colors and font sizes may be changed;
– Adaptation of layout : the arrangement of page contents may be re-organized;
– Hiding/showing of links: hyperlinks may be dynamically hidden or shown;
– Automatic navigation actions: hyperlinks may be automatically navigated

on behalf of the user.

If we now consider our mashup approach, we can easily identify two layers
at which adaptivity features may operate. The two layers are characterized by
different adaptivity features:

1. Component adaptations : Components may internally support one, more, or
all of the above features. Components are indeed small stand-alone appli-
cations, and as such they may be developed according to the approaches

discussed in Section 2 and based on own context-data. Alternatively, they
may expose operations to be invoked from the outside to trigger the sup-
ported features; in this paper we will focus on such kind of operations. Well-
developed components are key for the success of mashups in general; here
we build atop of current best practices and experience.

2. Composition adaptations: also the composite application may support one,
more, or all of the above features (a composite application may have its own
business logic, in addition to the components it integrates). But the com-
posite application may also support adaptivity features over its composition
logic, which are new with respect to the above features:

– Hiding/showing of components : components in the composition may be
hidden or shown dynamically;

– Re-configuration of listeners: new listeners may be added or existing
listeners may be dropped at runtime;

– Selection of components: new components may be dynamically selected
(e.g. from a component registry) and added to the composition.

4.2 Enabling context-awareness through context components

But to what and when do we adapt our application? In short, we adapt to changes
of context data, typically structured according to an application-specific context
model, and we adapt as soon as such changes are registered by our application.
It is exactly the triggering of adaptivity actions where the proposed composition
approach shows its full power: instead of having a centralized context model that
captures all context data and the respective changes, we use dedicated context
components, which are in charge of observing a particular piece of context and
of generating events in response to changes thereof. Such context events are then
mapped to the operations of the components or of the composite application that
are able to trigger changes to the internal state, i.e. to adapt the component or
the whole application to changing context conditions.

Figure 3 shows how context components seamlessly extend the Mixup frame-
work depicted in Figure 2, effectively enabling context-aware mashups. We distin-
guish between client-side and server-side context components. Client-side com-
ponents fully run on the customer’s device and enable the communication of
client context data sensed via dedicated sensing modules. Server-side compo-
nents run their business logic (i.e. the specific context management logic) on the
server side, thus enabling the communication of context data representing cen-
trally sensed or aggregated data. There may also be remote context components,
which enable the access to context data that are outside of the control of the
developer.6 For instance, the following represent a few possible and reasonable
context components:

6 The described use of context components is fully in line with the idea of context

monitor discussed in [8].

Client-side

sensing

module

Client context

Client ctx

component

Server ctx

component

Remote

components
Remote

components
Remote

components

Remote

components
Remote

components
Local

components

Server ctx

component

Local

components

Local

components
Local

components
Local

components

Local server context

Context sensing &

aggregation module
Remote

context

XPIL
HTML

layout

Local

components

Local

components
Local

components
Remote

components

Remote ctx

component

Composite Application

Local

comp.

repository

Remote

component

repository

Client browser with Mixup

runtime environment

Remote web serverLocal web server

Fig. 3. The use of dedicated context components enables the development of context-
aware web applications.

– Location component : a component, implemented at the client- or at the
server-side7, which may fire “low-level” position events, for example regard-
ing longitude and latitude, or “high-level” events, for example regarding
cities, streets, or countries;

– User Model component : a server-side component in charge of monitoring
changes to a user model typically stored at the server side. The component
could be used to provide advanced (e.g. adaptive) personalization features;

– Time component : a client-side component that may fire whatever event
(specified at design time) at given time instants or intervals. The compo-
nent could expose a set of configuration operations that allow the designer
to set up the events to be emulated;

– System component : a server-side component that exposes runtime data about
the health or performance of the running application;

– Shared context component : a server-side component based on context data
aggregated at the server side, which e.g. may allow the generation of events
that express the presence of other people in a same physical location;

– Weather component : a remote component that accesses weather forecasts
provided by third-party service providers and supplies users with forecast
data depending on their current GPS position.

As can be seen in the above examples, context components typically concen-
trate on one specific context domain. Therefore, we do not have any centralized

7 The logic of this component depends on the mechanism adopted for capturing con-
text data. For example, components implementing proprietary sensing mechanisms
can be required on the client side, as it happens for GPS-equipped devices, or server-
side components can be used to communicate to the client context data collected
through centralized sensing infrastructures, such as those based on infrared signals
or RFID.

reference context model. Just like the whole application itself, also the context
model is simply “mashed up” by putting together the context components that
are needed. We are hence in presence of a modular approach to construct the con-
text model, which transparently integrates context data from disparate sources,
possibly distributed over the Web.

It is finally worth noting that context components that generate context
events are per definition active components that are able to communicate context
data without an explicit user intervention, thus solely based on the dynamics
of context. This therefore leads us to interpret context as an independent actor,
working on the same application as users do [8].

4.3 Mashing up context-aware web applications

As explained above, context components generate events that can easily be
mapped onto other components’ operations (just like with conventional UI com-
ponents) in order to trigger adaptivity features. When developing context-aware
composite applications, the XPIL composition therefore also reflects the adaptiv-
ity logic, which is expressed by means of the listeners that specify how context
events influence other components. The layout of context-aware applications is
instead slightly different from non context-aware applications, as context com-
ponents typically come without own UI, reason for which they are typically
invisible in the composite application. Using context components in the Mixup

framework does therefore not imply the need for any extension to the existing
runtime environment nor to the composition model.

The adaptive features that can be used when developing a context-aware
mashup very much depend on the capabilities of the components to be inte-
grated. Well-designed components come with a rich set of operations, which may
enable a wide spectrum of adaptive behaviors. As already discussed in earlier,
component adaptations depend on the internal implementation of components
(which typically is out of the control of the mashup developer), while composition
adaptations can be freely defined by the developer.

It is worth noting that from a technical perspective the distinction between
context components and conventional components is very blurred. Whether a
component is a context component or not rather depends on the overall seman-
tics of the application to be developed. As a matter of fact, each component that
generates events may be considered a context component, as its events may be
used to trigger adaptivity features in other components.

To equip our example application of Figure 1 with the necessary location-
aware behavior, we use a location context component that tracks the user’s po-
sition in terms of street name and number. Also, the operation showSight of the
tourist information component accepts addresses in input and, if a corresponding
sight can be found, publishes the respective details; otherwise, no changes are
performed. In Figure 2 we introduced the XPIL logic for the integration of the
UI components only. In order to achieve context-awareness, the following code
lines need to be added to the XPIL composition of Figure 2 (guide.xpil):

<component ref="http://localhost/.../gps.uisdl" id="location"

address="Location_Context">

</component>

<listener id="1" publisher="location" event="streetChanged"

subscriber="gmaps" operation="showAddress"/>

<listener id="2" publisher="location" event="streetChanged"

subscriber="tinfo" operation="showSight"/>

The first three lines import the location context component. The remain-
ing lines define two listeners, one that couples the streetChanged event of the
location component with the showAddress operation of the gmaps component,
and one that couples the same event with the showSight operation of the tinfo
component. The two listeners specify the adaptivity logic of the context-aware
application.

4.4 Termination and confluence of adaptive behaviors

Although in the proposed approach we allow developers to specify cyclic depen-
dencies among listeners, at runtime the execution environment does not allow
for cycles. More precisely, at runtime possible events generated by a component
in response to the invocation of one of its operations (the invocation is trig-
gered by another event) are neglected, thus effectively preventing the cascaded
or cyclic invocation of listeners. This implies that possible multiple dependen-
cies from one and the same event must be explicitly modeled through suitable
listeners (one for each dependency). Listeners reacting to the same event are ac-
tivated concurrently, and the final result of their execution depends on the order
of the invocation of the listeners. Therefore: termination of page computation
is guaranteed, as there are no cyclic runtime dependencies among listeners; and
confluence depends on the order in which events are generated and – for listeners
activated on a same event – on the order in which listeners over a same event
are specified in the XPIL composition. Consequently, there are no indeterministic
behaviors in the evaluation of listeners, and the designer has full control over
the runtime behavior of the composite context-aware application.

5 Implementing context-aware mashups

The development approach described in this paper is assisted by a visual develop-
ment environment, which allows for the drag-and-drop composition of context-
aware web applications [9]. Both composition logic and layout can be easily
designed; for the layout, it is also possible to upload an own HTML template
with placeholders. Figure 4 shows the graphical composition of the logic of our
reference application: the three components (Google Maps, tourist information,
and location context component) are represented by the icons in the modeling
canvas; the listeners are represented by the connections among the components.
A double click on components and listeners allows one to set the necessary pa-
rameters.

List of UI

components

available for the

mashup. Additional

components may

easily be loaded

into the editor by

referencing the

respective online

UISDL decriptor.

The Location

context

component used

in the

implementation of

the example

application.

Graphical model of

the composition

logic.

XPIL modeling

canvas.

Tabs that allow the

designer to switch

between different

views on the

composite

application under

development.

Fig. 4. The Mixup editor for the drag-and-drop mashup of XPIL and layout logic.

The editor is an AJAX application that runs in the web browser. Composi-
tions can be stored on our web server and executed in a hosted fashion through
the Mixup runtime environment, a JavaScript runtime library that parses the
XPIL file and sets up the necessary communication among the components.

The location context component used in the case study is based on previ-
ous work [8]: it leverages a client-side Bluetooth GPS device, interfaced via the
Chaeron GPS Library8, and is wrapped by means of Flash (to exchange position
data between the component and the GPS library) and JavaScript (to provide a
UISDL-conform interface). The other two components are conventional UI com-
ponents.

6 Discussion and outlook

Runtime adaptivity and context-awareness are relevant aspects in the design of
modern web applications. Indeed, if we consider how they have been addressed so
far by the most prominent conceptual design methods, we note that they have
been treated like an explicit, first-class design concern. The fashion in which
we develop context-aware or adaptive web applications in this paper allows us
to make the most of such approaches, but it also goes beyond what has been
done so far in this area. Provided a set of ready components, with the described
mash up approach we indeed enable developers (or even end users) to focus on
adaptive behaviors only, completely hiding the complexity of how adaptations
are actually carried out.

Adaptivity is enabled and supported by self-contained stand-alone applica-
tions, i.e. UI components. The actual adaptivity logic is represented by means

8 http://www.chaeron.com/gps.html

of a simple composition language, such as XPIL, interpreted during runtime
by a light-weight runtime environment.9 The simplicity of composing adaptive
web applications, however, does not come for free: complexity resides inside the
components, which provide for the necessary business logic to generate events
and enact operations. In this setting, the design of the components (both UI
and context components) becomes crucial, as the events they generate and the
operations they support build up the expressive power of the adaptivity logic,
which, hence, varies from application to application, depending on the compo-
nents that are adopted. It is exactly the design of UISDL-compliant components
that benefits most from existing approaches to the development of adaptive or
context-aware web applications, since, as a matter of fact, components can be
considered “traditional” web applications equipped with a UISDL API.

The described composition model based on XPIL does not only enable the
mashing up of context-aware and adaptive applications, it also allows for the easy
introduction of adaptivity features into already existing applications. It suffices
to add a respective context component, generating suitable context events (e.g.
changes in user characteristics, preferences, locations, etc.), to the composition
and to map its events to the components of the composite application, in order
to obtain adaptive behaviors. The graphical XPIL editor described in this paper
also supports the modification of an application’s adaptivity logic during run-
time, thus paving the road (i) for fast prototyping and easy testing of otherwise
complex application features during application design and (ii) for the efficient
and consistent evolution of an application after its deployment.

When we first introduced our approach to the component-based development
of web applications [10, 9] we were driven by the event-based paradigm by means
of which typically user interfaces are developed in order to achieve what we called
“presentation integration” (in analogy with data and application integration);
we did actually not focus on adaptive application features. But a close look
at the result of this effort allowed us to identify analogies with our previous
research on adaptive and context-aware web applications [6, 18, 19]: mashing up
context-aware web applications based on the described framework effectively
means setting up adaptation rules, the listeners. The developed framework is
thus intrinsically adaptive, a property that we heavily leverage in this paper.

In our future work we will focus on data transformations between events
and operations, on complex navigation structures spanning multiple composite
pages, on the integration of generic web services in a UISDL-compliant fashion,
as well as on classical personalization features by means of dedicated user model
components.

9 Due to the highly UI- and event-based logic of our composition approach, we
have opted for UISDL/XPIL, instead of for instance standard web service languages
such as WSDL/BPEL, which do not natively support UIs. Although theoretically
WSDL/BPEL could be used for similar purposes, this would however require extend-
ing the two languages with new features, which would only get the already complex
languages more complex. We instead believe that our specific context demands for
languages that are easily intelligible and easily executable (e.g via client-side code).

References

1. Henricksen, K., Indulska, J.: Modelling and using imperfect context information.
In: PerCom Workshops, IEEE Computer Society (2004) 33–37

2. Schewe, K.D., Thalheim, B.: Reasoning about web information systems using story
algebras. In Gottlob, G., Benczúr, A.A., Demetrovics, J., eds.: ADBIS. Volume
3255 of Lecture Notes in Computer Science., Springer (2004) 54–66

3. Fiala, Z., Hinz, M., Houben, G.J., Frasincar, F.: Design and implementation of
component-based adaptive web presentations. In Haddad, H., Omicini, A., Wain-
wright, R.L., Liebrock, L.M., eds.: SAC, ACM (2004) 1698–1704

4. Frasincar, F., Barna, P., Houben, G.J., Fiala, Z.: Adaptation and reuse in designing
web information systems. In: ITCC (1), IEEE Computer Society (2004) 387–291

5. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with As-
pects. In: ICWE. (2005) 406–416

6. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology 7 (2007)

7. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A survey of problems, technologies. Internet Computing
11 (2007) 59–66

8. Ceri, S., Daniel, F., Facca, F.M., Matera, M.: Model-Driven Engineering of Active
Context-Awareness. World Wide Web Journal 10 (2007) 387–413

9. Yu, J., Benatallah, B., Casati, F., Daniel, F., Matera, M., Saint-Paul, R.: Mixup: a
Development and Runtime Environment for Integration at the Presentation Layer.
In: Proceedings ICWE’07. Volume 4607 of LNCS., Springer Verlag (2007) 479–484

10. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A
Framework for Rapid Integration of Presentation Components. In: Proceedings
of WWW’07, ACM Press (2007) 923 – 932

11. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The Active Badge Location System.
ACM Trans. Inf. Syst. 10 (1992) 91–102

12. Long, S., Kooper, R., Abowd, G.D., Atkeson, C.G.: Rapid Prototyping of Mobile
Context-Aware Applications: The Cyberguide Case Study. In: MOBICOM. (1996)
97–107

13. Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In: CHI. (1999) 434–441

14. Belotti, R., Decurtins, C., Grossniklaus, M., Norrie, M.C., Palinginis, A.: Interplay
of Content and Context. J. Web Eng. 4 (2005) 57–78

15. Grossniklaus, M., Norrie, M.C.: Information Concepts for Content Management.
In Huang, B., Ling, T.W., Mohania, M.K., Ng, W.K., Wen, J.R., Gupta, S.K.,
eds.: WISE Workshops, IEEE Computer Society (2002) 150–159

16. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Eng. 2 (2003) 3–26

17. Garrigós, I., Gómez, J., Barna, P., Houben, G.J.: A Reusable Personalization
Model in Web Application Design. In: WISM’05. (2005)

18. Daniel, F., Matera, M., Morandi, A., Mortari, M., Pozzi, G.: Active rules for
runtime adaptivity management. In: Workshop Proceedings of ICWE’07. (2007)
28–42

19. Daniel, F., Matera, M., Pozzi, G.: Managing Runtime Adaptivity through Active
Rules: the Bellerofonte Framework. Journal of Web Engineering 7 (2008) 179–199

